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RATIONAL GENERALIZED INTERSECTION HOMOLOGY
THEORIES

MARKUS BANAGL

(communicated by Michael A. Mandell)

Abstract
Given a spectrum E, we investigate the theory that asso-

ciates to a stratified pseudomanifold the tensor product of its
Goresky-MacPherson intersection homology with the rational-
ized coefficients of E. The viewpoint adopted in this paper is to
express this theory as the homotopy groups of a spectrum asso-
ciated to the pseudomanifold and E. The relation is given by
an Atiyah-Hirzebruch formula. Properties such as topological
invariance, generalized Poincaré duality, behavior under small
resolution, products, cohomology operations, and the Künneth
spectral sequence are then discussed from that viewpoint. More-
over, we consider self-dual generalized (co)homology theories
on spaces that need not satisfy the Witt condition. Local cal-
culations and a sample calculation of the rational intersection
ku-theory of a certain singular Calabi-Yau 3-fold are carried
out. We employ the framework of S-algebras and modules over
Eilenberg-MacLane spectra due to Elmendorf, Kriz, Mandell
and May.

1. Introduction

Let E be any S-module in the sense of [EKMM97]. (Any CW spectrum, for
example, is homotopy equivalent to an S-module.) Let p̄ be any perversity in the sense
of [GM83] and let IH p̄

∗ (−;Q) denote intersection homology as defined in [GM83].
To any n-dimensional, topological pseudomanifold X, one can assign the homology
groups ⊕

i+j=k

IH p̄
i (X;Q)⊗Q (πj(E)⊗Z Q) (1)

and the cohomology groups∏
i−j=k

HomQ(IH p̄
i (X;Q), πj(E)⊗Z Q). (2)
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The goal of this paper is to express these groups as the homotopy groups of a spec-
trum and to investigate their properties from this point of view. Let HQ denote
an Eilenberg-MacLane spectrum HQ = K(Q, 0), constructed as a commutative S-
algebra. Then EQ = E ∧S HQ is an HQ-module and we set

IEp̄k(X;Q) = πk(EQ ∧HQ ΦIC p̄• (X;Q))

and

IEkp̄ (X;Q) = π−k(FHQ(ΦIC p̄• (X;Q), EQ))

(Definition 2.5). Here Φ is a functor, described in Section 2, that is built using Brown’s
representability theorem and yields an HQ-module spectrum, and FHQ denotes the
function HQ-module. Throughout the paper, we refer to the former groups as the
rational perversity p̄ intersection E-homology of X and to the latter groups as the
rational perversity p̄ intersection E-cohomology of X. Proposition 8.1 shows that
IEp̄k(X;Q) agrees with (1) and Proposition 8.2 shows that IEkp̄ (X;Q) agrees with (2).

Not using this identification, but proceeding directly from the definition of IEp̄k(X;Q)
and IEkp̄ (X;Q) as homotopy groups of spectra, we show that the properties listed
below are satisfied. Most of these properties on the level of homology groups can be
readily established from (1) and (2) as well, but our proofs are fashioned with the
hope in mind that they might facilitate future purely spectrum-level arguments, e.g.
when investigating other rings.

1. If E = HZ is an Eilenberg-MacLane spectrum K(Z, 0), then

IEp̄k(X;Q) ∼= IH p̄
k (X;Q).

2. If X is compact and nonsingular, then

IEp̄k(X;Q) ∼= Ek(X)⊗Q.

3. If f : Y → X is a small resolution of singularities between compact, complex
algebraic varieties, then

IEm̄k (X;Q) ∼= Ek(Y )⊗Q,

where m̄ denotes the lower middle perversity. As a corollary we obtain the result
that any two small resolutions of X have isomorphic rational E-homology.

4. Topological Invariance: Any homeomorphism f : X → Y between topological
pseudomanifolds induces isomorphisms

IEp̄∗(X;Q) ∼= IEp̄∗(Y ;Q), IE∗p̄(X;Q) ∼= IE∗p̄(Y ;Q)

for any S-module E.

5. Poincaré Duality: For compact, oriented Xn, there is a generalized Poincaré
duality isomorphism

IE q̄n−k(X;Q) ∼= IEkp̄ (X;Q)

for any S-module E and complementary perversities p̄ and q̄.

6. External Products: Let X and Y be compact. Let p̄ be a perversity satisfying
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the “Künneth condition”

p̄(k) + p̄(l) 6 p̄(k + l) 6 p̄(k) + p̄(l) + 2

for all k, l (for example p̄ = m̄). Let E be an S-algebra. Then there is an external
intersection E-cohomology product

IE∗p̄(X;Q)⊗Q IE
∗
p̄(Y ;Q) −→ IE∗p̄(X × Y ;Q).

7. Internal Products: Let X be compact, let p̄ satisfy the above Künneth condition,
and let q̄ be a perversity such that

q̄(k) + k 6 p̄(2k)

for all k > 2. (There are plenty of such pairs (p̄, q̄).) Then there is an internal
(cup) product

IE∗p̄(X;Q)⊗Q IE
∗
p̄(X;Q)

∪−→ IE∗q̄ (X;Q).

8. IE-cohomology operations: For an arbitrary pseudomanifold X and arbitrary
perversity p̄, every element α of the algebra of operations (EQ)∗HQ(EQ) defines
a cohomology operation

α : IE∗p̄(X;Q) −→ IE∗p̄(X;Q).

9. Künneth spectral sequence: Let p̄ be a perversity satisfying the above Künneth
condition. For any S-algebra E and compact pseudomanifolds X,Y , there is a
spectral sequence

E2
p,q = TorE∗⊗Qp,q (IEp̄∗(X;Q), IEp̄∗(Y ;Q)) =⇒ IEp̄p+q(X × Y ;Q).

The properties obtained in this paper may serve as a yardstick for potential future
constructions of generalized intersection homology over more general rings. When
such a putative theory is tensored with the rationals, it should satisfy all the above
properties. Note that integral theories IEp̄∗(X;Z), IE∗p̄(X;Z) satisfying the above
properties cannot exist on the full class of oriented pseudomanifolds considered here:
Let Mm be an oriented smooth closed connected manifold and let V →M be an
oriented m-plane vector bundle over M with nonzero Euler number e. The Thom
space Xn = V ∪ {∞}, n = 2m, is a pseudomanifold with an isolated singularity at
∞. Its middle dimensional integral intersection homology is IHm̄

m (X;Z) = Z and the
determinant of the intersection form is e. So if e 6= ±1, then the intersection form is
not unimodular, see [GM80]. While the passage from E to EQ naturally forgets a fair
amount of information about E, enough is preserved so that the theories IEp̄∗(X;Q),
IE∗p̄(X;Q) are expected to have interesting applications, e.g. in equivariant situations,
see [CSW91].

In Section 10, we give the local calculations for intersection E-homology, that is,
we compute IEp̄∗(U ;Q) for a distinguished neighborhood U in a stratified pseudo-
manifold.

In Section 11, we construct self-dual E-homology theories on oriented pseudoman-
ifolds X that do not necessarily satisfy the Witt condition. On such spaces, middle
perversity intersection homology is not self-dual. In order to obtain self-dual the-
ories, which are important e.g. in defining characteristic classes, one may employ
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Lagrangian structures in the sense of [Ban02], [Ban06]; see also [Ban07] for an
exposition. Let E be any S-module and L a Lagrangian structure along the strata
of odd codimension of X. We construct rational L-intersection E-homology groups
IELk (X;Q) and rational L-intersection E-cohomology groups IEkL(X;Q) such that
there exist a factorization

IEm̄∗ (X;Q)
α∗ //

''OOOOOOOOOOO IEL∗ (X;Q)

β∗

��
IEn̄∗ (X;Q)

of the canonical morphism and a commutative duality square

IEm̄n−k(X;Q)
α∗ // IELn−k(X;Q)

IEkn̄(X;Q)

∼=

OO

β∗ // IEkL(X;Q)

∼=

OO

We conclude with a sample calculation: In section 12, we compute the intersection
ku-theory of a certain singular Calabi-Yau 3-fold.

The backbone of our method is an equivalence of categories between the stable
homotopy category of module spectra over an Eilenberg-MacLane spectrum and the
derived category of chain complexes, see [Rob87], [Rob83], [EKMM97]. The reason
why our method does not work over the integers is that we make systematic use of
Serre’s theorem which states that rational homology is the same as rational stable
homotopy.

Technically, we work in the framework of S-algebras and modules over them as
developed in [EKMM97]. We follow the notation of [EKMM97] closely throughout
the paper. As far as intersection homology is concerned, our notation and indexing
conventions follow [GM83].

2. The Basic Construction

Let D(Q) denote the derived category obtained from the homotopy category of
chain complexes of rational vector spaces by localizing at the quasi-isomorphisms.
Let HQ denote an Eilenberg-MacLane spectrum HQ = K(Q, 0), constructed as a
commutative S-algebra. Let D(HQ) denote the homotopy category of HQ-modules
localized at the weak equivalences. Let us briefly recall the equivalence of categories

Ch : D(HQ)� D(Q) : Φ

By approximation by cell modules and by Whitehead’s theorem, the category D(HQ)
is equivalent to the homotopy category of CW HQ-modules and cellular maps. Let
M be a CW HQ-module. Define a chain complex Ch(M) of abelian groups by setting
Ch(M)n = πn(Mn/Mn−1) and letting the differential ∂n : Ch(M)n → Ch(M)n−1 be
the connecting homomorphism of the triple (Mn, Mn−1, Mn−2). A cellular map of
HQ-modules induces a map of chain complexes and a cellular homotopy induces a
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chain homotopy. Thus we obtain a functor

Ch : D(HQ) −→ D(Q).

To construct the inverse equivalence Φ, consider, for a fixed chain complex C•, the
functor k on D(HQ) given by k(M) = D(Q)(Ch(M), C•). Since k satisfies the wedge
and Mayer-Vietoris axioms, Brown’s representability theorem asserts that k is repre-
sented by an HQ-module spectrum Φ(C•). Thus we obtain a covariant functor

Φ : D(Q) −→ D(HQ)

and an adjunction

D(Q)(Ch(M), C•) ∼= D(HQ)(M,Φ(C•)).

The functor Φ converts tensor products into smash products,

Φ(C• ⊗Q D•) ∼= ΦC• ∧HQ ΦD•, (3)

and converts homology groups into homotopy groups,

H∗(C•) ∼= π∗(ΦC•). (4)

Formula (4) implies

π∗(M) ∼= H∗(Ch(M))

for any HQ-module M , because

π∗(M) ∼= π∗(ΦCh(M)) ∼= H∗(Ch(M)).

In D(Q), any chain complex is isomorphic to its homology complex (with zero differ-
entials). Thus Ch(M) ∼= H•(Ch(M)) ∼= π•(M). This shows that one may think of π•
as inducing the equivalence D(HQ) ' D(Q).

More generally, the functor Ch can be defined on CW R-modules M for any con-
nective S-algebra R: In this situation, Ch(M)n = πn(Mn/Mn−1) is a π0(R)-module.
If R is commutative and M,N are CW R-modules, then M ∧R N is a CW R-module
and

Ch(M ∧R N) ∼= Ch(M)⊗π0(R) Ch(N). (5)

When X is a based cell complex with skeletal filtration {Xn}n>0 and base-point
b, then we will always set Xn = {b} for n < 0. With this convention, H0(X0, X−1) =

H̃0(X0) and Hn(Xn, Xn−1) = 0 for n < 0. Let C̃•(X) denote the integral cellular

chain complex of X given by C̃n(X) = Hn(Xn, Xn−1), n ∈ Z. Our filtration con-

vention implies H∗(C̃•(X)) = H̃∗(X), the reduced homology of X. Let Q[0] ∈ D(Q)
denote the chain complex concentrated in degree 0 with Q in that degree, so that we
may assume HQ = Φ(Q[0]). We write C̃•(X;Q) = C̃•(X)⊗Z Q for the Q-coefficient
cellular chain complex of X. To motivate our definition of generalized intersection
homology, we make the following observation:

Proposition 2.1. Let X be a based CW complex and let E be an S-module. Then

E∗(Σ
∞X)⊗Q ∼= E∗(ΦC̃•(X;Q)).
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Proof. We regard the suspension spectrum Σ∞X as an S-module. In D(Q), any chain
complex is isomorphic to its homology complex (with zero differentials). Thus

Ch(Σ∞X ∧S HQ) ∼= H•(Ch(Σ∞X ∧S HQ)) and C̃•(X;Q) ∼= H•(C̃•(X;Q))

in D(Q). Composing these isomorphisms with

H•(Ch(Σ∞X ∧S HQ)) ∼= π•(Σ
∞X ∧S HQ)

∼= (HQ)•(Σ
∞X) ∼= H̃•(X;Q) = H•(C̃•(X;Q)),

we obtain an isomorphism

Ch(Σ∞X ∧S HQ)
'−→ C̃•(X;Q).

This isomorphism induces an isomorphism

α : Σ∞X ∧S HQ ∼= ΦCh(Σ∞X ∧S HQ)
'−→ Φ(C̃•(X;Q))

in D(HQ). It follows that

1E ∧S α : E ∧S Σ∞X ∧S HQ '−→ E ∧S Φ(C̃•(X;Q))

is an isomorphism in D(HQ) as well, because the derived smash product E ∧S M ,
where M is any S-module, is by definition E ∧S ΓM , with Γ the cell approximation
functor, and for M = Σ∞X ∧S HQ, M ′ = Φ(C̃•(X)⊗Z Q[0]) there is a commutative
square

ΓM
Γα //

γ w.e.

��

ΓM ′

γw.e.

��
M

α

w.e.
// M ′

showing that Γα is a weak equivalence, hence, by Whitehead’s theorem, a homotopy
equivalence. Then 1E ∧S α is represented by the homotopy equivalence 1E ∧S Γα. On
homotopy groups, this homotopy equivalence induces

π∗(E ∧S Σ∞X ∧S HQ) ∼= π∗(E ∧S Φ(C̃•(X;Q))).

A representative h : S → HZ of a generator of π0(HZ) = Z induces, by Serre’s the-

orem, an equivalence SQ '−→ HQ, where SQ denotes the Moore spectrum for Q,
constructed as an S-module. Using this equivalence, we get

E∗(Σ
∞X)⊗Q = E∗(Σ

∞X ∧S SQ)
= π∗(E ∧S Σ∞X ∧S SQ)
∼= π∗(E ∧S Σ∞X ∧S HQ)
∼= π∗(E ∧S Φ(C̃•(X;Q)))

= E∗(ΦC̃•(X;Q)).

As usual, we shall henceforth write Ẽ∗(X) := E∗(Σ
∞X) for a space X. For unre-

duced E-homology we obtain:
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Corollary 2.2. Let X be a based CW complex and let E be an S-module. Then

E∗(X)⊗Q ∼= E∗(ΦC•(X;Q)),

where C•(X;Q) is the (unreduced) rational cellular chain complex of X.

Proof. Let X+ = X/∅ denote the union of X with a disjoint base-point. Then

C•(X) = C̃•(X+)

and, using Proposition 2.1,

E∗(X)⊗Q = Ẽ∗(X+)⊗Q
∼= E∗(ΦC̃•(X+;Q))
= E∗(ΦC•(X;Q)).

In the sheaf theoretic approach to intersection homology, it is customary to work
with cochain complexes rather than chain complexes. The functor −• : CH• → CH•
from cochain complexes to chain complexes sending a cochain complex C• = (Ck, dk)k∈Z
to the chain complex C−• = C• = (Ck, dk)k∈Z given by Ck = C−k, dk = d−k allows
us to pass freely between cochain and chain complexes. For instance, the identities

Hom−•(C•, D•) = Hom•(C
−•, D−•) (6)

and

(C•[n])−• = C−•[−n] (7)

hold.

Let Xn be an n-dimensional, topological pseudomanifold, equipped with a base
point and a CW structure. For a perversity p̄, let IC p̄• (X;Q) denote the corresponding
intersection chain complex of X with rational coefficients. In fact, let us be more
precise about the incarnation of IC p̄• (X;Q) that we will work with. For a locally
compact space Y of finite cohomological dimension, let Db(Y ) denote the bounded
derived category of differential complexes of sheaves of rational vector spaces on Y ,
that is, the homotopy category of bounded cochain complexes of sheaves over Q
localized at the quasi-isomorphisms. Let IC•p̄(X) ∈ Db(X) be the intersection sheaf
complex on X, constructed via Deligne’s formula starting from the shifted orientation
sheaf on the top stratum, with respect to any topological stratification of X (for
example, the intrinsic filtration). The map f : X → pt to a point induces a derived
pushforward Rf∗ : Db(X)→ Db(pt). Then Rf∗IC

•
p̄(X) is a cochain complex and we

set

IC•p̄ (X;Q) = Rf∗IC
•
p̄(X).

The incarnation of the perversity p̄ intersection chain complex that we will work with
is

IC p̄• (X;Q) = IC−•p̄ (X;Q).

Corollary 2.2 strongly suggests that we define the rational intersection E-homology
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IEp̄k(X;Q) of X for an S-module E as

IEp̄k(X;Q) = Ek(ΦIC p̄• (X;Q)).

This is in fact fine; it turns out, however, that in the framework of HQ-modules it
is technically advantageous to proceed as follows. Let R be a commutative S-algebra
and E an R-module. Define the E-homology over R and E-cohomology over R of an
R-module N to be

ERk (N) = πk(E ∧R N), EkR(N) = π−k(FR(N,E)),

where FR(N,E) denotes the function R-module. Now let E be an S-module. Then
EQ = E ∧S HQ is an HQ-module.

Proposition 2.3. For an S-module E and HQ-module N ,

(EQ)HQ
k (N) ∼= Ek(N).

Proof. Using the natural isomorphism

(E ∧S HQ) ∧HQ N ∼= E ∧S N

of HQ-modules, we have

Ek(N) = πk(E ∧S N)
∼= πk((E ∧S HQ) ∧HQ N)
= πk(EQ ∧HQ N)

= (EQ)HQ
k (N).

Taking N = ΦIC p̄• (X;Q) we obtain:

Corollary 2.4. For an S-module E,

Ek(ΦIC p̄• (X;Q)) ∼= (EQ)HQ
k (ΦIC p̄• (X;Q)).

Guided by this corollary and Corollary 2.2, we thus adopt the following definition:

Definition 2.5. Let E be any S-module. The rational perversity p̄ intersection E-
homology IEp̄k(X;Q) of X is defined to be

IEp̄k(X;Q) = (EQ)HQ
k (ΦIC p̄• (X;Q)).

The rational perversity p̄ intersection E-cohomology IEkp̄ (X;Q) of X is defined to be

IEkp̄ (X;Q) = (EQ)kHQ(ΦIC p̄• (X;Q)).

Remark 2.6. Because the Hurewicz map h : S → HZ is not a weak equivalence, trying
to set

IEp̄k(X;Z) = (EZ)HZ
k (ΦIC p̄• (X;Z))

leads, of course, to an incorrect definition of IEp̄k(X;Z). This can be seen by taking,
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for instance, E = S, the sphere spectrum, and X a point. Then

IEp̄∗(X;Z) = E∗(X) = π∗(S),

the stable homotopy groups of spheres, whereas

(EZ)HZ
∗ (ΦIC p̄• (X;Z)) = π∗((E ∧S HZ) ∧HZ ΦIC p̄• (X;Z))

∼= π∗(ΦIC
p̄
• (X;Z))

∼= H∗(IC
p̄
• (X;Z)) (by (4))

∼= H∗(pt;Z).

Remark 2.7. Other variants of intersection E-(co)homology can easily be defined.
For example, we define intersection E-homology with compact supports, IEc,p̄k (X;Q)

by IEc,p̄k (X;Q) = (EQ)HQ
k (ΦICc,p̄• (X;Q)), where ICc,p̄• (X;Q)) denotes intersection

chains with compact support, i.e. the corresponding cochain complex is given by
Rf!IC

•
p̄(X), f : X → pt. As another example, if S is a local coefficient system on

the top stratum, then we define intersection E-homology with coefficients in S,
IEp̄k(X;S) by IEp̄k(X;S) = (EQ)HQ

k (ΦIC p̄• (X;S)), where IC p̄• (X;S) denotes inter-
section chains with coefficients in S, i.e. the corresponding cochain complex is given
by Rf∗IC

•
p̄(X;S), f : X → pt. To construct IC•p̄(X;S) via the Deligne process, one

simply starts with S, instead of the orientation sheaf, on the top stratum.

The following lemma shows what we do if E is not an S-module but only a CW
spectrum: We replace E by the free S-module FSE. This does not change the homo-
topy type:

Lemma 2.8. If E is a CW spectrum, then there is a homotopy equivalence of spectra

E ' FSE.

Proof. The natural map

FSE = S ∧L LE −→ LE

is a homotopy equivalence of spectra if E is CW. (Here, LE denotes the free L-
spectrum generated by E.) The unit

E −→ LE

is a homotopy equivalence, provided E is CW.

The results of this paper are stated mostly for E an S-module. However, the lemma
shows that we may replace “S-module” by “CW spectrum” and the results continue
to hold with E replaced by FSE.

3. Fundamental Consistency Properties

Proposition 3.1. If E = HZ is an Eilenberg-MacLane spectrum K(Z, 0), then

IEp̄k(X;Q) ∼= IH p̄
k (X;Q),

where IH p̄
∗ (X;Q) denotes the intersection homology groups as defined in [GM83].
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Proof. The Hurewicz map h : S → HZ induces a map

HQ ∼= S ∧S HQ h∧S1−→ HZ ∧S HQ,

which is an equivalence by Serre’s theorem. Therefore,

I(HZ)p̄k(X;Q) = πk((HZ ∧S HQ) ∧HQ ΦIC p̄• (X;Q))
∼= πk(HQ ∧HQ ΦIC p̄• (X;Q))
∼= πk(ΦIC p̄• (X;Q))
∼= Hk(IC p̄• (X;Q))
= IH p̄

k (X;Q).

Proposition 3.2. If X is a compact PL n-manifold, then

IEp̄k(X;Q) ∼= Ek(X)⊗Q.

Proof. For an unoriented manifold X, IC•p̄(X) = OX [n], where OX is the orientation
sheaf, and thus

IC•p̄ (X;Q) = Rf∗OX [n] = RΓ(X;OX [n]).

Let U ⊂ X be an open subset. For an admissible (locally finite) triangulation T
of U , let CT• (U) denote the complex of (possibly infinite) rational simplicial chains
of T . If T ′ is a subdivision of T , then there is a natural morphism of complexes
CT• (U)→ CT

′

• (U) and the PL chain complex of U is defined as the direct limit

CPL• (U) = lim
T
CT• (U).

The presheaf

U 7→ CPLk (U)

on X is in fact a sheaf and thus defines a sheaf complex C• with

Γ(U ; C−k) = CPLk (U).

This sheaf complex is fine, since each C−k is a module over the sheaf of constructible
functions, that is, functions constant on interiors of simplices, which is fine. The right
derived functor of the section functor may be computed by means of a fine resolution.
Hence, RΓ(X; C•) = Γ(X; C•). The dualizing complex D•X on X is quasi-isomorphic
to C•. Since X is a manifold, D•X is further canonically quasi-isomorphic to the shifted
orientation sheaf OX [n]. Summarizing,

OX [n] ∼= C•,

and consequently,

RΓ(X;OX [n]) ∼= RΓ(X; C•) = Γ(X; C•) = CPL−• (X)

in Db(pt). Let T be any admissible triangulation of X and let S•(X) denote the
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rational singular chain complex of X. If X is compact, there is an obvious chain map

CT• (X) −→ S•(X)

which is a quasi-isomorphism. The canonical chain map

CT• (X) −→ CPL• (X)

is a quasi-isomorphism as well, and so the roof

CT• (X)
↙ ↘

CPL• (X) S•(X)

defines an isomorphism CPL• (X) ∼= S•(X) in D(Q). The triangulation T defines a
CW structure on X with skeleta {Xp}. Following [Wal65], the filtration {Xp} of X
induces a filtration F pS•(X) of S•(X) by

F pS•(X) = Im(S•(X
p)→ S•(X)).

Define a subcomplex D•(X) of S•(X) by

Dp(X) = ker(∂ : F pSp(X) −→ F pSp−1(X)/F p−1Sp−1(X)).

Then the cellular chain complex C•(X;Q) is a quotient complex of D•(X). By
[Wal65], Lemma 1, the natural chain maps

S•(X)←↩ D•(X)� C•(X;Q)

are chain equivalences. We conclude

IC p̄• (X;Q) ∼= CPL• (X) ∼= S•(X) ∼= C•(X;Q)

in D(Q). The statement follows from applying Φ followed by (EQ)HQ
∗ , then using

Proposition 2.3 with N = ΦC•(X;Q), and applying Corollary 2.2.

4. Topological Invariance

Proposition 4.1. Let X and Y be n-dimensional topological pseudomanifolds. Then
any homeomorphism f : X → Y induces isomorphisms

IEp̄∗(X;Q) ∼= IEp̄∗(Y ;Q), IE∗p̄(X;Q) ∼= IE∗p̄(Y ;Q)

for any S-module E.

Proof. By [GM83],

IC•p̄(Y ) ∼= Rf∗IC
•
p̄(X)

in Db(Y ). If g : Y → pt is the map to a point, then

IC•p̄ (Y ;Q) = Rg∗IC
•
p̄(Y ) ∼= Rg∗Rf∗IC

•
p̄(X) ∼= R(gf)∗IC

•
p̄(X) = IC•p̄ (X;Q).

Passing to chain complexes and applying Φ yields an isomorphism

ΦIC p̄• (Y ;Q) ∼= ΦIC p̄• (X;Q) (8)
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in D(HQ). Smashing with EQ preserves weak equivalences:

ΦIC p̄• (Y ;Q) ∧HQ EQ ∼= ΦIC p̄• (X;Q) ∧HQ EQ,

so that on homotopy groups

IEp̄k(Y ;Q) = πk(ΦIC p̄• (Y ;Q) ∧HQ EQ) ∼= πk(ΦIC p̄• (X;Q) ∧HQ EQ) = IEp̄k(X;Q).

Similarly, for cohomology, (8) induces

FHQ(ΦIC p̄• (Y ;Q), EQ) ∼= FHQ(ΦIC p̄• (X;Q), EQ),

which on homotopy groups induces the desired isomorphism between cohomology
groups.

5. Generalized Poincaré Duality

We emphasize that in the following lemma, the chain complex C• is not assumed
to have bounded homology.

Lemma 5.1. Let A•, B• and C• be rational chain complexes such that A• and B•
have nonzero homology only in a bounded range and A• has finite dimensional homol-
ogy in every degree. Then the natural map

Hom•(A•, B•)⊗ C• −→ Hom•(A•, B• ⊗ C•)

is an isomorphism in D(Q).

For B• = Q[0], the lemma asserts

Hom•(A•,Q[0])⊗ C• ∼= Hom•(A•, C•), (9)

which may be interpreted via Φ as algebraic Spanier-Whitehead duality for HQ-
modules: Recall that if R is a commutative S-algebra and M is an R-module, then
the Spanier-Whitehead dual DRM of M is defined to be the function R-module
DRM = FR(M,R). The functor Φ converts homomorphism modules into function
modules,

Φ HomQ(C•, D•) ∼= FHQ(ΦC•,ΦD•) (10)

in D(HQ).

Proposition 5.2. (Spanier-Whitehead Duality for HQ-modules.) Let E be an S-
module and M an HQ-module having nonzero homotopy groups only in a bounded
range and finite dimensional homotopy Q-vector spaces in every degree. Then there
is an isomorphism

(EQ)HQ
k (DHQM) ∼= (EQ)−kHQ(M). (11)

Proof. Set A• = Ch(M), C• = Ch(EQ). ThenHk(A•) ∼= πk(M) and A• has bounded
homology with finite dimensional homology groups in every degree. Thus, (9) applies
and yields

Hom•(Ch(M),Q[0])⊗ Ch(EQ) ∼= Hom•(Ch(M), Ch(EQ)).

Applying the functor Φ to this isomorphism and using (3), (10) with R = Q, we
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obtain

FHQ(ΦCh(M),ΦQ[0]) ∧HQ ΦCh(EQ) ∼= FHQ(ΦCh(M),ΦCh(EQ)).

Using

ΦQ[0] = HQ, ΦCh(M) ∼= M, ΦCh(EQ) ∼= EQ,

this can be rewritten as

DHQ(M) ∧HQ EQ ∼= FHQ(M,EQ),

which induces on homotopy groups

(EQ)HQ
k (DHQM) = πk(DHQ(M) ∧HQ EQ) ∼= πk(FHQ(M,EQ)) = (EQ)−kHQ(M).

Given a perversity p̄, let q̄ denote its complementary perversity, that is, p̄+ q̄ = t̄,
where t̄ is the top perversity. An orientation of X is an isomorphism OX−Σ

∼= RX−Σ,
where X − Σ is the top stratum of X.

Theorem 5.3. For compact, oriented X, there is a generalized Poincaré duality iso-
morphism

IE q̄n−k(X;Q) ∼= IEkp̄ (X;Q)

for any S-module E.

Proof. For a locally compact space Y of finite cohomological dimension,DY : Db(Y )→
Db(Y ) will denote the Verdier dualizing functor defined by

DY = RHom•(−,D•Y ),

where D•Y is the Verdier dualizing complex of Y . Generalized Poincaré duality between
intersection homology groups is induced, using the orientation of X, by a sheaf level
isomorphism

d : DXIC•p̄(X)[n]
'−→ IC•q̄(X)

in Db(X). As X was assumed to be compact, f : X → pt is a proper map and thus
Rf∗ = Rf!. Therefore, d induces

DptIC
•
p̄ (X;Q)[n] = DptRf∗IC

•
p̄(X)[n]

∼= Rf!DXIC•p̄(X)[n]
= Rf∗DXIC•p̄(X)[n]
∼= Rf∗IC

•
q̄(X)

= IC•q̄ (X;Q).

Let us briefly write IC•p̄ = IC•p̄ (X;Q), IC•q̄ = IC•q̄ (X;Q). The dualizing complex of
a point is D•pt = Q[0], whence the dualizing functor Dpt can be computed as

Dpt = RHom•(−,D•pt) = RHom•(−,Q[0]) = Hom•(−,Q[0]),

observing that over a point every complex of Q-vector spaces is already injective.
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Next, let us carry out the passage from Db(pt) to D(Q): The isomorphism in Db(pt)

Hom•(IC•p̄ ,Q[0]) ∼= IC•q̄ [−n]

translates to

Hom•(IC
p̄
• ,Q[0]) ∼= IC q̄• [n] (12)

in D(Q), using (6) and (7). By (9) with A• = IC p̄• , C• = Ch(EQ), there is an iso-
morphism

Hom•(IC
p̄
• ,Q[0])⊗ Ch(EQ) ∼= Hom•(IC

p̄
• , Ch(EQ)). (13)

The desired duality isomorphism is given by

IEkp̄ (X;Q) = π−k(FHQ(ΦIC p̄• , EQ))
∼= π−k(FHQ(ΦIC p̄• ,ΦCh(EQ)))
∼= π−k(Φ Hom•(IC

p̄
• , Ch(EQ))) by (10)

∼= H−k(Hom•(IC
p̄
• , Ch(EQ))) by (4)

∼= H−k(Hom•(IC
p̄
• ,Q[0])⊗ Ch(EQ)) by (13)

∼= H−k(IC q̄• [n]⊗ Ch(EQ)) by (12)
∼= Hn−k(IC q̄• ⊗ Ch(EQ))
∼= πn−k(Φ(IC q̄• ⊗ Ch(EQ))) by (4)
∼= πn−k(ΦIC q̄• ∧HQ EQ) by (3)
= IE q̄n−k(X;Q).

6. Small Resolutions of Singularities

Let X and Y be irreducible, complex, n-dimensional, compact, algebraic varieties
and let f : Y → X be a resolution of singularities. The map f is called small, if for
all r > 0,

codimC{x ∈ X | dimC f
−1(x) > r} > 2r,

see [GM83], §6.2. If X is one- or two-dimensional, then a small f must be a finite
map. If X is 3-dimensional, then the fibers of a small f must be 0-dimensional except
possibly over a set of isolated points in X, where the fibers may be at most curves.
Let m̄ denote the middle perversity.

Example 6.1. Consider C3 as a linear subspace of C5 via C3 = {(z1, z2, z3, 0, 0) ∈
C5 | z1, z2, z3 ∈ C}. Let X be the singular Schubert variety

X = {V 2 ∈ G2(C5) | dimC(V 2 ∩ C3) > 1},

where G2(C5) denotes the Grassmannian of 2-planes in C5. A small resolution of X is
given by taking Y to be the variety of partial flags V 1 ⊂ V 2 ⊂ C5 such that V 1 ⊂ C2.
The map f : Y → X sends the partial flag to V 2.

Theorem 6.2. If f : Y → X is a small resolution of singularities, then

IEm̄k (X;Q) ∼= Ek(Y )⊗Q.
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Proof. By [GM83],§6.2,

Rf∗IC
•
m̄(Y ) ∼= IC•m̄(X)

in Db(X). Applying Rg∗ for g : X → pt, we obtain

IC•m̄(Y ;Q) = R(gf)∗IC
•
m̄(Y ) ∼= Rg∗IC

•
m̄(X) = IC•m̄(X;Q)

in Db(pt). Converting to chain complexes, and applying Φ followed by (EQ)HQ
k ,

induces an isomorphism

IEm̄k (Y ;Q) = (EQ)HQ
k (ΦICm̄• (Y ;Q)) ∼= (EQ)HQ

k (ΦICm̄• (X;Q)) = IEm̄k (X;Q).

As Y is a manifold, it follows from Proposition 3.2 that IEm̄k (Y ;Q) ∼= Ek(Y )⊗Q.

Corollary 6.3. Let E be any S-module. If Y and Y ′ are two small resolutions of X,
then

Ek(Y )⊗Q ∼= Ek(Y ′)⊗Q.

Remark 6.4. If E is an S-algebra, then the ring structures are in general not preserved
by the above isomorphism. In fact, the rings need not even be abstractly isomorphic.
Examples can already be obtained for E the Eilenberg-MacLane spectrum HZ.

Example 6.5. We continue the previous Example 6.1. The variety Y ′ of partial flags
V 2 ⊂ V 4 ⊂ C5 such that C3 ⊂ V 4 is another small resolution of X. The cohomology
rings H∗(Y ) and H∗(Y ′) are not isomorphic, see [B+84], IX.

7. Products and Operations

Let R be a commutative S-algebra and let E,M and N be R-modules. Consider
the natural map

FR(M,E) ∧R FR(N,E) −→ FR(M ∧R N,E ∧R E).

On homotopy groups, the composition

π∗(FR(M,E))⊗π∗R π∗(FR(N,E)) //

++WWWWWWWWWWWWWWWWWWWWW
π∗(FR(M,E) ∧R FR(N,E))

��
π∗(FR(M ∧R N,E ∧R E))

defines an external cohomology product

E∗R(M)⊗R∗ E∗R(N) −→ (E ∧R E)∗R(M ∧R N).

Now let p̄ be a perversity such that

p̄(k) + p̄(l) 6 p̄(k + l) 6 p̄(k) + p̄(l) + 2 (14)

for all k, l (for example p̄ = m̄), let E be an S-algebra, let X and Y be compact
pseudomanifolds, and specialize to R = HQ, M = ΦIC p̄• (X;Q), N = ΦIC p̄• (Y ;Q).



16 MARKUS BANAGL

Using the isomorphism

M ∧HQ N ∼= Φ(IC p̄• (X;Q)⊗ IC p̄• (Y ;Q)) ∼= ΦIC p̄• (X × Y ;Q)

(the latter isomorphism is induced by applying Φ to the Eilenberg-Zilber isomorphism
(23) in the proof of the Künneth Theorem 9.1) yields a product

(EQ)∗HQ(ΦIC p̄• (X;Q))⊗Q (EQ)∗HQ(ΦIC p̄• (Y ;Q))

−→ (EQ ∧HQ EQ)∗HQ(ΦIC p̄• (X × Y ;Q)). (15)

The multiplication µ : E ∧S E −→ E induces a multiplication

µQ : EQ ∧HQ EQ −→ EQ

by

EQ ∧HQ EQ = (E ∧S HQ) ∧HQ (E ∧S HQ)
∼= E ∧S (E ∧S HQ)

∼= (E ∧S E) ∧S HQ µ∧S1HQ−→ E ∧S HQ = EQ.

Composing the product (15) with the map induced by µQ defines an external inter-
section E-cohomology product

IE∗p̄(X;Q)⊗Q IE
∗
p̄(Y ;Q) −→ IE∗p̄(X × Y ;Q).

In order to obtain internal products, one must study the diagonal map

∆ : X −→ X ×X.

Here, X ×X is endowed with the product stratification, that is, if

X0 ⊂ X1 ⊂ X2 ⊂ . . .

are the closed strata of X, then

X0 ×X0 ⊂ X1 ×X0 ∪X0 ×X1 ⊂ X2 ×X0 ∪X1 ×X1 ∪X0 ×X2 ⊂ . . .

are the closed strata of X ×X. If X denotes the collection of components of pure
strata of X, then

{S × T : S, T ∈ X}

are the components of pure strata of X ×X.

Proposition 7.1. If p̄, q̄ are two perversities such that

q̄(k) + k 6 p̄(2k) (16)

for all k > 2, then the diagonal map ∆ : X → X ×X induces a pushforward of inter-
section chains

∆∗ : IC q̄i (X) −→ IC p̄i (X ×X).

Proof. We will argue geometrically using PL chains, leaving the sheaf-theoretic for-
mulation for topological pseudomanifolds to the reader. Let ξ ∈ IC q̄i (X) be an inter-
section chain allowable with respect to q̄. We will show that

dim(∆|ξ| ∩ (S × T )) 6 i− codim(S × T ) + p̄(codim(S × T )) (17)

for all S, T ∈ X . If S 6= T , then S ∩ T = ∅ and ∆(X) ∩ (S × T ) = ∅. Thus (17) holds
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in this case and we may now concentrate on the case S = T . Since ∆ : X → ∆(X) is
a homeomorphism, we have

|ξ| ∼= ∆|ξ|, (18)

|ξ| ∩ S ∼= ∆(|ξ| ∩ S). (19)

As ∆ is injective,

∆(|ξ| ∩ S) = ∆|ξ| ∩∆(S). (20)

We also note that

∆|ξ| ∩ (S × S) = ∆|ξ| ∩∆(S). (21)

If k = codimS, then codim(S × S) = 2k. Using the q̄-allowability of ξ, the following
calculation establishes (17):

dim(∆|ξ| ∩ (S × S)) = dim(|ξ| ∩ S) (by (19), (20) and (21))
6 i− k + q̄(k)
6 i− 2k + p̄(2k) (by (16))
= i− codim(S × S) + p̄(codim(S × S)),

where i is indeed the dimension of ∆|ξ| by (18). Thus ξ 7→ ∆(ξ) defines the chain
map ∆∗.

Applying the functor Φ to ∆∗ yields a morphism

Φ∆∗ : ΦIC q̄•(X;Q) −→ ΦIC p̄• (X ×X;Q)

which induces a morphism

FHQ(Φ∆∗, 1) : FHQ(ΦIC p̄• (X ×X;Q), EQ) −→ FHQ(ΦIC q̄•(X;Q), EQ)

on function HQ-modules. On homotopy groups, π−∗FHQ(Φ∆∗, 1) defines a map

∆∗ : IE∗p̄(X ×X;Q) −→ IE∗q̄ (X;Q).

Let (p̄, q̄) be a pair of perversities such that p̄ satisfies the Künneth condition (14)
and (p̄, q̄) satisfy the diagonal pushforward condition (16). Then the composition of
the external product with ∆∗ defines an internal (cup) product ∪:

IE∗p̄(X;Q)⊗Q IE
∗
p̄(X;Q) //

∪ ))TTTTTTTTTTTTTTT
IE∗p̄(X ×X;Q)

∆∗

��
IE∗q̄ (X;Q).

We leave the formulation of other types of products to the reader.
Let us turn our attention to defining operations in IE-cohomology of an arbitrary

pseudomanifold X, for an arbitrary perversity p̄. For a commutative S-algebra R
and R-modules M,N,K, we start out with the natural, associative and R-unital
composition pairing

FR(M,N) ∧R FR(K,M) −→ FR(K,N).

Specialization to R = HQ, M = N = EQ for any S-module E and K = ΦIC p̄• (X;Q)
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yields

FHQ(EQ, EQ) ∧HQ FHQ(ΦIC p̄• (X;Q), EQ) −→ FHQ(ΦIC p̄• (X;Q), EQ)

which induces on homotopy groups

(EQ)∗HQ(EQ)⊗Q (EQ)∗HQ(ΦIC p̄• (X;Q)) −→ (EQ)∗HQ(ΦIC p̄• (X;Q)),

that is,

(EQ)∗HQ(EQ)⊗Q IE
∗
p̄(X;Q) −→ IE∗p̄(X;Q).

Thus, every element α of the algebra of operations (EQ)∗HQ(EQ) defines a cohomology
operation

α : IE∗p̄(X;Q) −→ IE∗p̄(X;Q).

8. Atiyah-Hirzebruch Formulae

Proposition 8.1. For any S-module E, there is an isomorphism

IEp̄k(X;Q) ∼=
⊕
i+j=k

IH p̄
i (X;Q)⊗Q (πj(E)⊗Z Q).

Proof. This follows readily from the algebraic Künneth theorem:

IEp̄k(X;Q) = πk(ΦIC p̄• (X;Q) ∧HQ EQ)
∼= πk(ΦIC p̄• (X;Q) ∧HQ ΦCh(EQ))
∼= πk(Φ(IC p̄• (X;Q)⊗ Ch(EQ)))
∼= Hk(IC p̄• (X;Q)⊗ Ch(EQ))
∼=

⊕
i+j=kHi(IC

p̄
• (X;Q))⊗Hj(Ch(EQ))

∼=
⊕

i+j=k IH
p̄
i (X;Q)⊗ πj(EQ)

∼=
⊕

i+j=k IH
p̄
i (X;Q)⊗ (πj(E)⊗Q).

Proposition 8.2. For any S-module E, there is an isomorphism

IEkp̄ (X;Q) ∼=
∏
i−j=k

HomQ(IH p̄
i (X;Q), πj(E)⊗Z Q).

Proof. Using the cohomological universal coefficient theorem:

IEkp̄ (X;Q) = π−kFHQ(ΦIC p̄• (X;Q), EQ)
∼= π−kFHQ(ΦIC p̄• (X;Q),ΦCh(EQ))
∼= π−kΦ Hom•(IC

p̄
• (X;Q), Ch(EQ))

∼= H−k(Hom•(IC
p̄
• (X;Q), Ch(EQ)))

∼=
∏
i−j=k HomQ(Hi(IC

p̄
• (X;Q)), Hj(Ch(EQ)))

∼=
∏
i−j=k HomQ(IH p̄

i (X;Q), πj(EQ))
∼=

∏
i−j=k HomQ(IH p̄

i (X;Q), πj(E)⊗Q).
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Remark 8.3. Alternatively, one may also obtain such universal coefficient isomor-
phisms as follows. Let R be a commutative S-algebra and let M,N be R-modules.
Then there is a natural spectral sequence of differential R∗-modules

Ep,q2 = Extp,qR∗ (M
∗, N∗) =⇒ Extp+qR (M,N).

This sequence is of standard cohomological type, lies in the right half-plane and
converges conditionally, cf. [EKMM97], Theorem IV.4.1. Now substitute R = HQ,
M = ΦIC p̄• = ΦIC p̄• (X;Q), N = EQ. Since then

R∗ = π−∗(HQ) = Q[0],

M∗ = π−∗(ΦIC
p̄
• )
∼= H−∗(IC

p̄
• ) = IH p̄

−∗(X;Q),

and

N∗ = π−∗(EQ) ∼= π−∗(E)⊗Q,

the E2-term becomes

Ep,q2 = Extp,qQ (IH p̄
−∗(X;Q), π−∗(E)⊗Q).

As IH p̄
−∗(X;Q) is free over Q, we have

Extp,∗Q (IH p̄
−∗(X;Q), π−∗(E)⊗Q) = 0

for p > 0. Hence, the spectral sequence collapses to its edge-homomorphism. As for
the target of the spectral sequence,

Extp+qR (M,N) = Np+q
R (M) = (EQ)p+qHQ (ΦIC p̄• ) = IEp+qp̄ (X;Q).

9. Künneth Spectral Sequence

Theorem 9.1. Let p̄ be a perversity such that

p̄(k) + p̄(l) 6 p̄(k + l) 6 p̄(k) + p̄(l) + 2 (22)

for all k, l, for instance p̄ = m̄. For any S-algebra E and compact pseudomanifolds
Xn, Y m, there is a spectral sequence of the form

E2
p,q = TorE∗⊗Qp,q (IEp̄∗(X;Q), IEp̄∗(Y ;Q)) =⇒ IEp̄p+q(X × Y ;Q).

Proof. Let U and V denote the top strata of X and Y , respectively. Let πX : X ×
Y → X, πU : U × V → U , πY : X × Y → Y and πV : U × V → V denote the factor
projections. By [CGJ92], Proposition 2, the multiplication morphism

π∗UQU [n]⊗ π∗VQV [m] −→ QU×V [n+m]

extends uniquely to an isomorphism

π∗XIC•p̄(X)⊗ π∗Y IC•p̄(Y ) ∼= IC•p̄(X × Y )

in Db(X × Y ) when p̄ satisfies inequality (22). By [B+84] V.10.19, and using the
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compactness of X and Y ,

RΓ(X × Y ;π∗XIC•p̄(X)⊗ π∗Y IC•p̄(Y )) ∼= RΓ(X; IC•p̄(X))⊗RΓ(Y ; IC•p̄(Y )).

Consequently, we obtain an Eilenberg-Zilber type isomorphism

IC p̄• (X;Q)⊗ IC p̄• (Y ;Q) ∼= IC p̄• (X × Y ;Q) (23)

Recall [EKMM97] that given any S-algebraR, rightR-moduleM , and leftR-module
N , there is an Eilenberg-Moore type spectral sequence

E2
p,q = TorE∗(R)

p,q (E∗(M), E∗(N)) =⇒ Ep+q(M ∧R N).

Taking R = HQ, M = ΦIC p̄• (X;Q), N = ΦIC p̄• (Y ;Q), and using Corollary 2.4, we
obtain a spectral sequence

TorE∗(HQ)
p,q (IEp̄∗(X;Q), IEp̄∗(Y ;Q)) =⇒ Ep+q(ΦIC

p̄
• (X;Q) ∧HQ ΦIC p̄• (Y ;Q)).

The target is

Ep+q(ΦIC
p̄
• (X;Q) ∧HQ ΦIC p̄• (Y ;Q)) ∼= Ep+q(Φ(IC p̄• (X;Q)⊗Q IC

p̄
• (Y ;Q)))

∼= Ep+q(ΦIC
p̄
• (X × Y ;Q))

∼= IEp̄p+q(X × Y ;Q),

again using Corollary 2.4.

When the perversity p̄ does not satisfy inequality (22), then the Eilenberg-Zilber
isomorphism (23) fails in general: An example, due to [CGJ92], is given by X =
cT 2 = Y , the cone on the 2-torus, and a perversity p̄ with p̄(3) = 0 and p̄(6) = 3.
The Betti numbers for IH p̄

∗ (cT
2;Q) are (1, 2, 0, 0). Therefore, the Betti numbers

for IH p̄
∗ (cT

2;Q)⊗ IH p̄
∗ (cT

2;Q) are (1, 4, 4, 0, 0, 0, 0). However, IH p̄
∗ (cT

2 × cT 2;Q) ∼=
IH p̄
∗ (c(T

2 ∗ T 2);Q) has Betti numbers (1, 4, 0, 0, 0, 0, 0).

10. Local Intersection E-Homology

Let Xn be a stratified pseudomanifold. Every point x ∈ X has an open neighbor-
hood U of the form U = Rn−k × c◦Lk−1, called a distinguished neighborhood, where
L is the link of the path component of the pure stratum that contains x. The ordinary
intersection homology of U is well-known:

IH p̄
r (U ;Q) ∼=

{
IH p̄

r−n+k−1(L;Q), r > n− p̄(k),

0, r < n− p̄(k).
(24)

For any S-module E and integer a, let τ6aE denote the (a+ 1)-coconnective trunca-
tion of E, that is,

πi(τ6aE) =

{
πi(E), i 6 a,

0, i > a.

With E = HZ, the local result (24) may then be more succinctly formulated as

I(HZ)p̄r(U ;Q) ∼= I(τ6r+p̄(k)−nHZ)p̄r−n+k−1(L;Q).

This formula generalizes to arbitrary coefficients E:
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Proposition 10.1. Let Xn be a stratified pseudomanifold. Let U = Rn−k × c◦Lk−1

be an open distinguished neighborhood of a point in X, where L is the link at that
point. Then

IEp̄r (U ;Q) ∼= I(τ6r+p̄(k)−nE)p̄r−n+k−1(L;Q).

Proof. Let U0 be the punctured neighborhood U0 = Rn−k × (c◦Lk−1 − {c}). Let i :
U0 ↪→ U be the open inclusion. Using a homeomorphism U0

∼= Rn−k+1 × L, we have a
projection π : U0 → L and the inclusion j : L ↪→ U0 at 0 ∈ Rn−k+1. Let I• ∈ Db(U0)
be an injective constructible sheaf complex. There is a natural morphism

ρ : Rπ∗I
• = π∗I

• −→ j∗I•

that assigns to a section s of π∗I
• over an open subset V ⊂ L, which is by definition

a section of I• over π−1(V ) ∼= Rn−k+1 × V , the section ρ(s) obtained by restricting s
to {0} × V ⊂ Rn−k+1 × V . This morphism is a quasi-isomorphism, see e.g. [Ban02],
Chapter 5, Section 4.2. Then the induced quasi-isomorphism

RΓ(L; ρ) : RΓ(L;π∗I
•) −→ RΓ(L; j∗I•)

defines an isomorphism

RΓ(U ;Ri∗I
•) ∼= RΓ(L; j∗I•)

in Db(pt) because

RΓ(U ;Ri∗I
•) = RΓ(U0; I•) = RΓ(L;π∗I

•),

where we have used that i∗I
• and π∗I

• are both complexes of injective sheaves. If one
specializes to I• an injective incarnation of IC•p̄(U0), then this isomorphism induces
an isomorphism

IC p̄• (U ;Q)[n− k + 1] ∼= τ>k−p̄(k)−1IC
p̄
• (L;Q)

in D(Q). On rational chain complexes, −⊗ Ch(EQ) is an exact functor and hence
preserves quasi-isomorphisms. Consequently,

IC p̄• (U ;Q)[n− k + 1]⊗ Ch(EQ) ∼= τ>k−p̄(k)−1IC
p̄
• (L;Q)⊗ Ch(EQ)

in D(Q). Thus, with a = r − n+ k − 1, b = k − p̄(k)− 1,

IEp̄r (U ;Q) = πr(ΦIC
p̄
• (U ;Q) ∧HQ EQ)

= Hr(IC
p̄
• (U ;Q)⊗Q Ch(EQ))

= Ha+n−k+1(IC p̄• (U ;Q)⊗Q Ch(EQ))
= Ha(IC p̄• (U ;Q)[n− k + 1]⊗Q Ch(EQ))
∼= Ha(τ>bIC

p̄
• (L;Q)⊗ Ch(EQ))

∼= Ha(IC p̄• (L;Q)⊗ τ6a−bCh(EQ))
∼= πa(ΦIC p̄• (L;Q) ∧HQ τ6a−bEQ)
= πr−n+k−1(ΦIC p̄• (L;Q) ∧HQ τ6r+p̄(k)−nEQ)
= I(τ6r+p̄(k)−nE)p̄r−n+k−1(L;Q).
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11. Self-Dual Theories on Non-Witt Spaces

Let Xn be a closed, n-dimensional, topological pseudomanifold. Clearly, the meth-
ods of this paper apply not only to the intersection chain sheaf IC•p̄(X) ∈ Db(X), but

more generally to any differential complex S• ∈ Db(X) of sheaves of rational vector
spaces on X. Indeed, Rf∗S

•, where Rf∗ : Db(X)→ Db(pt) is induced by f : X → pt,
is a cochain complex and we set

C•(X; S•) = Rf∗S
• and C•(X; S•) = C−•(X; S•).

Definition 11.1. Let E be any S-module. The rational E-homology Ek(X; S•) of X
with coefficients in a sheaf complex S• is defined to be

Ek(X; S•) = (EQ)HQ
k (ΦC•(X; S•)).

The rational E-cohomology Ek(X; S•) of X with coefficients in a sheaf complex S• is
defined to be

Ek(X; S•) = (EQ)kHQ(ΦC•(X; S•)).

Thus Ek(X; IC•p̄(X)) = IEp̄k(X;Q) and Ek(X; IC•p̄(X)) = IEkp̄ (X;Q).
Now assume that X is oriented and S• is self-dual, that is, we are given an iso-

morphism d : DXS•[n]
'−→ S• in Db(X). Then d will induce duality between the

associated E-homology and E-cohomology groups:

Theorem 11.2. For a sheaf complex S• ∈ Db(X), a self-duality isomorphism DXS•[n] ∼=
S• induces a generalized Poincaré duality isomorphism

En−k(X; S•) ∼= Ek(X; S•)

for any S-module E.

Proof. The proof of Theorem 5.3 carries over with IC•p̄(X) and IC•q̄(X) both replaced
by S•.

IfX has only strata of even codimension, then IC•m̄(X), the intersection chain sheaf
with respect to the lower middle perversity m̄, is self-dual, since IC•m̄(X) = IC•n̄(X),
the intersection chain sheaf with respect to the upper middle perversity n̄. More
generally, IC•m̄(X) is still self-dual on X if X is a Witt space. (For a Witt space,
the middle-dimensional, lower middle perversity intersection homology of all links of
odd-codimensional strata is required to vanish.) If X is not a Witt space, then the
canonical morphism IC•m̄(X)→ IC•n̄(X) is not an isomorphism and IC•m̄(X) is not
self-dual. We will briefly review some relevant results of [Ban02], where a theory of
generalized Poincaré duality for non-Witt spaces is developed. Fix a stratification

X = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅

such that Xj is closed in X and every non-empty Xj −Xj−1 is an open manifold
of dimension j. Set Uk = X −Xn−k. As shown in [Ban02] and [Ban06], invariants
of non-Witt spaces such as e.g. L-classes emerge from objects of a certain full sub-
category SD(X) ⊂ Dbc(X), where Dbc(X) denotes the derived category of bounded,
constructible differential complexes of sheaves of rational vector spaces. The objects of
SD(X) satisfy two properties: On the one hand, they are self-dual, on the other hand,
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they are as close to the middle perversity intersection chain sheaves as possible, that
is, they interpolate between IC•m̄(X) and IC•n̄(X). The precise definition is as follows:

Definition 11.3. Let SD(X) be the full subcategory of Dbc(X) whose objects S•

satisfy the following axioms:

(SD1) Top stratum normalization: S•|U2
∼= QU2

[n]

(SD2) Lower bound: Hi(S•) = 0, for i < −n.
(SD3) Stalk condition for the upper middle perversity n̄ :

Hi(S•|Uk+1
) = 0, for i > n̄(k)− n, k > 2.

(SD4) Self-Duality: S• has an associated isomorphism

d : DS•[n]
'→ S• such that Dd[n] = ±d.

Here, Hi(S•) denotes the cohomology sheaf of the complex S•. Depending on X, the
category SD(X) may or may not be empty. The main structure theorem on SD(X)
is a description as a Postnikov system with fibers given by categories of Lagrangian
structures along the strata of odd codimension:

Theorem 11.4. Let n = dimX be even. There is an equivalence of categories

SD(X) ' Lag(Un − Un−1) o Lag(Un−2 − Un−3) o . . .o Lag(U4 − U3) o Const(U2).

(Similarly for n odd.)

In particular, there is a functor that assigns to every Lagrangian structure L a
sheaf IC•L ∈ SD(X) and every S• ∈ SD(X) is of this form.

Example 11.5. Let X6 be the product of a circle with the (unreduced) suspension
of complex projective space, X6 = S1 × ΣP2. This space has a stratum of odd codi-
mension 5 consisting of the disjoint union of two circles. The link of this stratum is
P2 and there is no Lagrangian subspace in the middle cohomology H2(P2) (e.g. the
signature σ(P2) = 1 6= 0). Then the structure theorem implies SD(X6) = ∅, so that
there is no meaningful way to define intersection homology type invariants on X6.

Let X4 be the product of a circle with the suspension of a torus, X4 = S1 × ΣT 2.
The stratum of odd codimension 3 consists again of the disjoint union of two circles,
but with link T 2. There are many Lagrangian subspaces L in the middle cohomology
H1(T 2), and the structure theorem implies SD(X4) 6= ∅. There is a self-dual sheaf
IC•L on X4 for every choice of L.

Definition 11.6. Let E be any S-module and L a Lagrangian structure along the
strata of odd codimension of X. The rational L-intersection E-homology IELk (X;Q)
of X is defined to be

IELk (X;Q) = Ek(X; IC•L).

The rational L-intersection E-cohomology IEkL(X;Q) of X is defined to be

IEkL(X;Q) = Ek(X; IC•L).
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Theorem 11.7. For every Lagrangian structure L, there exists a factorization

IEm̄∗ (X;Q)
α∗ //

''OOOOOOOOOOO IEL∗ (X;Q)

β∗

��
IEn̄∗ (X;Q)

of the canonical morphism such that the duality square

IEm̄n−k(X;Q)
α∗ // IELn−k(X;Q)

IEkn̄(X;Q)

∼=

OO

β∗ // IEkL(X;Q)

∼=

OO

commutes.

Proof. Given any IC•L ∈ SD(X), there exists a factorization

IC•m̄(X)
α−→ IC•L

β−→ IC•n̄(X)

of the canonical morphism IC•m̄(X)→ IC•n̄(X) such that

IC•m̄(X)[−n]
α[−n] // IC•L[−n]

DXIC•n̄(X)

∼=

OO

DXβ // DXIC•L

∼= d

OO

(where d is given by (SD4)) commutes, by [Ban02], Theorem 2.2. The proof will
now consist of applying the techniques and identities of the proof of Theorem 5.3 to
this square. Thus, applying Rf∗, for f : X → pt, to the square, passing from cochain
to chain complexes, and tensoring with Ch(EQ), the diagram becomes

ICm̄• [n]
α∗[n]⊗1 // ICL• [n]⊗ Ch(EQ)

Hom•(IC
n̄
• ,Q[0])⊗ Ch(EQ)

∼=

OO

β∗⊗1 // Hom•(IC
L
• ,Q[0])⊗ Ch(EQ)

∼=

OO

in D(Q). Note that on rational chain complexes, −⊗ Ch(EQ) is an exact functor and
hence preserves quasi-isomorphisms. Next, apply homology H−k(−):

H−k(ICm̄• [n]⊗ Ch(EQ))
H−k(α∗[n]⊗1) // H−k(ICL• [n]⊗ Ch(EQ))

H−k(Hom•(IC
n̄
• ,Q[0])⊗ Ch(EQ))

∼=

OO

H−k(β∗⊗1)// H−k(Hom•(IC
L
• ,Q[0])⊗ Ch(EQ))

∼=

OO

Let us briefly write C∗• = Hom•(C•,Q[0]) for a chain complex C•, and E• = Ch(EQ).
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The proof of Theorem 5.3 gives isomorphisms

H−k(ICm̄• [n]⊗ E•)
∼=−→ IEm̄n−k(X;Q), H−k(ICL• [n]⊗ E•)

∼=−→ IELn−k(X;Q),

H−k(ICn̄∗• ⊗ E•)
∼=−→ IEkn̄(X;Q), H−k(ICL∗• ⊗ E•)

∼=−→ IEkL(X;Q).

Using these, we define maps

IEm̄n−k(X;Q)
α∗−→ IELn−k(X;Q), IEkn̄(X;Q)

β∗−→ IEkL(X;Q),

by

IEm̄n−k(X;Q) ∼= H−k(ICm̄• [n]⊗ E•) −→ H−k(ICL• [n]⊗ E•) ∼= IELn−k(X;Q),

IEkn̄(X;Q) ∼= H−k(ICn̄∗• ⊗ E•) −→ H−k(ICL∗• ⊗ E•) ∼= IEkL(X;Q),

respectively, and the duality isomorphisms

IEkn̄(X;Q)
∼=−→ IEm̄n−k(X;Q), IEkL(X;Q)

∼=−→ IELn−k(X;Q)

are given by the compositions

IEkn̄(X;Q) ∼= H−k(ICn̄∗• ⊗ E•) ∼= H−k(ICm̄• [n]⊗ E•) ∼= IEm̄n−k(X;Q),

IEkL(X;Q) ∼= H−k(ICL∗• ⊗ E•) ∼= H−k(ICL• [n]⊗ E•) ∼= IELn−k(X;Q),

respectively. We obtain a cube

IEm̄n−k(X;Q)
α∗ // IELn−k(X;Q)

H−k(ICm̄• [n]⊗ E•)

∼=

ggOOOOOOOOOOOO
// H−k(ICL• [n]⊗ E•)

∼=

77ooooooooooo

H−k(ICn̄∗• ⊗ E•)

∼=

OO

//

∼=wwoooooooooooo
H−k(ICL∗• ⊗ E•)

∼=

OO

∼= ''OOOOOOOOOOO

IEkn̄(X;Q)
β∗ //

∼=

OO

IEkL(X;Q)

∼=

OO

The five interior faces of the cube commute by definition. Thus the sixth, outer face
commutes as well.

12. An Example

Let [x0 : . . . : x5] denote homogeneous coordinates for complex projective space P5.
With

Q(x) = x4
0 + . . .+ x4

5,

we define the quartic 4-fold

V = {Q(x) = 0} ⊂ P5.
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For C(x) = x0x3 − x1x2, set

X = {C(x) = 0} ⊂ V.

This quadric hypersurface in V is a Calabi-Yau 3-fold. It is singular at x0 = x1 = x2 =
x3 = 0, as there dC(x) vanishes. Thus, X has precisely the 4 singularities [0 : 0 : 0 :
0 : ω : 1], ω4 = −1, all of which are nodes. Let U ∼= C4 be a small open neighborhood
in V of such a node. Then the neighborhood U ∩X of the node in X is a complex
cone over P1 × P1, i.e. {uv − wt = 0} ⊂ C4. The real picture is that of a real cone
over S2 × S3. (Physicists call X a “conifold” because it has only isolated conical
singularities.) Let ku be the connective, complex K-theory spectrum (S-algebra). We
wish to calculate the intersection ku-homology Poincaré series

IkuPt(X) =
∑
i

ti dim Ikum̄i (X;Q)

as well as the intersection ku-cohomology Poincaré series

IkuP t(X) =
∑
i

ti dim Ikuim̄(X;Q)

of X. Throughout, we shall rely on data from [Hüb92]. Let [y0 : y1] be homogeneous
coordinates for P1. Define three hypersurfaces in P5 × P1 by

V1 = {Q(x) = 0},
V2 = {x0y0 + x1y1 = 0},
V3 = {x2y0 + x3y1 = 0}.

Let Y be the complete intersection

Y = V1 ∩ V2 ∩ V3 in P5 × P1

= V2 ∩ V3 in V × P1.

Then Y is a real 6-dimensional Calabi-Yau manifold. Let d11 = 4, d21 = 0 be the
degrees ofQ in x and y, respectively. Let d12 = 1, d22 = 1 be the degrees of the defining
equation of V2 in x and y, respectively, and let d13 = 1, d23 = 1 be the degrees of the
defining equation of V3 in x and y, respectively. Let

J1 = c1(OP5(1)), J2 = c1(OP1(1))

be positive (1, 1)-forms on P5 and P1, respectively, representing the first Chern classes
of the hyperplane bundles so that the total Chern classes are given by

c(P5) = (1 + J1)6, c(P1) = (1 + J2)2.

Define

A =
1

3

2∑
r,s,t=1

(δrst(nr + 1)−
3∑
j=1

drjdsjdtj)JrJsJt,

where n1 = 5, n2 = 1 are the dimensions of the two projective spaces, and

B =

3∧
j=1

(d1jJ1 + d2jJ2).
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Then the Euler characteristic χ(Y ) can be computed by integrating the third Chern
class of Y :

χ(Y ) =

∫
Y

c3(Y ) = [A ·B]top,

where [−]top means the coefficient of J5
1J2. Working out A and B yields

A = −20J3
1 − 2J2

1J2, B = 4(J3
1 + 2J2

1J2)

so that the coefficient of J5
1J2 in A ·B, and hence χ(Y ), is −168. The general form

of the Hodge diamond of a Calabi-Yau manifold of dimension 3 is

1
0 0

0 b1,1 0
1 b2,1 b2,1 1

0 b1,1 0
0 0

1

Since

χ(Y ) =

6∑
r=0

(−1)rbr, br =

r∑
p=0

bp,r−p,

we have the relation

χ(Y ) = 2(b1,1 − b2,1).

Iterative application of the Lefschetz-Bott hyperplane theorem [Bot59] gives b1,1 = 2.
Thus

b2,1 = b1,1 − 1
2χ = 86

and b3 = 2 + 2b2,1 = 174. Thus the Hodge diamond of Y is

1
0 0

0 2 0
1 86 86 1

0 2 0
0 0

1

and

HPt(Y ) = 1 + 2t2 + 174t3 + 2t4 + t6.

The projection V × P1 −→ V along P1 induces a map f : Y → X. This map is a
Kähler small resolution. For a space Z, let EPt(Z) denote the rational E-homology
Poincaré series of Z. By Theorem 6.2,

IkuPt(X) = kuPt(Y ).

By the Atiyah-Hirzebruch spectral sequence,

kuPt(Y ) = HPt(Y ) · kuPt(pt).
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The homotopy groups of the connective complex K-theory spectrum are

πi(ku) =

{
Z, n > 0 and even,

0, n otherwise,

so that

kuPt(pt) =

∞∑
i=0

t2i.

Thus,

kuPt(Y ) =
1 + 2t2 + 174t3 + 2t4 + t6

1− t2

and for the intersection ku-homology,

IkuPt(X) = 1 + 3t2 + 174t3 + 5t4 + 174t5 + 6

∞∑
i=3

t2i + 174

∞∑
i=3

t2i+1.

The corresponding cohomological series can now be computed by the Poincaré duality
Theorem 5.3:

IkuP t(X) =
∑
i

ti dim Ikum̄6−i(X;Q) =
∑
j

t6−j dim Ikum̄j (X;Q) = t6 · IkuP1/t(X).

Hence,

IkuP t(X) = t6 + 3t4 + 174t3 + 5t2 + 174t+ 6

∞∑
i=0

t−2i + 174

∞∑
i=0

t−2i−1. (25)

Note that by [GM83],

IHPt(X) = HPt(Y ) = 1 + 2t2 + 174t3 + 2t4 + t6. (26)

This gives another way to compute the cohomological intersection ku-theory series,
using the Atiyah-Hirzebruch formula, Proposition 8.2: If

IkuP t(X) =
∑
i

cit
i,

then

Ikuim̄(X;Q) ∼=
∏
p−q=i

HomQ(IHm̄
p (X;Q), πq(ku)⊗Z Q)

implies

ci =
∑
p−q=i

dim IHm̄
p (X;Q) · dim(πq(ku)⊗Z Q) =

∞∑
q=0

dim IHm̄
2q+i(X;Q).

Using (26), we obtain

c6 = 1, c5 = 0, c4 = 3, c3 = 174, c2 = 5, c1 = 174, c0 = 6, c−1 = 174, c−2 = 6, . . .

in accordance with (25).



RATIONAL GENERALIZED INTERSECTION HOMOLOGY THEORIES 29

References

[B+84] A. Borel et al., Intersection cohomology, Progr. Math., no. 50,
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