
PROPERTIES OF STURM’S FORMULA
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Abstract. In contrary to large weights, Sturm’s operator fails to represent
the holomorphic projection operator for small weights in arbitrary Siegel
genus. We emphasize the roles of continuation of Poincaré series, holomor-
phic projection, Sturm’s formula, and spectral analysis in this context, and
explain their interaction.
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This article summarizes a series of papers [5]–[8] on the program of realizing
holomorphic projection in the Siegel case of arbitrary genus and small weight.
Parts of these results are joint with R. Weissauer ([7],[8]). We also contain a
sketch of ongoing projects as well as some expectations we have on this sub-
ject. Each of the papers [5]–[8] has special aims on its own. But their common
intention is to understand Sturm’s operator and its connection with the holo-
morphic projection operator from a conceptional representation theoretic point
of view. For this reason we enlarge the genus of the special linear group SL2

and study symplectic groups instead, and we keep the weight small.

1. Holomorphic projection

In order to use the properties of holomorphic automorphic forms it is often
necessary to reduce C∞-forms to their holomorphic part. To have a precise
notion of this holomorphic projection, we describe it as L2-operator. Let Gm =
Spm(R) be the real symplectic group of genus m. Let Γ be a subgroup of finite
index in Spm(Z) which contains the subgroup of translations Γ∞. This last
condition is made to keep Fourier expansions as simple as possible. It can be
removed by standard technics. Then L2(Γ\Gm) is a Hilbert space with unitary
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action of Gm by right translations. Let ρ be an irreducible representation of
the maximal compact group Km of Gm. Let L2(Γ\Gm)ρ be the subspace of
functions of Km-type ρ. Then the orthogonal projection operator

S : L2(Γ\Gm)ρ
proj−−−→ L2(Γ\Gm)ρ,hol

describes the holomorphic projection. Here L2(Γ\Gm)ρ,hol is the holomorphic
part of the spectrum, where a C∞-function is called holomorphic if under the
action of the Lie algebra gCm it is annihilated by the minus part p− in the Cartan
decomposition gCm = k ⊕ p+ ⊕ p−. The latter depends on a system of positive
roots which is chosen to be compatible with the following.
It is often convenient to work with functions on the Siegel upper half space Hm
rather than on Gm. Let J : Gm ×Hm → GLm(C) be given by J(

(
A B
C D

)
, Z) =

CZ + D. Restricted to Km, we get an isomorphism J(·, i) : Km
∼−→ U(m) we

rely on for the whole paper. Let C∞(Hm, Vρ) be the space of C∞-functions
on Hm with values in Vρ, and let C∞(Gm, Vρ) = C∞(Gm) ⊗ Vρ. There is an
isomorphism

C∞(Hm, Vρ)
∼−→ C∞(G,Vρ)τ ,

f(Z) 7→ F (G) = ρ−1(J(g, i))f(gK · i) .

Here τ = ρ−1 ◦J(·, i), and we identify the U(m)-representation (ρ, Vρ) with the
corresponding representation of GLm(C). Under this isomorphism, the action
of p− corresponds to the anti-holomorphic differential operator ∂Z̄ . Normalizing
the measures dk and dg of K and Gm such that dg = dVinvdk, where dVinv is
the invariant measure on Hm, we have the following identity of scalar products.
For C∞-cusp forms f and h of weight ρ for Γ it holds

〈f, h〉 = 〈〈F,H〉〉L2(Γ\Gm) .

For simplicity we assume ρ = detκ to be scalar for the rest of this paragraph.
As the holomorphic projection S is orthogonal, it is characterized by

〈f, h〉 = 〈S(f), h〉

for all holomorphic cusp forms h ∈ [Γ, κ]0 of weight κ. Now assume we have
a system of Poincaré series pτ in [Γ, κ]0, where τ is half-integral and positive
definite, so that the Fourier coefficients a(τ) of S(f) ∈ [Γ, κ]0 are given by

〈S(f), pτ 〉 = a(τ)c(m,κ) .

Here c(m,κ) is a constant independent of τ . As this must equal 〈f, pτ 〉 for the
non-holomorphic form f , we look at its Fourier expansion

f(Z) =
∑
τ

a(τ, Y )e2πi tr(τX)

with Z = X + iY . By unfolding we find

〈f, pτ 〉 = det(τ)−
m+1

2

∫
Y >0

a(τ, Y )e−2π tr(Y ) det(Y )κ
dYinv

det(Y )
m+1

2

,
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where dYinv = det(Y )−
m+1

2
∏
j≤k dyjk for Y = (yjk)jk. So turning things

around, defining

(1) a(τ) := c(m,κ)−1 det(τ)−
m+1

2

∫
Y >0

a(τ, Y )e−2π tr(Y ) det(Y )κ
dYinv

det(Y )
m+1

2

,

we obtain the Fourier expansion
∑

τ>0 a(τ)e2πi tr(τZ) of the holomorphic pro-
jection S(f). The resulting operator

Stκ :
∑
τ

a(τ, Y )e2πi tr(τX) 7→
∑
τ>0

a(τ)e2πi tr(τZ) ,

where a(τ) is defined by (1), is called Sturm’s operator. It is not only defined
on L2-functions, but also for all non-holomorphic modular forms of moderate
growth, i.e. forms such that the integral (1) exists.

Theorem 1.1. In the following cases Sturm’s operator realizes the holomorphic
projection operator Stκ = S.

(i) [12], [13] In the classical case of genus m = 1 and large weight κ > 2.
(ii) [10] For arbitrary genus m and large weight κ > 2m.
(iii) [3] For genus m = 1 and weight κ = 2m = 2.
(iv) [5] For genus m = 2 and weight κ = 2m = 4.

To illustrate the significance of holomorphic projection we shortly recall that
first, in [3] it was an important tool to interpret certain convolution L-series.
Second, it was used in [14] to reveal the true nature of mock modular forms as
the holomorphic parts of weak harmonic Maass forms.

2. Poincaré series

The whole argument in Section 1 relies on a given system of Poincaré series
in the space [Γ, κ]0 of holomorphic cusp forms for Γ of weight κ. That is
a system of functions generating [Γ, κ]0 and producing the Fourier coefficients
via the inner product. The theory of Poincaré series was studied systematically
in [11]. For large weights κ > 2m Panshichkin [10] introduced such systems
tracking back to definitions by Neuenhöffer [9]. For matters of applications we
prefer to work with Poincaré series of exponential type also tracking back to
[9] and first introduced by Klingen [4],

Pτ (g) =
∑

γ∈Γ∞\Γ

det(J(γg, i))−κe2πi tr(τ(γg·i)) .

These (as all) Poincaré series converge if and only if κ > 2m. From a purely
analytic point of view this is the reason why things become interesting for
small weights. For those the common procedure is to analytically continue
these Poincaré series. We define for complex variables s1, . . . , sm and Z =
X + iY ∈ Hm the non-holomorphic functions

Hτ (Z, s1, . . . , sm) = e2πi tr(τZ) ·
∏m

q=1
tr((τ

1
2Y τ

1
2 )[q])sq ,
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and the corresponding operator valued non-holomorphic Poincaré series

Pτ (g, s1, . . . , sm) =
∑

γ∈Γ∞\Γ

ρ(J(γg, i)−κ) ·Hτ (γg · i, s1, . . . , sm) .

Here Y [q] denotes the q-th alternating power of the matrix Y . These Poincaré
series converge if sq >> 0 for q = 1, . . . ,m. We note this precisely for the
special case where we restrict to two variables s1, sm.

Theorem 2.1. [5], [8] Let (l1, . . . , lm), l1 ≥ · · · ≥ lm = κ be the dominant high-
est weight of the representation ρ. The Poincaré series Pτ (g, s1, 0, . . . , 0, sm)
converge absolutely and uniformly on compact sets with respect to the operator
norm in the domain{

(s1, sm) ∈ C2 | Re s2 > m− κ

2
and Re(ms2 + s1) > m2 −

∑
j lj

2

}
.

For fixed such (s1, s2) and for all v ∈ Vρ the functions Pτ (g, s1, 0, . . . , 0, sm) · v
are bounded and belong to L2(Γ\Gm) ∩ C∞(Γ\Gm). In particular, in case the
weight κ > 2m is large, at the critical point (s1, sm) = (0, 0) the Poincaré series
converge absolutely and are holomorphic as functions on Γ\Gm.

Continuing the Poincaré series analytically to the critical point (s1, . . . , sm) =
(0, . . . , 0) is a non-trivial problem in case m > 1 (for m = 1 see [3]).
For scalar K-type ρ = detκ we have the following results in case of genus two
and small κ. Here a weight κ is called small if m < κ ≤ 2m.

Theorem 2.2. [5] Let the genus m = 2 equal two and the weight κ = 2m = 4
be four. Then the Poincaré series Pτ (g, s1, s2) have analytic continuation to the
critical point (s1, s2) = (0, 0). The limits Pτ (g, 0, 0) are holomorphic functions
in L2(Γ\G2).

For the proof we study differential operators D belonging to the center z2 of
the universal enveloping algebra of gC2 such that in the equation

(2) D
(
Pτ (g, s1, s2)

)
= Pτ (g, s1, s2)

the auxiliary Poincaré series Pτ (g, s1, s2) have better convergency properties.
Applying the resolvents of D± then gives analytic continuations of the Poincaré
series as functions in L2(Γ\G2). So we pick up the classical idea by Maass and
Selberg for the trace formula. The main difference is that for trace formulas
the input functions are Eisenstein series, which naturally are eigenfunctions of
z2, while the non-holomorphic Poincaré series are not.
The are some technically functional analytic arguments to make this work,
together with arguments from Langlands’ theory of Eisenstein series. We want
to mention that there are exactly two differential operators D+ and D− of
minimal degree four for which we obtain better convergency properties on the
right hand side of (2). On Langland’s Eisenstein series EB(g,Λ) with analytic
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spectral parameter Λ ∈ h∗C they have the compelling shape

D+(u)EB(g,Λ) =
∏

α long root

(α̌(Λ)− u) · EB(g,Λ) ,

D−(v)EB(g,Λ) =
∏

α short root

(α̌(Λ)− v) · EB(g,Λ) ,

for some affine linear combinations u, v of the variables s1, s2 and weight κ,
where α̌ is the dual of the root α.
Theorem 2 implies Theorem 1.1(iv) on holomorphic projection by Sturm’s op-
erator above. For the second small weight κ = m+ 1 = 3 we have jointly with
R. Weissauer the following result.

Theorem 2.3. [7] Let the genus m = 2 equal two and the weight κ = 3 be three.
Then the Poincaré series Pτ (g, s1, s2) have analytic continuation to the critical
point (s1, s2) = (0, 0). The limits Pτ (g, 0, 0) are C∞ functions in L2(Γ\G2).
The unique non-zero isotypical spectral components are discrete and given by
the holomorphic discrete series representation πhol(2,1) of minimal K-type (3, 3),

and a holomorphic but non-discrete series representation πhol1 of minimal K-
type (1, 1).

We use the same methods as in [5], but employ much deeper insight to the
unitary spectrum of Sp2(R). Two surprising facts occur. First, the analytic
continuations exist as a C∞-function in L2(Γ\G2), but they are not holomor-
phic anymore in the critical point (s1, s2) = (0, 0). The reason for this is the
occurrence of the spectral component πhol1 of K-type (1, 1), which carries the
K-type (3, 3) (i.e. scalar weight κ = 3) non-trivially, but in which only func-
tions of K-type (1, 1) are holomorphic. Second, the general expectation that
the crucial problems will be located within the continuous spectrum (which
happens in case m = 1 and κ = 1) does not hold. In weight κ = 3 the con-
tinuous spectral components are well-behaved and do not contribute to the
continuation. They will indeed make non-trivial contributions in case κ = 2,
so this is a problem of weight κ = m.
The articles [5] and [7] exhaust the scalar weight case in genus two. Because
genus two in general holds for the pivot case for all higher genera, we expect
all these phenomenons and more to occur for any higher genus.

3. Sturm’s operator

The statement of Theorem 2.3 that for κ = m + 1 the analytic continuation
of the Poincaré series is non-holomorphic in the critical point (s1, s2) is sur-
prising and unexpected. It suggests that Sturm’s operator fails to realize the
holomorphic projection operator in this case. We show that this is indeed the
case.
Consider the spectral component πhol1 which produces the non-holomorphic part
of the continued Poincaré series. The generating cusp form h ∈ [Γ, 1]0 of this
representation has minimal K-type (1, 1). (Here we identify representations of
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GLm(C) with their highest weight.) The only possibility to obtain a function of
K-type (3, 3) from h is by application of Maass’ shift operator. This is defined
by

∆
[m]
+ (h)(Z) = (2i)m(τ ⊗ det

1−m
2 )(Y −1) det(∂Z)

(
(τ ⊗ det

1−m
2 )(Y ) · h(Z)

)
,

which for any irreducible rational GLm(C)-representation τ sends C∞(Hm, Vτ )
to C∞(Hm, Vτ⊗det2).

Theorem 3.1. [7], [6] Let the genus m ≥ 2 be arbitrary. Let h ∈ [Γ, k]0 be
a non-zero holomorphic cusp form of weight k. Then the image of its Maass

shift ∆
[m]
+ (h) under Sturm’s operator

Stk+2

(
∆

[m]
+ (h)

)
is non-zero if and only if k = m− 1.

On the other hand, the Maass shift ∆
[m]
+ (h) is a non-holomorphic function in the

spectral component generated by h. So the holomorphic projection S(∆
[m]
+ (h))

vanishes. Accordingly, Sturm’s operator fails to realize the holomorphic pro-
jection operator for weight κ = m+ 1.

Theorem 3.2. [7], [6] For genus m ≥ 2 and κ = m+ 1 it holds

Stm+1(f) = S(f) + Ph(f) ,

where the phantom term Ph(f) is non-zero in general, as there is a contribution
by Maass shifts from [Γ,m− 1].

By virtue of Theorem 3.2, the process of obtaining holomorphic Poincaré series
by analytic continuation of analogs of those for larger weight must be expected
to fail in general. Because, such holomorphic continuations would make the
argument of Section 1 for Sturm’s operator work. This reveals once more
the fact that the spaces [Γ, κ]0 of holomorphic cusp forms are very difficult to
describe when κ is small.
For genus two we are more precise, thereby ruling out the possibility that our
choice of Poincaré series simply was unlucky.

Theorem 3.3. [7] For genus m = 2 and weight κ = 3 let pT be the images on
the Siegel half space of the limit series PT (·, 0, 0). Then pT decompose

pT = fT + ∆
[2]
+ (hT )

as sums of holomorphic cusp forms fT ∈ [Γ, 3]0 and Maass derivatives ∆
[2]
+ (hT ),

where hT ∈ [Γ, 1]. In general, fT and hT are non-zero. The forms hT can be

recovered by the anti-holomorphic Maass operator ∆
[2]
−

∆
[2]
− (pT ) =

3

4
· hT .
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Here ∆
[m]
− is given by

∆
[m]
− (f) = (2i)m(τ ⊗ det(Y )

1−m
2 ) det(∂̄Z)(det(Y −1)

1−m
2 )f(Z)) .

It is an interesting question how phantom terms decompose in general. Apart

from ∆
[m]
+ (h) for h ∈ [Γ, κ − 1]0 coming from the holomorphic representation

πholm−1, there can appear many other terms coming from unitary representations
in which the K-type ρ = (κ, . . . , κ) occurs non-trivially. In terms of cusp
forms, this could be any ∆σ(h) for a vector valued cusp form h ∈ [Γ, τ ]0 and a
differential operator ∆σ such that τ + σ = ρ.
A result in this direction is the notion of Sturm’s operator for general K-type ρ
(see [8]). Let τ run through the positive definite half-integral matrices, and let

f(Z) =
∑

τ ρ(τ
1
2 )a(τ, τ

1
2Y τ

1
2 ) · e2π tr(τX) be the Fourier expansion of a vector

valued C∞-modular form. Then, sending the vector valued Fourier coefficient

a(τ, τ
1
2Y τ

1
2 ) to the coefficient a(τ)T defined by the vector valued integral

det(τ)−
m+1

2

∫
Y >0

a(τ, Y )Tρ(τ
1
2 )C(m, ρ)−1ρ(Y )ρ(τ−

1
2 )e−2π tr(Y ) dYinv

det(Y )
m+1

2

.

we define Sturm’s operator

Stρ(f)(Z) =
∑
τ>0

ρ(τ
1
2 )a(τ)e2πi tr(τZ) .

Here C(m, ρ)

C(m, ρ) =

∫
Y >0

ρ(Y )e−4π tr(Y ) dYinv

det(Y )
m+1

2

is an operator-valued integral such that on holomorphic cusp forms Sturm’s
operator is the identity. It is classically known to be convergent if the dominant
highest weight (l1, . . . , lm) of ρ satisfies lm > m−1

2 ([2]). In [8] we prove that
C(m, ρ) to be invertible for genus m = 2 as well as for some general classes
of representations. In particular, if ρ = detκ, then C(m, ρ) = c(κ,m), and
the notions of Sturm’s operator coincide. We have the following result on
holomorphic projection generalizing Theorem 1.1 to vector valued forms.

Theorem 3.4. [8] Let ρ be an irreducible representation of GLm(C) of highest
weight (l1, . . . , lm) satisfying lm > 2m. Then Sturm’s operator realizes the
holomorphic projection operator.

But, generalizing Theorems 3.1 and 3.2, for small weight this does not hold
true.

Theorem 3.5. [8] Let the genus m equal two. Let τ be an the irreducible
representation of GL2(C) of highest weight (k+ r, k) with k ≥ 1 and r ≥ 0. Let
C(m, ρ) be invertible. Let h ∈ [Γ, τ ]0 be a vector valued holomorphic cusp form

of weight τ . Then the image of its Maass shift ∆
[m]
+ (h) under Sturm’s operator

Stτ⊗det2

(
∆

[m]
+ (h)

)
is non-zero if and only if k = 1.
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In case ρ has highest weight (3 + r, 3) Sturm’s operator does not realize the
holomorphic projection but produces phantom terms

Stρ(f) = S(f) + ph(f) .

4. Spectral point of view

An irreducible representation containing a non-zero holomorphic function H of
weight ρ is generated by H and has minimal K-type ρ. Most of them are (limit
of) holomorphic discrete series representations, but there are others like πhol1

above. In particular, for ρ = (m+ 1, . . . ,m+ 1) the underlying representation
is the holomorphic discrete series with Harish-Chandra parameter δ = (m,m−
1, . . . , 1). In general, ρ = (κ1, . . . , κm) with κm ≥ m + 1 (and the natural
condition κj+1 ≥ κj) has Harish-Chandra parameter (κ1−1, κ2−2, . . . , κm−m)
and belongs to the cone given by the holomorphic discrete series within the root
space, that is the cone given by the Weyl chamber translated by δ, where δ
equals half the sum of positive roots.
The wall orthogonal to the short root is characterized by the scalar minimal
K-types (κ, . . . , κ), where κ ≥ m + 1. For those with κ > m + 1 Sturm’s
operator realizes the holomorphic projection correctly at least in case m = 2
by Theorem 1.1, i.e. its image belongs to the holomorphic discrete series in
question. For κ = m + 1, belonging to the apex δ of the cone, this is wrong
by Theorem 3.2. Then, the image of Sturm’s operator has a non-zero part
in πholm−1, which has Harish-Chandra parameter (m − 2, . . . ,−1) (respectively,
a Weyl-conjugate of this). By Theorem 3.5 the same phenomenon occurs for
ρ = (3+r, 3), r > 0, which are the minimal K-types of the discrete series on the
wall of the cone perpendicular to the long root. So they have Harish Chandra
parameters (2 + r, 1). There Sturm’s operator fails. Whereas Sturm’s operator
acts as holomorphic projection everywhere else on the cone.
We expect that, for higher genera, Sturm’s operator will fail to realize the
holomorphic projection on all facets of the cone which are not perpendicular
to every short root.
The exhaustive results in genus m = 2 ([7]) rely on the analysis of the unitary
spectrum of Spm(R). For results on higher genera an extensive insight to the
unitary spectrum of Spm(R) is necessary. At the moment, the spectral parts
parametrized by parameters Λ belonging to the ball of radius ||δ|| are little
understood in detail. An exact description of the truly arising small K-types
within (unitary) representations of small minimal K-types, holomorphic as well
as non-holomorphic ones, will be a good help for our program. Explicitly, we
have to determine those spectral components which are zeros of the differential
operators D± used for analytic continuation of the Poincaré series. Written
with respect to Langlands’ Eisenstein series, these elements of the center of
the universal enveloping Lie algebra themselves depend on the weight ρ of the
Poincaré series. Their zeros are certain affine lines perpendicular to the roots,
which get the nearer to the origin the smaller the weight becomes. From the
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representation theoretic point of view, this is why things become interesting
for small weight.

5. Perspectives

There are several projects resulting from the discussion above which are ongoing
work. These include a general theory of analytic continuation of Poincaré
series of exponential type for general genus and for vector valued weights. Also
a comprehensive atlas of the state of the art of the representation theoretic
questions is needed.
Another current project is the case of half-integral weight. Most of our methods
apply to them as well. We have some evidence that there should be a positive
result on holomorphic projection even in case of weight κ = m+ 1

2 . This would
have direct applications to theta correspondences for certain Hilbert modular
surfaces (see [1]).
An even more appealing project is to transfer these questions to the dualized
setting, the special orthogonal groups SO(2, n). Some parts of the theory have
direct counterparts there, for example the concrete differential operators used
for analytic continuation, while other parts must be developed, like systems
of Poincaré series. It is the case of special orthogonal groups we think of for
arithmetic applications of our results.
In the very focus of our work stands the interpretation of the phantom terms
arising from Sturm’s formula. They occur in an area where analytic, represen-
tation theoretic, and arithmetic objects deeply interact with each other. We
expect the phantom terms produced by analysis to carry arithmetic impact.
In a first step we study their influence within convolution L-series involving
derivatives of Eisenstein series.
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