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Abstract. We introduce a method that associates to a singular space a CW
complex whose ordinary rational homology satisfies Poincaré duality across
complementary perversities as in intersection homology. The method is based
on a homotopy theoretic process of spatial homology truncation, whose func-
toriality properties are investigated in detail. The resulting homology theory
is not isomorphic to intersection homology and addresses certain questions in
type II string theory related to massless D-branes. The two theories satisfy an
interchange of third and second plus fourth Betti number for mirror symmetric
conifold transitions. Further applications of the new theory to K-theory and
symmetric L-theory are indicated.

1. Poincaré duality for Pseudomanifolds

Stratified pseudomanifolds are finite dimensional spaces with a filtration by
closed subsets such that the successive differences (the open strata) are manifolds,
the top dimensional open stratum is dense, the complement of the top stratum (the
“singular set”) has codimension at least two, and every point has a distinguished
neighborhood homeomorphic to the open cone on a compact pseudomanifold of
smaller dimension. Examples include realizations of n-dimensional simplicial com-
plexes such that every (n − 1)-simplex is the face of precisely two n-simplices and
every simplex is the face of some n-simplex, as well as irreducible complex algebraic
or analytic varieties. The example of the suspension of a two-torus shows that the
ordinary homology of a pseudomanifold does not in general satisfy Poincaré duality.
Generalized Poincaré duality is obtained by using instead the intersection homol-
ogy groups IH p̄

∗ (−) of Goresky and MacPherson [GM80], [GM83], see also [B+84],
[KW06], [Ban07], or Cheeger’s L2-cohomology [Che80], [Che79], [Che83], in the case
of a Riemannian pseudomanifold. It is shown in [Che80] and [GM83] that for Rie-
mannian pseudomanifolds that have conical singularities and no odd-codimensional
strata, the linear dual of intersection homology for the middle perversity p̄ = m̄
is isomorphic to L2-cohomology. (The lower middle perversity m̄ is the sequence
(m̄(2), m̄(3), m̄(4), . . .) given by (0, 0, 1, 1, 2, 2, . . .); the upper middle perversity n̄
is the sequence (n̄(2), n̄(3), n̄(4), . . .) given by (0, 1, 1, 2, 2, 3, . . .).)
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Both theories are obtained as the (co)homology of a complex that is associated
to the pseudomanifold X . In the case of intersection homology, this is a subcom-
plex of the ordinary chain complex of X , in the case of L2-cohomology, it is the
complex of those differential L2-forms on the top stratum whose differential is an
L2-form as well. These complexes are not generally differential graded algebras,
because in the former case, the intersection product of a p̄-intersection chain and a
q̄-intersection chain is in general only a p̄ + q̄-intersection chain; in the latter case,
the wedge product of two L2-forms need not be an L2-form. These complexes are
thus already a certain distance removed from the homotopy type of X . We shall
discuss here a method that associates to an oriented stratified pseudomanifold X
spaces I p̄X , the intersection spaces of X , such that the ordinary reduced homology

H̃∗(I
p̄X ; Q) satisfies generalized Poincaré duality. Thus the I p̄X are generalized

rational Poincaré complexes. The method constructs these spaces so that the given
X is modified only near the singularities. The space away from a small neighbor-
hood of the singular set is completely preserved. Roughly, the links are replaced
with appropriate Moore sections of the links, depending on the perversity p̄. The
construction will be explained in more detail in the following sections. If X is a
finite CW complex, then I p̄X will be a finite CW complex as well, which is a de-
sirable property for instance in fiberwise settings. Moreover, our construction is
very explicit: if CW structures of the links are known, then the intersection spaces
can be written down explicitly and concrete computations can be carried out readily.

The homology groups of I p̄X are not isomorphic to IH p̄
∗ (X), nor (a fortiori) to

L2-cohomology when p̄ = m̄. The Calabi-Yau quintic

Q = {z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5z0z1z2z3z4 = 0}

in CP
4 has 125 isolated singular points, all of them nodes. The middle homology

H3(I
m̄Q) has rank 204. Almost all of these cycles remain invisible to intersection

homology, as rk IHm̄
3 (Q) = 2. On the other hand, rk IH2(Q) = rk IH4(Q) = 25,

while rkH2(IQ) = rkH4(IQ) = 1. (We will drop the perversity decoration when
the perversity is understood to be the lower middle.) The two theories are, how-
ever, closely related. A good way to think of this relationship in the case of singular
Calabi-Yau 3-folds is that (IH∗(−), H∗(I−)) is a mirror-pair in the sense of mirror
symmetry. It turns out that the new homology theory H∗(I−) solves certain prob-
lems in type II string theory that are neither solved by ordinary homology nor by
intersection homology. The role of intersection spaces in string theory is the topic
of Section 5.

Let us mention some immediate advantages of this spatial approach to Poincaré
duality for singular spaces. Contrary to the intersection chain complex or L2-form
complex, the ordinary cochain complex of I p̄X is a differential graded algebra by
simply using the ordinary cup product. In particular, H∗(I p̄X) comes equipped
with an internal cup product. Furthermore, cohomology operations are defined. If
one wishes to define p̄-intersection versions of generalized homology theories E∗(−)
in the sense of Eilenberg-Steenrod, then one cannot do this via chain theories. In-
deed, it is proven in [BCF68] that no nontrivial homology theory E∗ is the homology
of a chain theory. Here, a chain theory is a covariant functor L from the category
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of finite CW pairs (A, B) to the category of chain complexes such that

0 → Ln(B) −→ Ln(A) −→ Ln(A, B) → 0

is exact and (A, B) 7→ H∗(L(A, B)) is a generalized homology theory. We regard
E∗ as trivial if there is a natural equivalence of homology theories

En(A, B) ∼=
⊕

p+q=n

Hp(A, B; Eq(pt)),

where H∗ is ordinary singular homology. For example, oriented bordism cannot be
derived from an underlying chain theory. Since the framework presented here is
spatial, not just chain theoretic, it allows one to study X 7→ E∗(I

p̄X), e.g. its du-
ality properties, even when E∗ is nontrivial. We will return to this point below for
K-theory E = KO and symmetric L-theory E = L•. The new theory also allows for

cap products of the general form H̃r(Im̄X ; Q)⊗H̃i(X ; Q)
∩

−→ H̃i−r(I
n̄X ; Q). Prod-

ucts of this type are known not to exist for intersection homology. We will explain
below why such products exist in the new theory but do not exist in intersection
homology. Characteristic classes of pseudomanifolds, such as L-classes, lie generally
in H∗(X ; Q), without possibility of lifting them to IH∗(X ; Q) or H∗(IX ; Q). Thus
the value of the above product derives from the fact that it allows us to multiply
Chern classes in Heven(Im̄X ; Q) of some bundle with the characteristic classes of
X to obtain a class in the homology of I n̄X . This may lead to extensions of the
results of [BCS03], [Ban06] on characteristic class formulae for twisted signatures
and twisted L-classes of pseudomanifolds.

2. Intersection Spaces in the Case of Isolated Singularities

Let us describe the construction of I p̄X when X has only isolated singularities.
In fact, the general method is already well illustrated by taking X to be of the form

X = M ∪∂M cone(∂M),

where M is an n-dimensional oriented compact manifold with boundary ∂M . The
cone point is the only singularity and the link of this singularity is ∂M . Set k =
n − 1 − p̄(n), a positive integer. The intersection homology groups of such an X
are given by

(1) IH p̄
i (X) =





Hi(M), i < k

im(Hi(M) → Hi(M, ∂M)), i = k,

Hi(M, ∂M), i > k.

Thus, intersection homology effectively truncates the chain complex of the link
below the cut-off value k. Our method of construction will implement such a trun-
cation spatially by using a process of spatial homology truncation. Eckmann-Hilton
duality in homotopy theory dictates the direction of arrows for such a truncation,
and this direction is such that one must truncate above k, not below. This fun-
damental point explains why the method yields a new kind of homology and not
intersection homology.

Suppose, then, that t<k is a covariant assignment from spaces to spaces, assigning
to L a Moore section t<kL, that is, there is a natural transformation ǫk from t<k

to the identity such that ǫk∗ : Hi(t<kL) → Hi(L) is an isomorphism for i <
k, while Hi(t<kL) = 0 for i ≥ k. The existence and functoriality properties of
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such assignments are generally intricate and rather interesting in their own right.
Developing a homotopy theoretical method for spatial homology truncation forms
a substantial part of the work presented here and constitutes the technical core of
our method. We give more details on this in Section 4. Given t<k, the intersection
space I p̄X is by definition the homotopy cofiber of the composite map

t<k(∂M)
ǫk−→ ∂M →֒ M.

(We should caution that this exposition of the construction of I p̄X is somewhat
simplified, since a naive truncation (t<k, ǫk) as above does not actually exist, as we
will see in Section 4. The more sophisticated truncation of that section is really
used.) Duality then takes the following form.

Theorem 2.1. Let p̄ and q̄ be complementary perversities. Then there is a gener-
alized Poincaré duality isomorphism

H̃i(I p̄X ; Q) ∼= H̃n−i(I
q̄X ; Q),

which is compatible with Poincaré-Lefschetz duality on (M, ∂M).

While IH p̄
k (X) is generally smaller than both Hk(M) and Hk(M, ∂M), the group

H̃k(I p̄X) is generally bigger than these two. In fact, H̃k(I p̄X) is an extension of
Hk(M, ∂M) by ker(Hk(M) → Hk(M, ∂M)) and for i 6= k,

H̃i(I
p̄X) =

{
Hi(M, ∂M), i < k

Hi(M), i > k,

which the reader may wish to compare to (1) above.

Suppose the dimension n of X is divisible by 4. Then the intersection form

ΦHIX : H̃n/2(IX ; Q) ⊗ H̃n/2(IX ; Q) −→ Q

is symmetric. Let

ΦIHX : IHn/2(X ; Q) ⊗ IHn/2(X ; Q) −→ Q

denote the Goresky-MacPherson intersection form. Using the above diagram and
the fact that Poincaré duality identifies the diagram with its linear dual in com-
plementary dimensions, one can construct a complement to intersection homology

in H̃n/2(IX ; Q), which contains a self-annihilating subspace of half the rank, and
thus prove:

Theorem 2.2. With W (Q) the Witt group of the rationals, we have

[ΦHIX ] = [ΦIHX ] ∈ W (Q),

where [−] denotes the Witt class of a symmetric nonsingular bilinear form.

If the dimension n of X is congruent to 2 mod 4, then there is a cap product

H̃2l(IX ; Q)⊗ H̃i(X ; Q)
∩

−→ H̃i−2l(IX ; Q)

such that

H̃2l(IX ; Q) ⊗ H̃i(X ; Q)
∩ // H̃i−2l(IX ; Q)

c∗

��
H̃2l(X ; Q)⊗ H̃i(X ; Q)

c∗⊗id

OO

∩ // H̃i−2l(X ; Q)
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commutes, where c : IX → X is the canonical map given by collapsing the mapping
cone ∂M∪ǫk

cone t<k(∂M) in IX to a point, and the bottom horizontal arrow is the
ordinary cap product. To construct the desired product, one observes that since k
is odd, either 2l > k or 2l < k. If 2l > k, use the cap product

H̃2l(M ; Q) ⊗ Hi(M, ∂M ; Q)
∩

−→ Hi−2l(M, ∂M ; Q),

observing that i − 2l < k. If 2l < k, use

H2l(M, ∂M ; Q)⊗ Hi(M, ∂M ; Q)
∩

−→ H̃i−2l(M ; Q)
b∗−→ H̃i−2l(IX ; Q),

where b : M → IX is the canonical inclusion map from the target of a map to its
mapping cone. Similar considerations lead to similar products in other cases vis-à-
vis the residue class of n mod 4. Note that this method of obtaining the desired
product is not available to intersection homology, since when 2l < k and i−2l < k,
one would need a cap product

H2l(M) ∩ Hi(M, ∂M) 99K Hi−2l(M).

Such a product does not exist, as the absolute chain-level cap product C2l(M) ⊗
Ci(M) −→ Ci−2l(M) maps the subgroup C2l(M) ⊗ Ci(∂M) to Ci−2l(∂M), and
these product chains may include cycles that are not null-homologous in M .

Let L• be the 0-connective symmetric L-spectrum, [Ran92, §16, page 173]. Cap-
ping with the L•-homology fundamental class of an n-dimensional oriented compact
pseudomanifold X with isolated singularities induces a Poincaré duality isomor-

phism H̃0(Im̄X ; L•) ⊗ Q
∼=
−→ H̃n(I n̄X ; L•) ⊗ Q. A p̄-intersection vector bundle on

X may be defined as an actual vector bundle on I p̄X . Using simply connected
surgery [Bro72], one can show that there are infinitely many distinct 7-dimensional

pseudomanifolds X , whose tangent bundle elements in the KO-theory K̃O(X−Sing)

of their nonsingular parts do not lift to K̃O(X), but do lift to K̃O(I n̄X), where n̄ is
the upper middle perversity. So this framework allows one to formulate the require-
ment that a pseudomanifold have a p̄-intersection tangent bundle. In the isolated

singularity case, the obstruction to lifting to K̃O(I n̄X) lies in the KO-theory of the
truncated link, which is roughly half as big as the KO-theory of the link itself.

3. Intersection Spaces for more General Singular Sets

If the singular set is positive dimensional, then a process of fiberwise spatial
homology truncation applied to the link bundle can be used. Let X be an n-
dimensional, compact, stratified pseudomanifold with two strata X = Xn ⊃ Xn−c.
The singular set Σ = Xn−c is thus an (n − c)-dimensional closed manifold and
the singularities are not isolated, unless c = n. Assume that X has a trivial link

bundle, that is, a neighborhood of Σ in X looks like Σ ×
◦

cone(L), where L is a
(c − 1)-dimensional closed manifold, the link of Σ. With k = c − 1 − p̄(c), the
intersection space I p̄X is the homotopy cofiber of

Σ × t<kL
idΣ ×ǫk−→ Σ × L = ∂M

j
→֒ M.

The requisite Poincaré duality theorem can be established for these spaces. A
piecewise linear X always has a stratification with trivial link bundles, namely the
simplicial stratification. The behavior of the homotopy type of the intersection
space under refinement of stratifications remains to be investigated. If there are
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more than two nested strata, then more elaborate homotopy colimit constructions
involving iterated truncation techniques can be used. At present, intersection spaces
have been explicitly constructed for the following classes of pseudomanifolds:

(1) Pseudomanifolds with isolated singularities,
(2) two-strata spaces with arbitrary bottom stratum but untwisted link bun-

dle (as described above; of course we are referring to nested strata — the
construction can also be applied to spaces with more than two strata, but
then the singular strata must not be nested, but must have disjoint neigh-
borhoods),

(3) three-strata spaces where the singular set is a disjoint union of circles each
of which may contain isolated points as the bottom stratum (the link bundle
around the circles may be twisted here), and

(4) two-strata spaces whose bottom stratum is a sphere of arbitrary dimension
and whose link bundles may be twisted but have special structure groups.

We will illustrate how to deal with nested strata in the case of a three-strata space
Xn whose singular set is a circle X1, which contains a point stratum X0 = {x0}.

Removing an open neighborhood
◦

cone(L0), where L0 is the link of x0, from X , we
obtain a space X ′ which has one singular stratum ∆1, a closed interval. Let L1

be the link of this stratum, a closed manifold of dimension n − 2. The link L0

may be singular with singular stratum L0 ∩ X1 = ∂∆1 (two points). A regular
neighborhood of ∂∆1 in L0 is isomorphic to two disjoint copies of cone(L1). If
we remove the interiors of these two cones from L0, we obtain a compact (n − 1)-
manifold W , which is a bordism between the two copies of L1 on its boundary.
A regular neighborhood of ∆1 in X ′ is isomorphic to a product ∆1 × cone(L1).
Removing the interior of this neighborhood from X ′, we get a closed n-manifold M
with boundary ∂M . The boundary is the pushout of a diagram Γ,

W ∂∆1 × L1

foo �

� incl× id // ∆1 × L1,

for a suitable gluing map f . Given a perversity p̄, set cut-off degrees

kL = n − 2 − p̄(n − 1), kW = n − 1 − p̄(n).

Applying spatial homology truncation t<k, one can construct a diagram t<kΓ,

t<kW
(W ) ∂∆1 × t<kL

(L1)
t<kW

(f)
oo �

� incl× id // ∆1 × t<kL
(L1).

A homotopy commutative diagram of the form

t<kW
(W )

��

∂∆1 × t<kL
(L1)

��

oo �

� // ∆1 × t<kL
(L1)

��
W ∂∆1 × L1

oo �

� // ∆1 × L1.

gives rise to a map
hocolim(t<kΓ) −→ colim(Γ) = ∂M.

Define I p̄X to be the homotopy cofiber of the composition of this map with the
inclusion of ∂M into M . Future research will have to determine the ultimate domain
of pseudomanifolds for which an intersection space is definable.

Since spatial homology n-truncation of a space L in general requires choosing
a complement of the n-cycle group, see Section 4, and since the construction of
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intersection spaces uses this truncation on the links L of singularities, the homotopy
type of the intersection space I p̄X may well depend, to some extent, on choices. For
isolated singularities, we can show that the rational homology of I p̄X is well-defined
and independent of choices. Furthermore, if

Ext(im(Hk(M, ∂M) → Hk−1(∂M)), Hk(M)) = 0,

or
Ext(Hk(M, ∂M), im(Hk(∂M) → Hk(M))) = 0,

then the integral homology of I p̄X in the cut-off degree k is independent of choices.
Away from the cut-off degree, the integral homology is always independent of
choices. The conditions are often satisfied in algebraic geometry for the middle
perversity, for instance when X is a complex projective algebraic 3-fold with iso-
lated hypersurface singularities that are weighted homogeneous and “well-formed”
in the sense of [BGN03]. This class of varieties includes in particular conifolds,
to be discussed in Section 5. When all links have every other homology group
zero (simply connected 4-manifolds, smooth compact toric varieties, homogeneous
spaces arising as the quotient of a complex simply connected semisimple Lie group
by a parabolic subgroup such as flag manifolds, Grassmannians; smooth Schubert
varieties), we can show that the homotopy type of I p̄X is well-defined independent
of choices.

4. Spatial Homology Truncation

Functoriality of spatial homology truncation is a subtler issue than functoriality
for Postnikov sections, the Eckmann-Hilton dual problem. As we will see, in the
former situation obstructions arise that have no analog in the latter situation. Since
we wish to avail ourselves of the Whitehead and Hurewicz theorems, we shall place
ourselves in the category of simply connected CW complexes K. Let k be a positive
integer. On the object level, our truncation works roughly as follows.

Lemma 4.1. Every simply connected k-dimensional CW complex L is homotopy
equivalent rel (k − 1)-skeleton to a complex L/k, whose k-th cellular cycle group
Zk(L/k) ⊂ Ck(L/k) has a basis of cells.

The conclusion of Lemma 4.1 is of course generally false, take for example L =
S2 ∪4 e3 ∪6 e3 and k = 3. This L is homotopy equivalent rel S2 to S2 ∪0 e3 ∪2 e3,
which does have a cellular basis for Z3.

Lemma 4.2. Let P be a simply connected k-dimensional CW complex, whose group
of k-cycles has a basis of cells. Then P contains a unique subcomplex P<k, which
has the same (k − 1)-skeleton as P and is such that Hi(P<k) = 0 for i ≥ k and the
inclusion P<k ⊂ P induces an isomorphism Hi(P<k) → Hi(P ) for i < k.

Note that the above example S2∪4 e3∪6 e3 contains no such truncating subcom-
plex (k = 3), but S2 ∪0 e3 ∪2 e3 does, namely S2 ∪2 e3.

Let K be a simply connected CW complex of any dimension. Applying Lemma
4.1 to the k-skeleton L = Kk of K and Lemma 4.2 to the output P = Kk/k of
Lemma 4.1, we get a complex t<k(K) = (Kk/k)<k and a map

ǫk : t<k(K) →֒ Kk/k ≃ Kk →֒ K,
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which is a homology isomorphism in degrees less than k. The truncation of maps
f : K → L is a more delicate matter. Let K = S2 ∪2 e3, a Moore space M(Z/2, 2),
and L = K ∨ S3. Let f : K → L be the map obtained by collapsing the 2-skeleton
to a point and including the resulting 3-sphere in L in the obvious way. Then, no
matter which maps e : t<3K → K and e′ : t<3L → L with e∗ : Hi(t<3K) → Hi(K)
and e′∗ : Hi(t<3L) → Hi(L) isomorphisms for i < 3 one takes, there exists no map
t<3(f) : t<3K 99K t<3L such that

K
f // L

t<3K

e

OO

t<3(f) // t<3L

e′

OO

homotopy commutes. This phenomenon can be explained as follows. In the exam-
ple, there is no way to choose complements YK , Zk(K) ⊕ YK = Ck(K), and YL,
Zk(L) ⊕ YL = Ck(L), of the k-cycle groups such that f∗(YK) ⊂ YL. On the other
hand, we can prove for general simply connected K, L:

Theorem 4.1 (Compression Theorem). Let f : K → L be a cellular map with
f∗(YK) ⊂ YL. Then there exists a compression t<k(f) : t<kK → t<kL of f, which
agrees with f on the (k − 1)-skeleton of K and makes the square

K
f // L

t<kK

ǫk

OO

t<k(f) // t<kL

ǫk

OO

commutative up to homotopy rel (k − 1)-skeleton.

We deduce that it is most natural to consider spatial homology truncation t<k

as being defined on the category CWk⊃∂ of pairs (K, Y ) as above, with morphisms
cellular maps that preserve the complements Y , and taking values in the rel (k−1)-
skeleton homotopy category HoCWk−1 of CW complexes. Let K = S4 ∪4 e5 and
L = S3 ∪2 e4 ∪ e5, where the 5-cell in L is attached to S3 by an essential map.
These two spaces have unique cycle-complements YK , YL in degree k = 5 and have
unique truncation subcomplexes t<5(K, YK) ⊂ K, t<5(L, YL) ⊂ L. However, there
is a map f : K → L and two nonhomotopic maps g1, g2 : t<5(K, YK) → t<5(L, YL),
which agree with f on the 4-skeleton and have the property that

K
f // L

t<5(K, YK)

ǫ5

OO

gi // t<5(L, YL)

ǫ5

OO

homotopy commutes rel 4-skeleton, i = 1, 2. Hence, the homotopy class of the
compression t<k(f) is generally not unique, even when the compression is pinned
down on the (k − 1)-skeleton. If it is unique, we shall refer to f as compression
rigid. The need for a compression rigidity obstruction theory thus arises. Such an
obstruction theory is provided by the next result.

Theorem 4.2. Let (K, YK) and (L, YL) be objects in CWk⊃∂ . Write K<k =
t<k(K, YK) and L<k = t<k(L, YL).
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(1) Let f : (K, YK) → (L, YL) be a morphism in CWk⊃∂ with a k-truncation
t<k(f) : K<k → L<k. Then f is compression rigid if and only if for every g :
K<k → L<k with j∗ω(t<k(f), g) = 0 ∈ Ck+1(K<k × I, πk(L/k)) one actually has
ω(t<k(f), g) = 0 ∈ Ck+1(K<k×I, πk(L<k)). Here, j : L<k ⊂ L/k is the subcomplex
inclusion and ω is the well-known obstruction cocycle for two maps between k-
dimensional simply connected CW complexes to be homotopic rel (k − 1)-skeleton.
(2) A homotopy H : K<k × I → L/k can be compressed into L<k rel Kk−1 if and
only if a single obstruction

ωk(H) ∈ Ck+1(K<k × I, πk+1(L/k, L<k))

vanishes.
(3) If L is 2-connected, then πk+1(L/k, L<k) ∼= (Z/2)

b, where b = rkHk(Lk), as-
sumed to be finite.

It follows that f is compression rigid if πk(L<k) → πk(L/k) is injective, or
∂k = 0 : Ck(K) → Ck−1(K), or ∂k : Ck(L) → Ck−1(L) is injective, or

im(πk(Lk, Lk−1) → πk−1(L
k−1)) ∩ ker(πk−1(L

k−1) → πk−1(L
k−1, Lk−2)) = 0

(k ≥ 4), for instance πk−1(L
k−2) = 0. Any morphism f : K → K is k-compression

rigid if K has precisely one k-cell. Any morphism between closed simply connected
4-manifolds is compression rigid for any k. Any map between the links of isolated
nodes in complex algebraic 3-folds is compression rigid for any k.

Theorem 4.3. On any compression rigid subcategory C ⊂ CWk⊃∂ , the covariant
assignment t<k : CWk⊃∂ → HoCWk−1 restricts to a functor, together with a
natural transformation ǫk : t<k → id.

If one inverts 2 and focuses on 2-connected spaces, then the compression rigidity
obstruction vanishes and one receives an odd-primary spatial truncation functor

t
(odd)
<k defined on the full subcategory of CWk⊃∂ whose objects are pairs (K, Y )

with K 2-connected.

5. The Role of Intersection Spaces in Type II String Theory

The 10-dimensional target space of a nonlinear sigma model in string theory is
often assumed to be of the form M4×X6, where M is a 4-manifold which we think
of locally as the space-time of special relativity and X is a Calabi-Yau 3-fold. It is
argued in [GSW87], using the field equations d∗dω = 0 and d∗ω = 0 for a differential
form ω on M ×X , and observing that the Hodge-de Rham Laplacian ∆ on M ×X
decomposes as ∆ = ∆M + ∆X , that ∆X can be interpreted as a mass-operator for
4-dimensional fields, whose eigenvalues are masses as seen in four dimensions. In
particular, harmonic forms on X correspond to massless particles in the low en-
ergy effective field theory. Thus a good cohomology theory for Calabi-Yau varieties
should record all physically present massless particles.

The conifold transition is a valuable means to travel between Calabi-Yau 3-
folds, as it covers a lot of terrain in the landscape of Calabi-Yau spaces, and may
indeed connect all of them. It starts with a nonsingular Calabi-Yau 3-fold Xǫ,
whose complex structure depends on a complex parameter ǫ. In the limit as ǫ → 0,
disjoint embedded 3-spheres with trivial normal bundle are collapsed to points, and
one obtains a singular variety S (the conifold) with isolated nodes. By replacing the
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nodes with complex projective spaces CP
1, one resolves the singularities and gets

a nonsingular 3-fold Y , which is again Calabi-Yau. In type IIA string theory, there
are twobranes present that wrap around the CP1 2-cycles in Y , see [Str95], [Hüb97].

Their mass is proportional to the volume of the CP
1 that they wrap around, so they

become massless in S and ought to be recorded by a good homology theory. Let

bA = rk coker(H4Xǫ → H4S), bB = rkker(H3Xǫ → H3S).

Note that bA + bB equals the number of nodes in S. Since a good homology theory
H

IIA
∗ for type IIA string theory should also satisfy Poincaré duality (ideally the

Kähler package), it should have the ranks

rkH
IIA
2 (S) = p + bA, rkH

IIA
3 (S) = q, rk H

IIA
4 (S) = p + bA,

where q = rk(H3(S − Σ) → H3(S)), p = rkH2(S), because bA is the number of
massless twobranes present. Ordinary homology is obviously not a solution. A
calculation shows that intersection homology H

IIA
∗ (S) = IH∗(S) does have the

desired ranks and thus is a suitable homology theory in the IIA regime. In type
IIB string theory, there are threebranes present that wrap around the 3-spheres in
Xǫ and that become massless in the limit ǫ → 0. Since they should be accounted
for by a good homology theory H

IIB
∗ , such a theory should have the ranks

(2) rkH
IIB
2 (S) = p, rkH

IIB
3 (S) = q + 2bB, rkH

IIB
4 (S) = p,

because bB is the number of massless threebranes present and there are in addition
q + bB elementary massless particles (rk H3(S) = q + bB). Neither ordinary nor
intersection homology have these ranks.

Theorem 5.1. Let IS be the middle-perversity intersection space of the conifold
S. Then H

IIB
∗ (S) = H∗(IS) has the ranks (2).

Since Y → S is a small resolution, IH∗(S) ∼= H∗(Y ). The observation that
Hi(IS) ∼= Hi(Xǫ), 0 < i < 6, may be an indication that Hi(IS) is even in more
general contexts the homology of a certain class of smooth deformations.

To a Calabi-Yau 3-fold S, the mirror map associates another Calabi-Yau 3-fold
S◦ such that type IIB string theory on R4 × S corresponds to type IIA string
theory on R4 × S◦. If S and S◦ are nonsingular, then b3(S

◦) = (b2 + b4)(S) and
b3(S) = (b2 + b4)(S

◦) for the ordinary Betti numbers. It is conjectured in [Mor99]
that the mirror of a conifold transition is again a conifold transition, performed in
the reverse direction.

Theorem 5.2. Suppose that a singular Calabi-Yau 3-fold S sits in a conifold tran-
sition X ; S ; Y and that its mirror S◦ sits in the mirror conifold transition
Y ◦

; S◦
; X◦. Then

rk IH3(S) = rkH2(IS◦) + rkH4(IS◦),
rk IH3(S

◦) = rkH2(IS) + rkH4(IS),
rkH3(IS) = rk IH2(S

◦) + rk IH4(S
◦), and

rkH3(IS◦) = rk IH2(S) + rk IH4(S).

Thus (IH∗(−), H∗(I−)) is a mirror-pair of homology theories for singular Calabi-
Yau 3-folds.
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