SUPER CATALAN NUMBERS AND THE EULER OPERATOR
KATHRIN MAURISCHAT AND RAINER WEISSAUER

ABSTRACT. We show that super Catalan numbers (defined by Gessel) occur as con-
stant coefficients of polynomials arising as solutions of combinatorial polynomials
under a summation operator. We give new sum representations for these super
Catalan numbers.

1. INTRODUCTION AND STATEMENT OF RESULT

Super Catalan numbers
(2n)! - (2k)!
2-nl-kl'(n+k)!
for integers n, k > 0 were introduced By Gessel [I] as special super ballot numbers. In
particular, C'(n, 1) are the Catalan numbers. Notice that in contrast to [1] we normalize

by a factor % Super Catalan numbers are integers apart from C'(0,0), symmetric, and
satisfy the summation equation [I, p. 191]

(1) Cn+1,k)+Cnk+1) = 4-C(n,k).

We came along these numbers during our study of polynomial solutions F' of the sum-
mation operator

C(n, k) =

(SF)(z) = F(z+1)+ F(z) = f(z).

Choosing f(z,v,n) = [ﬂ [:z: ; V] on the right hand side, the constant terms of the

solutions F(x,v,n) are either zero or equal to (—1)#¥272"C(n, u) for some p depending
on v, see Proposition 3.1}
Let us denote by E the Euler operator, i.e. the inverse of the summation operator S

on polynomials. Then E is uniquely determined by the recursion, E(z°) = 1, and for

27
n >0
E(z") = 1x"—17§ " E(z7)
=3 2j:0 j .

The polynomials e, (x) = E(z") are the well-known Euler polynomials defined by the

generating series
xt

00

t" e
Zen(x)ﬁ = et+1 °
n=0
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ezt

Because S(et+1
e1(z) = 37— 1, ea(x) = 322 — 1z, e3(x) = L2® — 322 + . and eq(z) = §at — 2% + La.
The values Es,,, = 22m+162m(%) are the alternating Euler numbers, Fy = 1, Ey = —1,
E, =5, Eg = —61,..., whereas for all m > 0 one has €2m+1(—%) = 0. From this point
of view, super Catalan numbers play a role for the polynomials f(x,v,n) similar to
that of the Euler numbers for the polynomials z".

) = ¢® the polynomials indeed satisfy Se,(z) = 2. In particular,

The solutions F'(z,v,n) of the summation equation in turn were part of our study on
dimensions of Lie super modules [2], [3]. The nomenclature super Catalan numbers
happens to be a very lucky one allowing this ambiguity.

As a consequence of different presentations of the constant terms of the solution poly-

nomials F'(x,v,n) above we find the following sum representations for super Catalan

numbers.

Theorem 1.1. The super Catalan numbers C(n,u) satisfy the following identities.
(a) Forall0<pu<n

- @)

k=0
(b) For all0 < p < |27

C(n.0) = i(_l)lﬁ-l (f;) (k +1 Z2u - n) i (2;) ;

k=0 j=k+
whereas for all 0 < p < | ]

(—1)* - C(n — p, i) — C(n,0) = i(—l)’“(i) (k”:”) i (277>.

k=0 j=kr1 N7
Notice that in each sum, the summands actually are zero for k < n.

For the proof it is important to recognize the super Catalan numbers to satisfy a second
recursion formula

4n—k—1)

C(n,k) = C(n—1,k+1)+ s

-C(n—1,k),
foralln >0and all 0 < k <n.

The solutions F(x,v,n) are determined by a general formula for the polynomial preim-
age E(f) of a polynomial f given by the values f(z;) for subsequent x; = a + jt for
j=0,...,deg(f) and constants a and t. We develop this method in section [2{and give
the proof of theorem [I.1] in section

2. EULER OPERATOR

We give an intrinsic description of the preimage E(f) of a polynomial f of degree n,
in case we know the values f(x;) at subsequent places z; = a+ jt for j =0,...,n and
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constants a and ¢ > 0. Without loss of generality, we assume a = 0 and ¢t = 1. Define
a sequence Fy, k € Ng, by Fy =0, and for all £ > 0

Fyp = f(k) = Fy.
The sequence F}, is a solution of the sequence of discrete equations
SF, = f(k).

Any other solution differs from Fj only by a sequence (—1)* - ¢ for some constant c.
Let G(z) be the interpolation polynomial of degree at most n = deg f of the values
G(k) = Fy, for k=0,...,n. It is given by Lagrange interpolation

n n n y n
B r—k (=1)" 7 F;
6w =n [ 2TE =Y EUE T oy

i=0 k=OkeAj i=0 7’ k=0,k#]

and satisfies the summation equation
Gk+1)+G(k) = f(k)

for k =0,1,...n — 1. In order to obtain the polynomial solution F'(z) = E(f(x)), let
B, (x) be the polynomial of degree n which interpolates the values B, (k) = (—1)* for
k=0,1,...,n. Define

(2) F(x) = G(z)+c¢- Bp(x),
where the constant c is determined by the summation equation at x = n
Fn+1)4+Fn)=Gn+1)+Gn)+c- (By(n+1)+ Bp(n)) = f(n).

Because the polynomial B, (z) is given explicitly in Lagrange form

n ) n
By(z) = (-1)" j:ZO =0 k:g#(m —k),
it follows
Bu(n+1)+ By(n) = (-1)"((2""' = 1) +1) = (-1)"2"+!.
We obtain by using F,11 = > p_o(—1)"*f(k)
(—=1)"2" . c = f(n) — G(n) — G(n+1)

n j—1
= Cor (i (T T entm)
j=0 k=0
or equivalently
| S |
@) ¢ = g o0t 30 (M.
k=0 j=k+1

We summarize.
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Proposition 2.1. The preimage F = E(f) of the polynomial f of degree n under the
summation operator S is the polynomial

n - (C+(_1)]F1J) -

F = (— A S Ve
) = 0" =y
with constant ¢ = F(0) given by @), and coefficients F; = S 0_4(—=1)717F £ (k).

Multiplying Fj by 1 = 2~("+1) Z”H ("jl) we obtain the following expression for the
coefficients of the solution polynomial

n n+1 7j—1 l
e+ (-1F; = %(Z(—l)lm) > (") -Sevax (" 1))

I1=j i=l+1 1=0 i=0
Writing
flx) = apa" + -+ a1x + ao,
for the solution polynomial it follows F(x) = %" +.... Comparing this with the

highest coefficient of F' in proposition [2.1] we obtain

o iyt (<1 (7).

which is equivalent to a second formula for the constant ¢
(—1)"n! 1 — " (n
0 o= Gt g et Y (),
k= j=k+1

Simplifying the identity = yields the well-known expression for the leading
coefficient a,, of the polynomial f

) e = 3 (1)t

k=0

By this and ¢ = F(0) being the constant coefficient of F', a number of non-obvious
combinatorial identities arise. We begin with two simple examples.

Example 2.2. Let f(z) = 2™. For the Euler polynomials e, (z) = E(z") we obtain

1 & & n+1
— — lin
}® = = gy 0 3 (M7,
=0

i=l+1

The identities for the leading coefficients % =2 =0 '(nij)w yield for all n

1

- $0(E0mE (7)-Sor k1)

Jj=0 l=j i=l+1 1=0 i=0



Example 2.3. Let

f@) = 2] = Seate= 1) o - 0- 1),

n n!

The coefficients Fj of the polynomial solution F' of the summation equation SF(zx) =

f(x) given by proposition are all zero, whereas ¢ = (2_ 1+)1n . It follows

n

1 " /n
F(x):c-Bn(a:):MZ;)<j> I[[ @-#.

k=0,k#j

3. PROOF OF THEOREM [[.1]

Proposition 3.1. (a) For v =0,1,...,n define polynomials

o= (2

0, fr=n—1-2u
S%~Cm—uw% ifv=mn—2u

as well as constants

(6) c(v,n) = {

The polynomial solution of the summation equation SF(x,v,n) = f(xz,v,n) is

2n

2n
Flem) = S (B + (Petvm) T] 2F,

where
.7 j—1 —v
Fij(v,n) = (=1)’ 1;0(_1)k<71j> <kn >

The constants c(v,n) satisfy the following two recursion formulas for 2 <v <n

(7) c(lv—2,n) = ¢(v,n)—clv—1,n—-1),
and

(8) c(v—2,n) = —c(v,n) + —c(v —1,n—1).
(b) For

f@n+1n) = m [w—n—l]

n n

the polynomial solution of the equation SF(x,n+ 1,n) = f(x,n+ 1,n) is

Flz,n+1,n) = 2(21n)! ij(%) ﬁ (z— k) — i <277> ﬁ (z— k)

=0 N k=02 g1 N S0k
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In particular we obtain by Example

F(z,n,n) = 0(27;’10) - Bop (),

whereas
F(z,n—1,n) = C(n,0) - [292] .

We emphasize that the values of F(z,v,n) at z = k for 0 < k < 2n are explicitly given
by

r — (_1\k pE (I (T VY
(ovm) = (~Dfelm) + Y (1R (1) (7
Jj=n-+v
In particular, for v = n—1—2u the polynomial F'(z,v,n) has zerosinz = 0,1,...,n—v.

Our main result theorem on super Catalan numbers now is a corollary of proposi-

tion B.11

Proof of theorem [1.1] Part (a) is given by identity for the leading coefficients of the
polynomials F(z,u,n). Part (b) is given by formula for the constant coefficients
¢(v,n) of F(x,v,n) which are also determined by proposition Part (b) follows in
particular from equation below by inserting the special values of ¢(v — 2, n) given
in proposition [3.1] O

Proof of proposition[3.1]. Part (a): Notice that

f(z,v,n) :%Vl:[ (x—j)(x—n—7) H (v—1)—Fk)?.

Hence, in proposition u the series F; = F)j(v,n) is given by

Fi(v,n) = (—1)7! g“”%i) <k 0 y> ’

where the summands vanish for £ < n+wv. In particular, Fj(v,n) = 0for 0 < j < n+wv.
We obtain the polynomial solution

2n
F(z,v,n) = > (Fi(v,n) + (~1c(v,n)) I ] ° _Z ,

=0 k]

where the constant ¢(v,n) is determined by
2n 2n
(2n)! 1 sk (k—v 2n
o e = 2 St e (B)(5) 5 (7).
k=n+v j=k+1

We show that these numbers coincide with those of definition @ Evaluating @D we
obtain

c(n,n) = C(n,0) and c¢(n—1,n) = 0.

22n '
We use these special values to prove (6) by increasing induction on n and decreasing
induction on v using recursion formula (8)). But first observe that recursion formula
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follows from recursion formula for super Catalan numbers once the explicit values
@ hold true. For the above induction we have to prove . Observe that

L [ G B 0 [ E e [ i

Using the definition of the super Catalan number, by @D we know

(1) 22"c(v—2,n) — C(n,O): i 2(—1)k‘<7";> ("’_Z”) i::l (2;) .
—ntv— j=k+

We split this expression according to the identity for binomial coefficients ((10). For
the first part we obtain

C(n,0) + i (—1)k<k:1> <k+i_y> i (?)

k=n+v—2 j=k+1
2n+1 — 2n n
= C(n,0)— k;y(—l)k@) <k . ) JZ:; (2], ) .

Using formula for the highest coefficient (n!)~2 of the polynomial f(z,v,n) to sum
the terms with 7 = k, this equals

—C(n,0) — i (—1)k<z) (k;”) i (2;) — (=1)-22"-c(uym),

k=n+v j=k+1

where the last equality is due to (4)). For the second part of we obtain

S () 5 6)

k=n+v—2 j=k+1
2(n—1) 2n—1
k kE—(v—1) 2n —1
— . _1\k
- 2 ) 2 0
k=n—1+(v—1) j=k+1
2n
2n —1 e K k—(v—1)
o2 e )T
k=n—1+(v—1)

which equals

2n—1

2 c(v—1,n—1)+2-C(n—1,00+ »_ <2(k”__11)>(—1)’“<nﬁl> <k _n(izl))

k=n—1+4+(r—1)
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Using that the last sum

B ))

=n—1+(v-1)
2(n—1)
- kzzo (2(”]; 1)>(—1)kg(k‘) = —2-C(n—1,0)

equals up to the constant (2(n — 1))! the leading coefficient of the polynomial g(x) =
f(x+1,v—1,n—1), the second part of becomes 22" - ¢(v — 1,n — 1). So putting
the two parts together, we obtain for

22 (v —1)

22c(v — 2,n) = (—1)-2%"c(v,n) +
n

ce(v—1,n—-1).

We have proved recursion formula . In order to finish the induction argument, by
hypothesis we assume that @ holds true for ¢(v,n) as well as for ¢(v —1,n—1). If v is
of the form v = n — 1 — 2 these two constants are zero, so implies ¢(v — 2,n) = 0.
If v = n — 2u we obtain for the right hand side of

(—1)n+t n—2u—1 (—1)utl
2T<C(”_M7H)_T“l'c(n_l_ﬂvﬂ)) = QTC(”_(M+1)7H+1)7
which must equal the left hand side c(n — 2(u + 1), n) of (§).

Part (b): We proceed again by proposition to obtain the values

j—1 e
, 0 ifj=0,...,n
' o _1\J—1-k — . J ’ ’
Fi(n+1,n) = EEO( 1) flk,n+1,n) = { (=171 ifj=n+1,...,2n "

as well as the constant

o 2_zn<% + i(_l)kf(k, n+1,n) i (2@)

=0 jehg1 N
2n
1/2n 2n 1
_ 9—2n _
=2 <2<n>+ 2 <j>) =3
j=n+1

This leads to the solution polynomial

F(w,n+1,n):2(21n)! znj<27> Men-3 <27) M -5

im0 N ok jmnt1 N 20k
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