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Abstract. An IP-space is a pseudomanifold whose defining local prop-
erties imply that its middle perversity global intersection homology
groups satisfy Poincaré duality integrally. We show that the symmetric
signature induces a map of Quinn spectra from IP bordism to the sym-
metric L-spectrum of Z, which is, up to weak equivalence, an E∞ ring
map. Using this map, we construct a fundamental L-homology class
for IP-spaces, and as a consequence we prove the stratified Novikov
conjecture for IP-spaces whose fundamental group satisfies the Novikov
conjecture.

1. Introduction

An intersection homology Poincaré space, or IP-space, is a piecewise linear
pseudomanifold such that the middle dimensional, lower middle perversity
integral intersection homology of even-dimensional links vanishes and the
lower middle dimensional, lower middle perversity intersection homology of
odd-dimensional links is torsion free. This class of spaces was introduced by
Goresky and Siegel in [GS83] as a natural solution, assuming the IP-space
to be compact and oriented, to the question: For which class of spaces does
intersection homology (with middle perversity) satisfy Poincaré duality over
the integers?

If X is a compact oriented IP-space whose dimension n is a multiple of
4, then the signature σ(X) of X is the signature of the intersection form

IHn/2(X;Z)/Tors×IHn/2(X;Z)/Tors −→ Z,
where IH∗ denotes intersection homology with the lower middle perversity,
[GM80], [GM83]. This signature is a bordism invariant for bordisms of IP-
spaces. The IP-space bordism groups have been investigated by Pardon in
[Par90], where it is shown that the signature (when n = 4k) together with
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the de Rham invariant (when n = 4k+ 1) form a complete system of invari-
ants.

Next we recall the theory of the L-homology fundamental class for mani-
folds. Let Mn be a closed oriented n-dimensional manifold. The symmetric
signature σ∗(M) of [M71],[Ran92, p. 47] is an element of the symmetric L-
group Ln(Z[G]), where G denotes the fundamental group π1M . It is a non-
simply-connected generalization of the signature σ(M), since for n = 4k the
canonical homomorphism Ln(Z[G]) → Ln(Z) = Z maps σ∗(M) to σ(M).
Moreover, σ∗ is homotopy invariant and bordism invariant for bordisms
over the classifying space BG. Let L• = L•〈0〉(Z) denote the symmetric
L-spectrum with homotopy groups πn(L•) = Ln(Z) and let L•∗(−) denote
the homology theory determined by L•. For an n-dimensional Poincaré
space M which is either a topological manifold or a combinatorial homology
manifold (i.e. a polyhedron whose links of simplices are homology spheres),
Ranicki defines a canonical L•-homology fundamental class [M ]L ∈ L•n(M),
see [Ran92, Prop. 16.16]. Its image under the assembly map

L•n(M)
α−→ Ln(Z[G])

is the symmetric signature σ∗(M). The class [M ]L is a topological invariant,
but, unlike the symmetric signature, not a homotopy invariant in general.
The geometric meaning of the L•-homology fundamental class is that its
existence for a geometric Poincaré complex Xn, n ≥ 5, assembling to the
symmetric signature (which in fact any Poincaré complex possesses), implies
up to 2-torsion that X is homotopy equivalent to a compact topological man-
ifold. (More precisely, X is homotopy equivalent to a compact manifold if it
has an L•-homology fundamental class, which assembles to the so-called vis-
ible symmetric signature of X.) Smooth manifolds M possess a Hirzebruch
L-class in H∗(M ;Q), whose Poincaré dual we denote by L(M) ∈ H∗(M ;Q).
Rationally, [M ]L is then given by L(M),

[M ]L ⊗ 1 = L(M) ∈ L•n(M)⊗Q ∼=
⊕
j≥0

Hn−4j(M ;Q).

Thus, we may view [M ]L as an integral refinement of the L-class of M . The
identity α[M ]L = σ∗(M) may then be interpreted as a non-simply connected
generalization of the Hirzebruch signature formula. These facts show that
the L•-homology fundamental class is much more powerful than σ∗(M). For
example, there exist infinitely many manifolds Mi, i = 1, 2, . . . , in the ho-
motopy type of S2 × S4, distinguished by the first Pontrjagin class of their
tangent bundle p1(TMi) ∈ H4(S2 × S4) ∼= Z, namely p1(TMi) = Ki, K a
fixed nonzero integer. On the other hand, σ∗(Mi) = σ∗(S2 × S4) = 0 ∈
L6(Z[π1(S2 × S4)]) = L6(Z) = 0.

We return to singular spaces. A Witt space is a piecewise linear pseudo-
manifold such that the middle dimensional, lower middle perversity rational
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intersection homology of even-dimensional links vanishes, [Sie83]. The sym-
metric signature σ∗(X) ∈ Ln(Q[G]) and the L•-homology fundamental class
[X]L ∈ (L•(Q))n(X) of an oriented Witt space Xn appeared first in the work
of Cappell, Shaneson and Weinberger, see [CSW91] and [W94], though a de-
tailed construction is not provided there. Regarding the relation between
L•(Z) and L•(Q), the functor adsym, described in [LM13], from the cate-
gory of rings with involution to the category of ad theories associates to the
localization map Z → Q a morphism adZ → adQ of the associated sym-
metric Poincaré ad theories, which in turn induces a map of Quinn spectra
L•(Z) → L•(Q). On homotopy groups, this fits into Ranicki’s localization
sequence

· · · −→ Ln(Z) −→ Ln(Q) −→ Ln(Z,Z− {0}) −→ Ln−1(Z) −→ · · · ,
where

Ln(Q) ∼=

{
Z⊕ (Z/2)∞ ⊕ (Z/4)∞, n ≡ 0(4)

0, n 6≡ 0(4).

In [Ban11], the first author outlined a construction of [X]L for IP-spaces
X based on ideas of Eppelmann [Epp07], and pointed out that the existence
of this class implies in particular a definition of a symmetric signature σ∗(X)
as the image of [X]L under assembly. In [ALMP12], it is shown that this
symmetric signature, adapted to Witt spaces and pushed into K∗(C

∗
rG) via

L∗(Q[G]) −→ L∗(C∗rG) −→ K∗(C
∗
rG),

agrees rationally with the Albin-Leichtnam-Mazzeo-Piazza signature index
class. The first fully detailed construction of σ∗(X) for Witt spaces X has
been provided in [FM13b]. That construction is closely parallel to the orig-
inal construction of Mǐsčenko, but using singular intersection chains on the
universal cover instead of ordinary chains. The methods of [FM13b] carry
over to IP-spaces and yield a symmetric signature over Z for such spaces, as
we show in Section 8.

In the present paper, we give the first detailed construction of an L•-
homology fundamental class [X]L ∈ L•n(X) for IP-spaces X. While Eppel-
mann used complexes of sheaves, we are able to use the, for our purposes,
more precise and geometric methods of [FM13b]. The main issue is to con-
struct a map (at least in the derived category) on the spectrum level from
IP bordism to L•, for then [X]L can readily be defined as the image of the
identity map [idX ] ∈ (ΩIP)n(X) under (ΩIP)n(X) → L•n(X), see Definition
9.6. To obtain this map of spectra, we rely heavily on the technology of ad
theories and their associated Quinn spectra as developed by the second and
third author in [LM13], [LM]. Roughly, we construct first an ad theory of IP
spaces, which automatically gives an associated Quinn spectrum QIP, whose
homotopy groups are Pardon’s IP bordism groups. Using the symmetric sig-
nature, we define a morphism of ad theories from the IP ad theory to the
ad theory of symmetric algebraic Poincaré complexes over Z. The spectrum
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of the latter ad theory is the symmetric L-spectrum L•. The morphism of
ad theories then induces the desired map of spectra. We prove that our L•-
homology fundamental class has all the expected properties (Theorem 9.3):
It is an oriented PL homeomorphism invariant, its image under assembly is
the symmetric signature and it agrees with Ranicki’s L•-homology funda-
mental class when X is a PL manifold.1

As an application of our L•-homology fundamental class, we discuss the
stratified homotopy invariance of the higher signatures of IP-spaces. Let X
be an n-dimensional compact oriented IP-space, whose fundamental group
G satisfies the strong Novikov conjecture, that is, the assembly map

L•n(BG) −→ Ln(Z[G])

is rationally injective. Then we prove that the stratified Novikov conjecture
holds for X, i.e. the higher signatures

〈a, r∗L(X)〉, a ∈ H∗(BG;Q),

where r : X → BG is a classifying map for the universal cover of X and
L(X) ∈ H∗(X;Q) is the Goresky-MacPherson L-class of X, are stratified
homotopy invariants, see Theorem 11.2. The stratified Novikov conjecture
has been treated from the analytic viewpoint in [ALMP13].

Here is an outline of the paper. Sections 2 and 3 review the basic facts
about IP-spaces and ad theories. Section 4 constructs an ad theory associ-
ated to IP-spaces. Section 5 reviews two (equivalent) ad theories associated
to symmetric Poincaré complexes. Section 6 uses the symmetric signature
(ignoring the fundamental group) to construct a map Sig of Quinn spectra
from IP bordism to the symmetric L-spectrum of Z. Section 7 recalls the
definition of Ln(Z[π1X]), where π1X denotes the fundamental groupoid of
X. Section 8 constructs the symmetric signature of an IP-space X as an el-
ement of Ln(Z[π1X]). Section 9 constructs the L•-theory fundamental class
of an IP-space, and Section 10 shows that it assembles to the symmetric sig-
nature constructed in Section 8. Section 11 uses the results of Sections 9 and
10 to prove the stratified Novikov conjecture for IP-spaces. Section 12 shows
that the map Sig constructed in Section 6 is, up to weak equivalence, an E∞
ring map; this is applied in Section 13 to prove that [X×Y ]L = [X]L× [Y ]L.
Section 14 proves a result needed for Section 9, namely the fact that the
assembly map for IP bordism is a weak equivalence. There are six appen-
dices. Appendix A reviews the basic facts about the intrinsic filtration of
a PL space. Appendix B gives background about modules over additive
categories which is needed for Sections 8–10. Appendices C, D and E give
generalizations of some technical results from [FM13b] which are needed in

1If R is a PID then our methods would also give a fundamental class in (L•(R))n(X)
with analogous properties.
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Sections 8 and 10. Appendix F proves a mutliplicative property of the as-
sembly map which may be of independent interest. Appendix G corrects
some signs in [LM13].

Remark 1.1. Here is a comparison between our notation and that in
[Ran92]. The spectrum L•(Z[π1(X,x)]) of [Ran92, Definition 14.1] is iden-

tical with the spectrum we denote by QZ[π1(X,x)] (which was defined in
[LM13, Sections 9 and 15]). The spectrum L•〈0〉(Z[π1(X,x)]) of [Ran92,
pages 151-152] is canonically weakly equivalent to the spectrum we denote by

Q
Z[π1(X,x)]
≥0 (see Section 5.3 below). We remind the reader that in [Ran92] the

spectrum L•〈0〉(Z) is denoted by L ([Ran92, page 173]) and Ln(Z[π1(X,x)])
is defined to be πn of the connective spectrum L•〈0〉(Z[π1(X,x)]) ([Ran92,
page 60]).

Acknowledgements. We would like to thank Matthias Kreck, Wolfgang Lück,
Shmuel Weinberger and (especially) Greg Friedman for their help. We are
also grateful to the referee for a very careful revision.

2. Review of IP bordism

We use the term polyhedron as defined in [RS72, Definition 1.1].

Definition 2.1. An n-dimensional PL pseudomanifold is a polyhedron X
for which some (and hence every) triangulation has the following properties.

(a) Every simplex is contained in an n-simplex.
(b) Every (n− 1)-simplex is a face of exactly two n-simplices.

Definition 2.2. An n-dimensional PL ∂-pseudomanifold is a polyhedron
X with the property that some (and hence every) triangulation has the
following properties.

(a) Every simplex is contained in an n-simplex.
(b) Every (n− 1)-simplex is a face of either one or two n-simplices; the

union of the (n− 1)-simplices which are faces of one n-simplex is called the
boundary of X and denoted ∂X.

(c) The boundary ∂X is an (n− 1)-dimensional pseudomanifold.
(d) The boundary is collared, that is, there is a PL embedding ∂X ×

[0, 1)→ X with open image which is the identity on ∂X.

Remark 2.3. (i) The subspace ∂X is independent of the triangulation.
(ii) The collaring condition is needed in order for Lefschetz duality to hold

in intersection homology (see [FM13a, Section 7.3]).

Definition 2.4. An orientation of an n-dimensional PL pseudomanifold
or PL ∂-pseudomanifold is a set of orientations of the n-simplices of some
triangulation such that the sum of the n-simplices with these orientations is
a cycle (a relative cycle in the case of a ∂-pseudomanifold).
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For some purposes we need a stratification. For a polyhedron Y , let c◦Y
denote the open cone ([0, 1)×Y )/(0×Y ). We recall the inductive definition
of stratified pseudomanifold:

Definition 2.5. A 0-dimensional stratified PL pseudomanifold X is a dis-
crete set of points with the trivial filtration X = X0 ⊇ X−1 = ∅. An n-
dimensional stratified PL pseudomanifold X is a polyhedron together with
a filtration by closed polyhedra

X = Xn ⊇ Xn−1 = Xn−2 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅
such that

(a) X −Xn−1 is dense in X, and
(b) for each point x ∈ Xi−Xi−1, there exists a neighborhood U of x for

which there is a compact n− i−1 dimensional stratified PL pseudomanifold
L and a PL homeomorphism

φ : Ri × c◦L→ U

that takes Ri × c◦(Lj−1) onto Xi+j ∩ U .

The space L in part (b) is determined up to PL homeomorphism by x
and the stratification ([F, Lemma 2.5.18]); it is called the link of X at x
and denoted Lx. Since the cone on the empty set L−1 is a point, taking
j = 0 in (b) shows that Xi − Xi−1 is a manifold for every i. A PL pseu-
domanifold always possesses a stratification in the sense of Definition 2.5,
by Proposition A.1(iv). Conversely, if X is an n-dimensional stratified PL
pseudomanifold, then for any triangulation, every simplex is contained in
an n-simplex and every (n− 1)-simplex is a face of exactly two n-simplices,
that is, the underlying polyhedron of X is indeed a PL pseudomanifold in
the sense of Definition 2.1.

Definition 2.6. An n-dimensional stratified PL ∂-pseudomanifold is a PL
∂-pseudomanifold X together with a filtration by closed polyhedra such that

(a) X − ∂X, with the induced filtration, is an n-dimensional stratified
PL pseudomanifold,

(b) ∂X, with the induced filtration, is an n − 1 dimensional stratified
PL pseudomanifold, and

(c) there is a neighborhood N of ∂X with a homeomorphism of filtered
spaces N → ∂X × [0, 1) (where [0, 1) is given the trivial filtration) which is
the identity on ∂X.

A PL ∂-pseudomanifold always possesses a stratification in the sense of
Definition 2.6, by Proposition A.2. Next recall the definition of intersection
homology ([GM80], [GM83], [Bo84], [KW06], [Ban07]). We will denote the
lower middle perversity, as usual, by m̄.

Definition 2.7. ([GS83, Par90]) An n-dimensional IP-space is an n-
dimensional PL pseudomanifold X for which some stratification has the
following properties.
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(a) IHm̄
l (Lx;Z) = 0 for all x ∈ Xn−2l−1 −Xn−2l−2, and

(b) IHm̄
l−1(Lx;Z) is torsion free for all x ∈ Xn−2l −Xn−2l−1.

Remark 2.8. (i) IP stands for “intersection homology Poincaré”.
(ii) Note that the stratification is not considered as part of the structure

of an IP-space.
(iii) If conditions (a) and (b) hold for some stratification then they hold

for every stratification (by the Proposition in [GM83, Section 2.4]).

Definition 2.9. ([Par90]) An n-dimensional ∂-IP-space is an n-dimensional
PL ∂-pseudomanifold X for which X − ∂X is an IP-space.

Proposition 2.10. If X is a ∂-IP-space then ∂X is an IP-space.

Proof. Give X the stratification of Proposition A.2. By Remark 2.8(iii), the
restriction of this stratification to X − ∂X has properties (a) and (b) of
Definition 2.7. Part (c) of Definition 2.6 implies that the links of ∂X are
also links of X − ∂X, so ∂X satisfies Definition 2.7. �

Next we consider IP bordism groups. There are two ways to define them:

(1) The objects and bordisms are the compact oriented IP-spaces and
∂-IP-spaces.

(2) An object is a compact oriented IP-space with a given stratification,
and similarly for the bordisms.

Pardon [Par90] does not make it clear which definition he is using, but
fortunately the two definitions give the same bordism groups by [Fa]. We
will use the first definition.

3. Review of ad theories

We recall some definitions from [LM13, Sections 2 and 3]. A category
with involution is a category together with an endofunctor i which satisfies
i2 = 1. The set of integers Z is a poset and therefore a category. We
give it the trivial involution. A Z-graded category is a category A with
involution together with involution-preserving functors d : A → Z (called
the dimension function) and ∅ : Z → A such that d∅ is equal to the
identity functor. A k-morphism between Z-graded categories is a functor
which decreases the dimensions of objects by k and strictly commutes with
∅ and i. We will write ∅n for ∅(n). Note that the existence of d implies
that when d(A) > d(B), there are no morphisms A→ B.

Let K be a finite collection of PL balls in some Rn, and write |K| for
the union

⋃
σ∈K σ. We say that K is a ball complex if the interiors of the

balls of K are disjoint and the boundary of each ball of K is a union of
balls of K (thus the interiors of the balls of K give |K| the structure of a
regular CW complex). The balls of K will also be called closed cells of K.
A subcomplex of a ball complex K is a subset of K which is a ball complex.
A morphism of ball complexes is the composite of an isomorphism with an
inclusion of a subcomplex. For a ball complex K and a subcomplex L we
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define Cell(K,L) to be the category in which the objects are the oriented
closed cells of K which are not in L, together with an empty cell ∅n for
each dimension n, and the non-identity morphisms are given by inclusions
of cells (with no requirement on the orientations). The category Cell(K,L)
is Z-graded ([LM13, Definition 3.3]), that is, it comes with an involution i
(which reverses the orientation), a dimension functor d into the poset Z and
a section functor given by ∅n.

Given a Z-graded category A, a pre (K,L)-ad of degree k is a functor
Cell(K,L) → A of Z-graded categories which decreases dimensions by k.
The set of these is denoted prek(K,L). Note that a pre (K,L)-ad defines
a pre K = (K, ∅)-ad by precomposition with the functor from Cell(K) to
Cell(K,L) which sends the n-dimensional cells of L to the empty cell ∅n.

An ad theory with values in A (called the target category of the ad theory)

consists of a subset adk(K,L) ⊂ prek(K,L) for each (K,L) and each k,
satisfying certain axioms ([LM13, Definition 3.10]). One of the axioms says

that an element of prek(K,L) is in adk(K,L) if and only if its image in

prek(K) is in adk(K), so to describe an ad theory it suffices to specify the

sets adk(K).
An ad theory gives rise to bordism groups Ω∗ ([LM13, Section 4]), a

spectrum Q ([Q95], [LM13, Section 15]), and a weakly equivalent symmetric
spectrum M ([LM13, Section 17]).

A morphism of ad theories is a functor of target categories which takes
ads to ads. A morphism ad1 → ad2 of ad theories induces maps Q1 → Q2

and M1 →M2 of the associated spectra.

Remark 3.1. Later we will need to know that there is a canonical isomor-
phism πjQ ∼= Ωj for all j. This is a consequence of [LM13, Proposition
16.4(i), Remark 14.2(i), and Definitions 4.1 and 4.2]; for the convenience of
the reader we describe the isomorphism more explicitly. By definition, πjQ
is colimn πn+jQn, where the Qn are the spaces of the spectrum, and the
maps πn+jQn → πn+1+jQn+1 are induced by the suspension maps ([LM13,
page 44] and Appendix G) and are isomorphisms because Q is an Ω spec-
trum ([LM13, Proposition 15.9]). It therefore suffices to give compatible
maps

(3.1) πn+jQn → Ωj

for all n. Next recall that Qn is the geometric realization of a based semisim-
plicial set Pn ([LM13, Definition 15.4]). If s is an (n+j) simplex of Pn which
has all its faces at the basepoint then the induced map |s/∂s| → Qn rep-
resents an element s̄ of πn+jQn, and since Pn is a Kan complex ([LM13,
Lemma 15.12]) all elements of πn+jQn are obtained in this way ([RS71,
Remark 6.5]). Also, by [LM13, Definitions 15.4 and 3.10(e)], there is an
element s0 ∈ ad−j(∗) which corresponds to s under the map induced by the
(n+ j)-isomorphism from Cell(∆n+j , ∂∆n+j) to Cell(∗). Now we define the
map (3.1) by letting s̄ go to the bordism class of s0 ([LM13, Definitions 4.1
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and 4.2]. [LM13, Proposition 16.4(i), Remark 14.2(i) and page 44] show that
this is a well-defined isomorphism which is compatible with the suspension
maps as n varies.

3.1. The ad theory of oriented topological manifolds. As motivation
for the ad theory of IP-spaces, we briefly recall the ad theory adSTop ([LM13,
Example 3.5 and Section 6]; also see [LM, Section 2]). The target category
ASTop has as objects the compact oriented topological manifolds with bound-
ary which are subsets of some Rn. The morphisms between objects of the
same dimension are the orientation-preserving homeomorphisms, and the
other morphisms are the inclusions with image in the boundary.

To describe the set adkSTop(K) we need to recall two definitions from
[LM13, Section 5]. A Z-graded category A is called balanced if it comes with
a natural involutive bijection for all objects A,B of different dimensions

η : A(A,B)→ A(A, i(B))

which commutes with the involution i; examples are Cell(K) and ASTop.
Functors between balanced categories are called balanced if they commute
with η.

Let Cell[(K) be the category whose objects are the (unoriented) cells of K

and whose morphisms are the inclusions. Let A[STop be the category whose
objects are compact orientable topological manifolds, whose morphisms be-
tween objects of the same dimension are homeomorphisms, and whose other
morphisms are the inclusions with image in the boundary. A balanced func-
tor

F : Cell(K)→ ASTop

induces a functor
F [ : Cell[(K) −→ A[STop.

We define adkSTop(K) ⊂ prekSTop(K) to be the set of functors F with the
following properties.

(a) F is balanced.
(b) If (σ′, o′) and (σ, o) are oriented cells with dimσ′ = dimσ − 1, and

if the incidence number [o, o′] is equal to (−1)k, then the map

F (σ′, o′)→ ∂F (σ, o)

is orientation preserving.
(c) For each σ, ∂F [(σ) is the colimit in Top of F [|Cell[(∂σ).

It is shown in [LM13, Appendix B] and [LM, Section 11] that the spec-
trum QSTop (resp., the symmetric spectrum MSTop) obtained from this ad
theory is weakly equivalent to the usual Thom spectrum MSTop (resp., as
a symmetric spectrum).

Remark 3.2. There are many variations of classical bordism spectra which
can be represented by Quinn spectra as well. For example, one can consult
[BL16] for the case of bordism with singularities of Baas-Sullivan type.
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4. The ad theory of IP-Spaces

Recall Proposition A.2.

Definition 4.1. LetX andX ′ be PL ∂-pseudomanifolds of dimensions n, n′.
A strong embedding f : X → X ′ is a PL embedding for which X[n − i] =
f−1((X ′)[n′ − i]) for 0 ≤ i ≤ n.

Let AIP be the Z-graded category whose objects are compact oriented ∂-
IP-spaces which are subsets of some Rn, whose morphisms between objects
of the same dimension are the orientation-preserving PL homeomorphisms
and whose other morphisms are the strong embeddings with image in the
boundary. The involution i reverses the orientation. Then AIP is a balanced
Z-graded category. (The requirement that the morphisms between objects
of different dimensions are strong embeddings will not actually be used until
the proof of Lemma 6.5(ii)). Before defining adkIP(K), we need a fact about
PL topology which will be proved at the end of this section.

Lemma 4.2. Let P be the category whose objects are compact polyhedra
and whose morphisms are PL embeddings. Let K be a ball complex and
G : Cell[(K)→ P a covariant functor such that, for every σ, the map

colim
τ∈∂σ

G(τ)→ G(σ)

is a monomorphism. Then for every subcomplex L of K
(i) the space colimσ∈LG(σ) has a PL structure for which the maps G(σ)→

colimσ∈LG(σ) for σ ∈ L are PL embeddings, and
(ii) the map

colim
σ∈L

G(σ)→ colim
σ∈K

G(σ)

is a PL embedding.
(iii) Suppose that υ, υ′ are cells of K, that x is a point of G(υ), that y is

a point of G(υ′) which is not in the image of colimτ∈∂υ′ G(τ)→ G(υ′), and
that x and y map to the same point of colimσ∈K G(σ). Then υ′ ⊂ υ.

Now let A[IP be the category whose objects are compact orientable IP-
spaces with boundary, whose morphisms between objects of the same dimen-
sion are PL homeomorphisms, and whose other morphisms are the strong
embeddings with image in the boundary. A balanced functor

F : Cell(K) −→ AIP

induces a functor
F [ : Cell[(K) −→ A[IP.

Definition 4.3. Let K be a ball complex. Define adkIP(K) ⊂ prekIP(K) to
be the set of functors F with the following properties:

(a) F is balanced.
(b) If (σ′, o′) and (σ, o) are oriented cells with dimσ′ = dimσ − 1, and

if the incidence number [o, o′] is equal to (−1)k, then the map

F (σ′, o′) −→ ∂F (σ, o)
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is orientation preserving.
(c) For each σ ∈ K, the map

colim
τ∈∂σ

F [(τ)→ ∂F [(σ)

is a bijection.

Theorem 4.4. adIP is an ad theory.

Remark 4.5. By [F, Lemma 2.11.7], the Cartesian product of ∂-IP-spaces

is a ∂-IP-space, and the product of an element of adkIP(K) with an element

of adlIP(L) is an element of adk+l
IP (K × L). Thus adIP is a multiplicative

ad theory ([LM13, Definition 18.4]) and the associated symmetric spectrum
MIP is a symmetric ring spectrum ([LM13, Theorem 18.5]).

Moreover, adIP is a commutative ad theory ([LM, Definition 3.3]), so
by Theorem 1.1 of [LM] there is a commutative symmetric ring spectrum
Mcomm

IP which is weakly equivalent as a symmetric ring spectrum to MIP.
Specifically, there is a symmetric ring spectrum A and ring maps

MIP ← A→Mcomm
IP

which are weak equivalences.

Proof of Theorem 4.4. The only parts of [LM13, Definition 3.10] which are
not obvious are (f) (the gluing axiom) and (g) (the cylinder axiom).

For part (g), let F be a K-ad; we need to define J(F ) : Cell(K×I)→ AIP.
First note that the statement of part (g) specifies what J(F ) has to be on the
subcategories Cell(K × 0) and Cell(K × 1). The remaining objects have the
form (σ×I, o×o′) and we define J(F ) for such an object to be F (σ, o)×(I, o′),
where (I, o′) denotes the PL ∂-manifold I with orientation o′. F (σ, o) × I
is a ∂-IP-space because the link at a point (x, t) is the link in F (σ, o) at
x. The inclusions of F (σ, o) × {0} and F (σ, o) × {1} in F (σ, o) × I are
strong embeddings (see Definition 4.1) by the definition of the stratification
in Proposition A.2.

For part (f), let K be a ball complex and K ′ a subdivision of K. Let F
be a K ′-ad. We need to show that there is a K-ad E which agrees with
F on each residual subcomplex of K. We may assume (by induction over
the lowest dimensional cell of K that is not a cell of K ′) that |K| is a PL
n-ball, that K has exactly one n-cell, and that K ′ is a subdivision of K
which agrees with K on the boundary of |K|. Let L be the subcomplex of
K ′ consisting of cells in the boundary of |K|.

Now let τ denote the n-cell of K, and choose an orientation o of τ . To
specify the K-ad E, we only need to define E(τ, o).

Let X denote colimσ∈K′ F
[(σ) and give X the PL structure provided by

Lemma 4.2(i). By Lemma 4.6 below, X is a PL ∂-pseudomanifold.

We will write [F [(σ)] for the image of F [(σ) in X; by Lemma 4.2(i) this
is a PL ∂-pseudomanifold.

We claim that X is a ∂-IP-space. By Definition 2.9, we need to show that
X − ∂X is an IP-space. We give X − ∂X the intrinsic stratification (see
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Proposition A.1(iv)). Let x ∈ X − ∂X. By Lemma 4.2(iii) there is a unique

σ ∈ K ′−L for which x is in the interior of [F [(σ)]; give [F [(σ)] the intrinsic

stratification and let U be a distinguished neighborhood of x in [F [(σ)]. The
proof of [LM13, Proposition 6.6] shows that x has a neighborhood V in X
such that there is a PL homeomorphism

f : V → U ×A,
where A is a Euclidean space. The filtration of V inherited from X is
the same as the intrinsic stratification of V by Proposition A.1(i), and (by
Proposition A.1(ii) and (iii)) f takes this filtration to the Cartesian product
of the intrinsic stratification of U with the trivial stratification of A. This
implies that the link of x in X is the same as the link of x in [F [(σ)], and
so conditions (a) and (b) of Definition 2.7 are satisfied.

Now give the n-cells σ of K ′ the orientations oσ which agree with o. Then
X has an orientation which agrees with the orientations of the F (σ, oσ), and
we define E(τ, o) to be X with this orientation. We claim that E is a pre

K-ad with values in AIP. For this it only remains to show that [F [(σ)]→ X
satisfies Definition 4.1 when σ is a cell of L. We denote the stratification on a
PL pseudomanifold (resp., PL ∂-pseudomanifold) Y provided by Proposition
A.1(iv) (resp., Proposition A.2) by Y ∗ (resp., Y [∗]). By its definition, the
filtration X[∗] agrees (up to a dimension shift) with (∂X)∗, so it suffices to

show that (∂X)∗ agrees with [F [(σ)][∗]. Next we observe that (by the proof

of [LM13, Proposition 6.6]) each point of ∂[F [(σ)] has a neighborhood U

in ∂[F [(σ)] and a neighborhood V in ∂X with V ≈ U × A, where A is a
Euclidean space. Then (∂X)∗ agrees with V ∗ by Proposition A.1(i), and
(by Proposition A.1(ii) and (iii)) the latter agrees with U∗ × (−1, 1) (where
(−1, 1) is given the trivial filtration). This implies that (∂X)∗ agrees with

the restriction of [F [(σ)][∗] to ∂[F [(σ)]. Moreover, (∂X)∗ also agrees with

the restriction of [F [(σ)][∗] to [F [(σ)] − ∂[F [(σ)] by Proposition A.1(i), so

the two filtrations agree on all of [F [(σ)].
Finally, we need to check that E satisfies Definition 4.3. Parts (a) and

(b) are obvious from the way E was constructed, and part (c) is given by
Lemma 4.6. �

Lemma 4.6. With the PL structure given by Lemma 4.2(i),
(i) X is a PL ∂-pseudomanifold, and
(ii) the map

colim
σ∈L

F [(σ)→ colim
σ∈K′

F [(σ) = X

is a PL embedding with image ∂X.

Proof of Lemma 4.6. It follows from Lemma 4.2(i) that there is a triangu-

lation of X for which each [F [(σ)] is a subcomplex. The top-dimensional
simplices have dimension n− k, where k is the degree of F .

The proof of [Wh78, II.6.2] shows that K ′ has the following properties
(where “cell” means closed cell):
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(1) Every cell is contained in an n-cell.
(2) Every (n− 1)-cell in L is contained in exactly one n-cell of K ′.
(3) Every (n− 1)-cell not in L is contained in exactly two n-cells.

To see that X satisfies part (a) of Definition 2.2, let s be any simplex

of X. Then s is contained in [F [(σ)] for some σ, and (1) implies that

σ ⊂ σ′ for some n-dimensional σ′. Since [F [(σ′)] is a PL ∂-pseudomanifold
of dimension n− k, it has an (n− k)-dimensional simplex which contains s
as required.

For part (b), let s be an n− k − 1 simplex of X.

First suppose that s is not contained in any [F [(σ)] with dim(σ) = n− 1.
Then by (1) and Lemma 4.2(iii), there is a unique σ of dimension n for

which s is contained in [F [(σ)], and since [F [(σ)] is a PL ∂-pseudomanifold
of dimension n − k it has exactly two (n − k)-dimensional simplices which
contain s.

Next suppose that s ⊂ [F [(σ)] with dim(σ) = n − 1. By Lemma 4.2(iii)
there can only be one such σ. If σ ∈ L, then by (2) there is exactly one

n cell σ′ containing σ. [F [(σ′)] has exactly one (n − k) simplex containing
s, and Lemma 4.2(iii) implies that this is the only (n − k) simplex of X
which contains s. If σ /∈ L, then by (3) there are exactly two n cells σ′ and

σ′′ which contain s. Each of [F [(σ′] and [F [(σ′′)] has exactly one (n − k)
simplex which contains s, and Lemma 4.2(iii) implies that these are the only
(n− k) simplices of X which contain s.

For part (c), we first observe that the proof of part (b) shows that

(4.1) ∂X =
⋃
σ∈L

[F [(σ)].

The rest of the proof for part (c) is similar to that for parts (a) and (b), but
using [Wh78, II.6.2] instead of (1), (2) and (3).

For part (d), we first observe that the proof of [LM13, Proposition 6.6]
shows that ∂X is locally collared (in the sense of [RS72, page 24]); now
[RS72, Theorem 2.25] shows that ∂X is collared.

Finally part (ii) of the lemma follows from Lemma 4.2(ii) and Equation
(4.1). �

It remains to prove Lemma 4.2. The main ingredient is the following,
which is Exercise 2.27(2) in [RS72].

Lemma 4.7. Let P,Q and R be polyhedra and let f : R ↪→ P, g : R ↪→ Q
be PL embeddings. Then the pushout of

P ←↩ R ↪→ Q,

formed in the category of topological spaces, has a PL structure for which
the inclusions of P and Q are PL embeddings. �

Proof of Lemma 4.2. First we prove (i) and (ii). Assume inductively that
(i) and (ii) hold for any ball complex with at most k cells. Let K be a
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ball complex with k + 1 cells and let σ ∈ K be a top-dimensional cell. Let
K0 = K − {σ}. Let P = colimτ∈K0 G(τ) and R = colimτ⊂∂σ G(τ); the
inductive hypothesis implies that P and R have PL structures for which all
maps G(τ)→ P and G(τ)→ R are PL embeddings, and it also implies that
R → P is a PL embedding. We are given that the map R → G(σ) is a
monomorphism, and it is PL since its restriction to each G(τ) is PL. Now
let S denote colimτ∈K G(τ). Then S is the pushout of

P ←↩ R ↪→ G(σ),

so by Lemma 4.7 it has a PL structure for which P → S and G(σ) → S
are PL maps; it follows that G(τ)→ S is a PL map for every τ . It remains
to check that part (ii) of Lemma 4.2 holds, so let L be a subcomplex of K.
The map

i : colim
τ∈L

G(τ)→ S

is PL, since its restriction to each G(τ) is PL, so we only need to check that
i is a monomorphism. If σ /∈ L this follows from the inductive hypothesis
and the fact that P → S is a monomorphism. If σ ∈ L then colimτ∈LG(τ)
is the pushout of

colim
τ∈L−{σ}

G(τ)←↩ R ↪→ G(σ),

and this pushout maps by a monomorphism to the pushout of

P ←↩ R ↪→ G(σ)

which is S.
It remains to prove (iii). Suppose that υ′ 6⊂ υ and let L be the minimal

subcomplex of K that contains υ and υ′. By (ii), x and y map to the
same point of colimσ∈LG(σ). But this implies that x and y are related
by a sequence of elementary relations of the form a ∼ G(iσ,σ′)(b), where
σ ⊂ σ′ ∈ L and iσ,σ′ is the inclusion map. This is a contradiction, since y
cannot be part of such an elementary relation. �

5. ad theories of symmetric Poincaré complexes

The ad theory constructed in the previous section gives a spectrum QIP

and a symmetric spectrum MIP. Our next goal is to use the symmetric sig-
nature to construct maps (in the derived category of spectra and the derived
category of symmetric spectra) from QIP and MIP to suitable versions of the
symmetric L-theory spectrum of Z. In order to do this we need an ad theory
for symmetric Poincaré complexes over Z. In [LM13, Section 9] we gave an
ad theory (denoted adZ) which was suggested by definitions from [WW89]
and [Ran92]; in particular this leads to a spectrum QZ which is identical
to Ranicki’s spectrum L•(Z). But this turns out not to be well-adapted to
questions of commutativity (see the beginning of [LM, Section 12]) or to
intersection homology (see the introduction to [FM13b]), so in [LM, Section
12] the second and third authors introduced a modification adZ

rel (rel stands
for “relaxed”) which gives a spectrum QZ

rel weakly equivalent to Ranicki’s
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L•(Z). In this section we review this material; we should mention that ev-
erything extends from Z to an arbitrary ring-with-involution R and that
[LM13] and [LM] develop the theory in this generality.

5.1. The ad theory adZ. As motivation we begin with the theory adZ. A
chain complex over Z is called finite if it is free abelian and finitely generated
in each degree and nonzero in only finitely many degrees; it is called homo-
topy finite if it is free abelian in each degree and chain homotopic to a finite
complex. Let D be the category of homotopy finite chain complexes and
chain maps. Let W be the standard free resolution of Z by Z[Z/2] modules.
The n-dimensional objects of the target category AZ are pairs (C,ϕ), where
C is an object of D and

ϕ : W → C ⊗ C
is a Z/2-equivariant chain map which raises degrees by n. Here, the Z/2-
action on C ⊗C switches the factors. The morphisms (C,ϕ)→ (C ′, ϕ′) are
the chain maps f : C → C ′, with the additional requirement that (f⊗f)◦ϕ =
ϕ′ when the dimensions are equal. The involution reverses the sign of ϕ.
Next, (adZ)k(K) ⊂ (preZ)k(K) is defined to be the set of functors F with
the following properties:

(a) F is balanced. This allows us to write F (σ, o) as (Cσ, ϕσ,o).
(b) F is well-behaved, that is, each map Cτ → Cσ is a split monomor-

phism in each dimension, and (writing C∂σ for colimτ⊂∂σ Cτ ) each map

C∂σ → Cσ

is a split monomorphism in each dimension.
(c) F is closed, that is, for each cell σ of K the graded homomorphism

from the cellular chain complex cl(σ) to Hom(W,Cσ⊗Cσ) which takes (τ, o)
to the composite

W
ϕ(τ,o)−→ Cτ ⊗ Cτ → Cσ ⊗ Cσ

is a chain map. This implies that ϕσ,o represents a class [ϕσ,o] in
Hn(Hom(W, (Cσ/C∂σ) ⊗ Cσ)); the augmentation ε : W → Z is a quasi-
isomorphism and hence induces an isomorphism

ε∗ : Hn((Cσ/C∂σ)⊗ Cσ)→ Hn(Hom(W, (Cσ/C∂σ)⊗ Cσ));

we denote (ε∗)−1[ϕσ,o] by c.2

(d) F is nondegenerate, that is, for each σ the slant product with c
gives an isomorphism

H∗(Hom(Cσ,Z))→ Hdimσ−k−∗(Cσ/C∂σ).

2Since different notation was used in [LM13], we should explain how c is related to
the element denoted by φ̄∗(i) in [LM13, Section 9]. First note that, if ι is the map
Z → W which takes 1 to 1, then i can be taken to be ι∗(1). Now the isomorphism

Hn((Cσ/C∂σ) ⊗ Cσ) ∼= Hn(Hom(Z, (Cσ/C∂σ) ⊗ Cσ))
ε∗−→ Hn(Hom(W, (Cσ/C∂σ) ⊗ Cσ))

takes φ̄∗(i) to the class represented by φ̄ ◦ ι ◦ ε, which is the same as the class represented
by φ̄ (since ι ◦ ε is chain homotopic to the identity W →W ), and this is the same as the
class we have denoted by [ϕσ,o]. Thus φ̄∗(i) = (ε∗)−1[ϕσ,o] = c.
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Remark 5.1. In [LM13], the second and third authors give a construction of
a symmetric signature map QSTop → QZ in the derived category of spectra,
using ideas from [Ran92] (see [LM13, Section 10 and the end of Section 8]).
The starting point for this construction is the observation that, if M is a
compact oriented ∂-manifold and ξ ∈ Sn(M), where S∗(−) denotes singular
chains, represents the fundamental class of M then the composite

W ∼= W ⊗ Z 1⊗ξ−→W ⊗ S∗M
EAW−→ S∗M ⊗ S∗M

(where EAW is the extended Alexander-Whitney map, which can be con-
structed using acyclic models) is an object of AZ. The Alexander-Whitney
map (and a fortiori the extended Alexander-Whitney map) does not exist
for intersection chains, which is one reason we need the modification of AZ

given in the next subsection.

Remark 5.2. The ad theory adZ is multiplicative ([LM13, Definitions 18.1
and 9.12]) but not commutative (see the beginning of Section 12 of [LM]).

5.2. The ad theory adZ
rel. An object of the category AZ

rel is a quadru-
ple (C,D, β, ϕ), where C is an object of D, D is a chain complex with a
Z/2-action, β is a quasi-isomorphism C ⊗ C → D which is also a Z/2-

equivariant map, and ϕ is an element of the fixed point set D
Z/2
n . A mor-

phism (C,D, β, ϕ) → (C ′, D′, β′, ϕ′) is a pair (f : C → C ′, g : D → D′),
where f and g are chain maps, g is Z/2-equivariant, gβ = β′(f ⊗ f), and (if
the dimensions are equal) g(ϕ) = ϕ′.

Example 5.3. If (C,ϕ) is an object of AZ then the quadruple (C, (C ⊗
C)W , β, ϕ) is a relaxed quasi-symmetric complex, where

(C ⊗ C)W = Hom(W,C ⊗ C)

is the Z/2-chain complex with fixed points the equivariant chain maps and
β : C ⊗ C → (C ⊗ C)W is induced by the augmentation W → Z. This
construction gives a functor AZ → AZ

rel.

Example 5.4. In the situation of Remark 5.1, we obtain an object of AZ
rel

by letting C be S∗M , D be S∗(M ×M), β be the cross product, and ϕ be
the image of ξ ∈ Sn(M) under the diagonal map.

Now (adZ
rel)

k(K) ⊂ (preZrel)
k(K) is defined to be the set of functors F with

the following properties:
(a) F is balanced. This allows us to write F (σ, o) as (Cσ, Dσ, βσ, ϕσ,o).
(b) F is well-behaved, that is, all maps Cτ → Cσ, Dτ → Dσ, C∂σ → Cσ

and D∂σ → Dσ are split monomorphisms in each dimension. This implies
that the map β∗ : H∗(Cσ⊗Cσ, (C⊗C)∂σ)→ H∗(Dσ, D∂σ) is an isomorphism
([LM, Lemma 12.7(ii)]).

(c) F is closed, that is, for each σ the map

cl(σ)→ Dσ
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which takes 〈τ, o〉 to ϕτ,o is a chain map. This implies that ϕσ,o represents
a class [ϕσ,o] in Hn(Dσ, D∂σ).

(d) F is nondegenerate, that is, for each σ the slant product with
(β∗)

−1([ϕσ,o]) is an isomorphism

H∗(Hom(Cσ,Z))→ Hdimσ−k−∗(Cσ/C∂σ).

Remark 5.5. (i) The functor AZ → AZ
rel in Example 5.3 gives a map of

spectra QZ → QZ
rel which is a weak equivalence ([LM, Section 13]).

(ii) The ad theory adZ
rel is commutative ([LM, Definition 3.3 and Remark

12.13]) so Theorem 1.1 of [LM] shows that there is a commutative symmetric
ring spectrum (MZ

rel)
comm which is weakly equivalent as a symmetric ring

spectrum to MZ
rel.

5.3. Connective versions. In the sequel, we will mostly deal with connec-
tive versions of L-theory rather than with periodic ones. There is a general
procedure which takes an ad theory to another ad theory and which makes
the associated Quinn spectrum connective: define the sub functor ad≥0 of
an ad theory by

adk≥0(K,L) = adk(K,L ∪K(k−1)),

where K(n) denotes the n-skeleton of K. We leave it to the reader to check
the properties of an ad theory for ad≥0.

In order to see that this has the desired effect on homotopy groups, we
recall from [LM13, Theorem 16.1] that the homotopy group πkQ of a Quinn
spectrum coincides with the k-th bordism group. The bordism group is
obtained from the set of (−k)-dimensional ∗-ads by identifying two elements
if there is an I-ad which restricts to the given ones at the ends. For K = ∗
or I we have ad−k≥0(K) = ad−k(K) for k ≥ 0 and ad−k≥0(∗) = {∅−k} for k < 0
and the claim follows.

If the nonempty objects of the categoryA are concentrated in nonnegative
dimensions then all ad theories with values in A are connective; this is the
case for ASTop and AIP . For the theory adZ, there is a map from the Quinn

spectrum QZ
≥0 to the connective spectrum L = L•〈0〉(Z) which is a weak

equivalence ( the two spectra are not identical because in [Ran92, Definition
15.2] the restriction to the (k− 1) skeleton is required to be acyclic but not
zero).

A morphism of ad theories induces a morphism of their connective ver-
sions. Any morphism from a connective ad theory to another ad theory
takes values in the connective version.

If the theory ad is multiplicative (resp. commutative) then so is ad≥0.
There is a map of Quinn spectra Q≥0 → Q and a map of symmetric spectra
M≥0 →M which is a ring map if ad is multiplicative and weakly equivalent
to an E∞ map if ad is commutative.
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6. The symmetric signature as a map of spectra

In this section we construct symmetric signature maps

Sig : QIP → QZ
rel,≥0

(in the derived category of spectra) and

Sig : MIP →MZ
rel,≥0

(in the derived category of symmetric spectra). The first step is to give a
variant of the ad theory adIP. As we have seen in Remark 5.1 and Example
5.4, in order for a compact oriented ∂-manifold to give rise to an object of
AZ

rel we must choose a chain representative for the fundamental class. The
same is true for ∂-IP-spaces, so in Subsection 6.1 we construct a suitable
ad theory adIPFun and we show that the forgetful maps QIPFun → QIP and
MIPFun →MIP are weak equivalences. Next, in Subsection 6.3 we construct
a functor

sig : AIPFun → AZ
rel

which induces a natural transformation

sig : adIPFun(K)→ adZ
rel,≥0(K)

for strict ball complexes K (see [LM, third paragraph of Section 14 and
Remark 14.1] for the meaning and significance of strictness). These results
allow us to make the following definition.

Definition 6.1. The symmetric signature map

Sig : QIP → QZ
rel,≥0

is the composite

QIP
'←− QIPFun

sig−→ QZ
rel,≥0.

The symmetric signature map

Sig : MIP →MZ
rel,≥0

is the composite

MIP
'←−MIPFun

sig−→MZ
rel,≥0.

6.1. The ad theory adIPFun. We denote singular intersection chains with
perversity p̄ by ISp̄∗ . By [FM13a, Proposition 7.7], an orientation of
a compact n-dimensional ∂-IP-space X determines a fundamental class
ΓX ∈ IH 0̄

n(X, ∂X;Z), where 0̄ denotes the 0 perversity.
We define a categoryAIPFun as follows. The objects are pairs (X, ξ), where

X is a compact oriented ∂-IP-space and ξ ∈ IS0̄
n(X;Z) is a chain whose

image in IS0̄
n(X, ∂X;Z) it represents the fundamental class ΓX ; there is also

an empty object of dimension n for each n. The morphisms (X, ξ)→ (X ′, ξ′)
between objects of the same dimension are PL homeomorphisms which take
ξ to ξ′, and the other morphisms are strong embeddings with image in
the boundary. There is a forgetful functor AIPFun → AIP, and we define
adkIPFun(K) ⊂ prekIPFun(K) to be the set of functors F such that
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(a) the composite of F with the forgetful functor is an element of

adkIP(K), and
(b) for each oriented cell (σ, o) of K, the equation

∂ξσ,o =
∑

ξσ′,o′

holds, where σ′ runs through the cells of ∂σ and o′ is the orientation for
which the incidence number [o, o′] is (−1)k.

Proposition 6.2. adIPFun is a connective ad theory.

Proof. We only need to check parts (f) and (g) of [LM13, Definition 3.10].
For the proof of (f) we use the gluing construction in the proof of Theorem
4.4 (and the notation there) and we define ξτ,o to be

∑
ξσ,oσ , where σ runs

throught the n-cells of K ′; then ξ maps to a representative of ΓX by [FM13a,
Corollary 5.16].

For (g), let F be a K-ad, and write F (σ, o) = (Xσ, ξσ,o). As in the
proof of Theorem 4.4, we only need to specify J(F ) on oriented cells of the
form (σ × I, o × o′), and moreover we can assume that o′ is the standard
orientation. Let s : ∆1 → I be the standard oriented homeomorphism, and
define J(F )(σ × I, o× o′) = (Xσ × I, ξ × s). �

The forgetful functor AIPFun → AIP gives rise to a morphism adIPFun →
adIP of ad theories.

Proposition 6.3. The maps

QIPFun → QIP

and
MIPFun →MIP

induced by the forgetful functor AIPFun → AIP are weak equivalences.

Proof. Recall the definition of the bordism groups of an ad theory ([LM13,
Definitions 4.1 and 4.2]). By Remark 3.1 and [LM13, Proposition 17.7], it
suffices to show that the map of bordism groups

(ΩIPFun)∗ → (ΩIP)∗

is an isomorphism. This map is obviously onto, and it is a monomorphism
by the proof of [LM13, Lemma 8.2]. �

Remark 6.4. adIPFun is a commutative ad theory, so by Theorem 1.1 of
[LM] there is a commutative symmetric ring spectrum Mcomm

IPFun which is
weakly equivalent as a symmetric ring spectrum to MIPFun. Moreover, the
forgetful map adIPFun → adIP is strictly multiplicative, so the proof of [LM,
Theorem 1.1] gives a commutative diagram

MIP A
'oo ' //Mcomm

IP

MIPFun

'

OO

B
'oo ' //

'

OO

Mcomm
IPFun

'
OO
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in which A and B are symmetric ring spectra and all arrows are ring maps.

6.2. Background. Before proceeding we need to recall some informa-
tion about generalized perversities. For a stratified n-dimensional ∂-
pseudomanifold Y the components of Y i − Y i−1 are called i-dimensional
strata; the n-dimensional strata are called regular and the others singular.
Recall ([F, Definition 3.1.1]) that a generalized perversity3 on Y is a func-
tion p̄ from the set of strata of Y to Z which is 0 on the regular strata; an
ordinary perversity q̄ can be thought of as a generalized perversity taking a
stratum S to q̄(codim(S)). We use the definition of intersection homology
for general perversities given in [F, Definition 6.2.2]. Let n̄ be the upper
middle perversity.

Let X be a ∂-IP-space, and give X the stratification of Proposition A.2.
Give X ×X the product stratification. Define a generalized perversity Qn̄,n̄
on X ×X as follows.

Qn̄,n̄(S1×S2) =


n̄(S1) + n̄(S2) + 2, S1, S2 both singular strata,

n̄(S1), S2 a regular stratum and S1 singular,

n̄(S2), S1 a regular stratum and S2 singular,

0, S1, S2 both regular strata.

By [FM13a, Subsection 4.1], the diagonal map induces a chain map

(6.1) d : IS0̄
∗(X;Z)→ IS

Qn̄,n̄
∗ (X ×X;Z)

(this is the reason we need generalized perversities). By [F, Theorem 6.4.6
and Remark 6.4.7], the cross product induces an equivalence

ISn̄∗ (X;Z)⊗ ISn̄∗ (X;Z)→ IS
Qn̄,n̄
∗ (X ×X;Z).

6.3. The functor sig : AIPFun → AZ
rel.

Lemma 6.5. (i) Let (X, ξ) be an object of AIPFun. Give X the stratifica-
tion of Proposition A.2 and give X × X the product stratification. Then
(C,D, β, ϕ) is an object of AZ

rel, where

C = ISn̄∗ (X;Z),

D = IS
Qn̄,n̄
∗ (X ×X;Z),

β is the cross product, and

ϕ is the image of ξ under the diagonal map (6.1).

(ii) Let f : (X, ξ)→ (X ′, ξ′) be a morphism in AIPFun and let (C,D, β, ϕ)
and (C ′, D′, β′, ϕ′) be the objects of AZ

rel corresponding to (X, ξ) and (X ′, ξ′).
Then f induces a morphism (C,D, β, ϕ)→ (C ′, D′, β′, ϕ′).

Proof. (i) We only need to show that ISn̄∗ (X;Z) is homotopy finite. The
complex ISn̄∗ (X;Z) is free because it is a subcomplex of the singular chain
complex S∗(X;Z). Next let T be a triangulation of X which is compatible

3These are simply called perversities in [F].
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with the stratification of X. Let ICT,n̄∗ (X;Z) denote the complex of PL
intersection chains which are simplicial with respect to T . This is free,
finitely generated in each degree, and nonzero in only finitely many degrees.
By [F, Corollary 5.4.6], the inclusion

ICT,n̄∗ (X;Z)→ ISn̄∗ (X;Z)

is a quasi-isomorphism. Since the domain and range are free, it is a chain
homotopy equivalence, and thus ISn̄∗ (X;Z) is homotopy finite.

(ii) If the dimensions are not equal then the definition of AIPFun shows
that f , and hence also f × f , is a strong embedding, so they induce maps of
intersection chains and the result follows. If the dimensions are equal then
f is a PL homeomorphism so, by Propositions A.1(iii) and A.2, f and f × f
preserve the filtrations and therefore induce maps of intersection chains. �

Lemma 6.5 gives a functor

sig : AIPFun → AZ
rel.

Proposition 6.6. If K is strict and F ∈ adkIPFun(K) then sig ◦ F ∈
(adZ

rel,≥0)k(K).

The proposition gives the maps

sig : QIPFun → QZ
rel,≥0

and
sig : MIPFun →MZ

rel,≥0

which are needed for Definition 6.1.

Proof of Proposition 6.6. Since sig ◦ F is closed by property (b) of the defi-
nition in Subsection 6.1, we only need to check that sig ◦ F is well-behaved
and nondegenerate. Write F (σ, o) = (Xσ,o, ξσ,o). Let Yσ be the underlying
∂-IP-space of Xσ,o (forgetting the orientation).

To show that sig ◦ F is well-behaved, we need to show that the functors

ISn̄i (Xσ;Z) and IS
Qn̄,n̄
∗ (Xσ × Xσ;Z) are well-behaved. We give the proof

for the first of these functors; the proof for the second is similar.
First we need to know that for cells σ, τ of K with σ ⊂ τ the monomor-

phism
ISn̄i (Yσ;Z)→ ISn̄i (Yτ ;Z)

is split for each i. For this it suffices to show that the quotient
ISn̄i (Yτ ;Z)/ISn̄i (Yσ;Z) is free, and this in turn follows from the fact that
the map from this quotient to the free abelian group Si(Yτ ;Z)/Si(Yσ;Z) is
a monomorphism.

Next we need to know that for each cell σ the map

colim
σ⊂∂τ

ISn̄i (Yσ;Z)→ ISn̄i (Yτ ;Z)
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is a split monomorphism. It is a monomorphism by Lemma 6.7(iii). To see
that it is split it suffices to show that the quotient

ISn̄i (Yτ ;Z)/ colim
σ⊂∂τ

ISn̄i (Yσ;Z)

is free. By Lemma 6.7(iii) this is the same as the quotient

ISn̄i (Yτ ;Z)/
∑
σ⊂∂τ

ISn̄i (Yσ;Z),

and by Lemma 6.7(ii) the map from this quotient to the free abelian group
Si(Yτ ;Z)/

∑
σ⊂∂τ Si(Yσ;Z) is a monomorphism. This concludes the proof

that ISn̄i (Yσ;Z) is well-behaved.
For nondegeneracy, we first observe that, by Lemma 6.7 below, the map

colim
τ∈∂σ

ISn̄∗ (Yτ ;Z)→ ISn̄∗ (∂Yσ;Z)

is a quasi-isomorphism for every simplex σ of K.
Now it suffices to show that the horizontal map in the following diagram

is an isomorphism for each oriented simplex (σ, o).

H∗(Hom(ISn̄∗ (Xσ,o;Z),Z))
\(β∗)−1([ϕσ,o])//

aΓXσ,o ++

IH n̄
dimσ−k−∗(Xσ,o, ∂Xσ,o;Z)

IHm̄
dimσ−k−∗(Xσ,o, ∂Xσ,o;Z)

OO

The construction of the cap product is given in Appendix D, and the fun-
damental class ΓXσ,o is given by [FM13a, Proposition 7.7]. Inspection of
the definitions shows that the diagram commutes, and the slanted arrow is
an isomorphism by Theorem E.5, so we only need to show that the vertical
arrow is an isomorphism. For this it suffices to show that the maps

IHm̄
∗ (∂Xσ,o;Z)→ IH n̄

∗ (∂Xσ,o;Z)

and
IHm̄
∗ (Xσ,o;Z)→ IH n̄

∗ (Xσ,o;Z)

are isomorphisms. The first of these is an isomorphism by Proposition 2.10
and the argument in [GM83, Subsection 5.6.1]. To see that the second
map is an isomorphism we oberve that if W denotes Xσ,o with a collar of
the boundary removed then the maps W → Xσ,o and W → Xσ,o − ∂Xσ,o

are stratified homotopy equivalences and therefore induce isomorphisms of
intersection homology (see [FM13a, Appendix A], so it suffices to observe
that the map

IHm̄
∗ (Xσ,o − ∂Xσ,o;Z)→ IH n̄

∗ (Xσ,o − ∂Xσ,o;Z)

is an isomorphism by the argument in [GM83, Subsection 5.6.1]. �
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Before stating the lemma let us recall that intersection homology and the
notion of stratified homotopy can be defined for any filtered space, and that
a stratified homotopy equivalence induces an isomorphism of intersection
homology ([F03, Section 2]). Also recall that if X is a functor from Cell(K)
to PL spaces and L is a subcomplex of K then we write XL for colimσ∈LXσ.

Note: part (i) of the following lemma is stated in more generality than is
needed in this section (the case U = XL′ would suffice for that); the extra
generality is needed for Subsection 10.9.

Lemma 6.7. Let F ∈ adkIPFun(K), and write F (σ, o) = (Xσ, ξσ,o). For every
subcomplex L of K, give XL the filtration which restricts to the filtration of
Proposition A.2 on each Xσ. Then

(i) for every pair of subcomplexes L′ ⊂ L, and for every open set U of
L′, there is a neighborhood V of U in XL such that V ∩ XL′ = U and the
inclusion U → V is a stratified deformation retract where the retraction
r : V → U has the property that r(x) ∈ Xσ whenever x ∈ Xσ, and

(ii) for every subcomplex L and every i ∈ Z, the intersection of
ISn̄i (XK ;Z) and

∑
σ∈L Si(Xσ;Z) (considered as subgroups of Si(XK ;Z)) is∑

σ∈L IS
n̄
i (Xσ), and

(iii) if K is strict then for every subcomplex L the map

colim
σ∈L

ISn̄∗ (Xσ;Z)→
∑
σ∈L

ISn̄∗ (Xσ;Z)

is an isomorphism, and
(iv) for every subcomplex L the map

colim
σ∈L

ISn̄∗ (Xσ;Z)→ ISn̄∗ (XL)

is a quasi-isomorphism.

Remark 6.8. For the proof of part (iv) we will use the following fact: given
a commutative diagram

A

��

B

��

oo // C

��
D Eoo // F

in the category of chain complexes, where all horizontal maps are monomor-
phisms and all vertical maps are quasi-isomorphisms, then the induced map
from the pushout of the top row to the pushout of the bottom row is a
quasi-isomorphism.

Proof of Lemma 6.7. Give the set of subcomplexes L a total ordering such
that if L′ ⊂ L then L′ < L. We will prove each part by induction over this
total order. So let L be a subcomplex and suppose that all parts have been
proved for all subcomplexes < L.

For (i), let L′ be a subcomplex of L and let U be an open set of L′. Let
τ be a cell of L of maximal dimension which is not in L′, and let M be the
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subcomplex of L consisting of all cells except τ . By inductive hypothesis, U
has a neighborhood W in XM with the properties given in the statement of
part (i). By Definition 2.6(c), W ∩ X∂τ has a collar neighborhood W1 for
which the inclusion W ∩X∂τ →W1 is a stratified deformation retract. Now
let V = W ∪W1; then V is the desired neighborhood of U in XL.

For parts (ii), (iii) and (iv), let τ be a cell of L of maximal dimension and
let L′ be the subcomplex of L consisting of all cells except τ .

For (ii), let ξ ∈ ISn̄i (XK ;Z) ∩
∑

σ∈L Si(Xσ;Z). Write

ξ =
∑

ajsj ,

where aj ∈ Z and the sj are singular simplices. Let U be the neighborhood
of Xτ in XL given by part (i) and let r : U → Xτ be the stratified retraction.
Applying Proposition C.1 with the open set U gives an intersection chain

ξ̄ =
∑

aj s̄j .

If we write
η =

∑
supp(sj)⊂Xτ

ajsj

then ξ − η, ξ̄ − η and r∗(ξ̄ − η) are all in in
∑

σ∈L′ S∗(Xσ;Z). Now

ξ = (η + r∗(ξ̄ − η)) + (ξ − η − r∗(ξ̄ − η)).

The first summand is in ISn̄∗ (Xτ ;Z) (because it is equal to r∗(ξ̄)), and the
second is in ISn̄∗ (XK ;Z) (because ξ and the first summand are) and in∑

σ∈L′ S∗(Xσ;Z), so by the inductive hypothesis ξ is in
∑

σ∈L IS
n̄
i (Xσ,Z)

as required.
For (iii) and (iv), we use the fact that colimσ∈L IS

n̄
∗ (Xσ;Z) is the pushout

of the diagram

(6.2) colim
σ∈L′

ISn̄∗ (Xσ;Z)← colim
σ∈∂τ

ISn̄∗ (Xσ;Z)→ ISn̄∗ (Xτ ;Z).

For (iii), the map in question is obviously an epimorphism, so we only
need to show that the map from the pushout of (6.2) to ISn̄∗ (XL;Z) is a
monomorphism. Using the inductive hypothesis, the pushout of (6.2) is the
same as the pushout of∑

σ∈L′
ISn̄∗ (Xσ;Z)←

∑
σ∈∂τ

ISn̄∗ (Xσ;Z)→ ISn̄∗ (Xτ ;Z).

Suppose that ξ ∈
∑

σ∈L′ IS
n̄
∗ (Xσ;Z) and η ∈ ISn̄∗ (Xτ ;Z) with

(6.3) ξ + η = 0;

we need to show that ξ ∈
∑

σ∈∂τ IS
n̄
∗ (Xσ;Z); by part (ii) it suffices to show

that ξ ∈
∑

σ∈∂τ S∗(Xσ;Z). Equation (6.3) implies that each simplex s of ξ
has its support in both τ and a cell of L′; since K is strict this implies that
it has its support in a cell of ∂τ as required.
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Proof of (iv). By the inductive hypothesis and Remark 6.8, the map from
the pushout of (6.2) to the pushout of

(6.4) ISn̄∗ (XL′ ;Z)← ISn̄∗ (X∂τ ;Z)→ ISn̄∗ (Xτ ;Z)

is a quasi-isomorphism. By part (i) there is a neighborhood U of XL′ in
XL and a neighborhood V of Xτ in XL such that the inclusions XL′ → U
and Xτ → V are stratified deformation retractions. Then X∂τ → U ∩ V is
a stratified deformation retraction, and hence the map from the pushout of
(6.4) to the pushout of

(6.5) ISn̄∗ (U ;Z)← ISn̄∗ (U ∩ V ;Z)→ ISn̄∗ (V ;Z)

is a quasi-isomorphism. Finally, the map from the pushout of (6.5) to
ISn̄∗ (XL;Z) is a quasi-isomorphism by [FM13b, Proposition 6.3] and [F07,
Proposition 2.9]. �

7. L-theory of the fundamental groupoid.

Let Z be a path-connected space.
For our further work, we need to use the fundamental groupoid π1Z rather

than the fundamental group π1(Z, z0). The main reason is that we will be
using the results of [WW95], and these require a functor defined on unbased
spaces; cf. lines 9–12 of [WW95, Subsection 2.1]. An additional benefit is
that we won’t need to choose basepoints.

In this section we define L-spectra and L-groups over π1Z. We will make
use of the definitions in Appendix B.

First we define an additive category Z[π1Z] by letting the objects be the
points of Z and letting the abelian group of morphisms from z to z′ be the
free abelian group generated by the morphisms from z to z′ in the groupoid.
The composition of morphisms is similar to the multiplication in a group
ring.

For a module M we write Mz for the restriction of M to the full sub-
category Z[π1(Z, z)] with only one object z; this is a left module (in the
usual sense) over the ring Z[π1(Z, z)], and M is determined up to unique
isomorphism by Mz.

Remark 7.1. The evident map Mz ⊗Z[π1(Z,z)] Nz → M⊗Z[π1Z] N is an
isomorphism for any z (because there is a map in the other direction which
is inverse to it).

For left modules M and M′, we define HomZ[π1Z](M,M′) to be the
abelian group of natural transformations.

Remark 7.2. The restriction map

HomZ[π1Z](M,M′)→ HomZ[π1(Z,z)](Mz,M′z)
is an isomorphism for all z (because there is a map in the other direction
which is inverse to it).
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M is free if Mz is a free Z[π1(Z, z)]-module for some (and hence for all)
z.

The category of left Z[π1Z] modules is an abelian category, so the concepts
of chain complex, chain homotopy, and quasi-isomorphism can be defined in
the usual way.

Remark 7.3. Note that two chain complexes are chain homotopy equiv-
alent (resp., quasi-isomorphic) over Z[π1Z] if and only if their restrictions
to Z[π1(Z, z)] are chain homotopy equivalent (resp., quasi-isomorphic) over
Z[π1(Z, z)] for some z.

The involution of Z[π1Z] is the additive functor

Z[π1Z]→ Z[π1Z]op

which takes a morphism g : z → z′ in the groupoid to g−1 : z′ → z. This
restricts to the usual involution of Z[π1(Z, z)].

With these definitions, it is straightforward to generalize the definitions
and results of [LM13, Section 9] and [LM, Sections 12–14] with the ring R
replaced by Z[π1Z], with these modifications:

• For the analogue of [LM13, Definition 9.9(b)], the left R-module R
should be replaced by any left Z[π1Z] module of the form Hom(z,−).
• For the proof of the analogue of [LM13, Theorem 9.11], note that a

pre K-ad G with values in AZ[π1Z] determines, for each z ∈ Z, a pre
K-ad Gz with values in AZ[π1(Z,z)], and that (using Remarks 7.1 and
7.2) G is an ad if and only if each Gz is.

In particular, we obtain an ad theory adZ[π1Z], bordism groups Ω
Z[π1Z]
∗ ,

and spectra QZ[π1Z] and Q
Z[π1Z]
≥0 . In analogy with [Ran92, page 60] we

define Ln(Z[π1Z]) to be Ω
Z[π1Z]
n for n ≥ 0 and 0 for n < 0; by Remark 3.1,

Ln(Z[π1Z]) ∼= πnQ
Z[π1Z]
≥0 (cf. Remark 1.1).

Remark 7.4. Let z ∈ Z. From what has been said it is clear that the
forgetful functor from Z[π1Z] modules to Z[π1(Z, z)] modules induces an
isomorphism

Ln(Z[π1Z])→ Ln(Z[π1(Z, z)]).

Remark 7.5. For use in the next section we observe that if M and M′
are left Z[π1Z] modules we can define a tensor product M⊗M′ to be the
left Z[π1Z] module which takes z to Mz ⊗M′z, with the evident action of
the morphisms. If Z is the constant right module with value Z then the
isomorphism of left Z[π1Z] modules

Zt ⊗M⊗M′ ∼=M⊗M′

induces an isomorphism

Z ⊗Z[π1Z] (M⊗M′) ∼=Mt ⊗Z[π1Z]M′.
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Remark 7.6. For use in Section 10, we give a variant of adZ[π1Z]. Let

AZ[π1Z]
fin be the full subcategory of AZ[π1Z] consisting of objects (C,ϕ) for

which C is finite (not just homotopy finite). For a ball complex K, let

ad
Z[π1Z]
fin (K) be the set of pre K-ads with values in AZ[π1Z]

fin for which the

composite with the forgetful functor to AZ[π1Z] is an ad. The proof of

[LM13, Theorem 9.11] generalizes to show that ad
Z[π1Z]
fin is an ad theory,

and the proof of [LM, Proposition B.17] (specifically, the proof that Ωc
∗

is an isomorphism) shows that the map ad
Z[π1Z]
fin → adZ[π1Z] induces an

isomorphism of bordism groups.

8. The symmetric signature of an IP-space

For a compact oriented n-manifold M (and more generally for a Poincaré
duality space) the symmetric signature σ∗(M) is an element of the sym-
metric L-group Ln(Z[π1M ]). The symmetric signature was introduced by
Mǐsčenko4 as a tool for studying the Novikov conjecture, and since then it
has become an important part of surgery theory (see [Ran92], for example).
The symmetric signature has many useful properties, such as homotopy in-
variance, bordism invariance, and a product formula.

The paper [CSW91] has a brief description of a construction (using con-
trolled topology) which assigns to a compact oriented Witt space X and
a point x ∈ X a symmetric signature in Ln(Q[π1(X,x)]), with properties
analogous to those of Mǐsčenko’s symmetric signature (further information
about this construction is given in [W94, pages 209-210]). A simpler con-
struction with the same properties was given in [FM13b, Subsection 5.4].
The two constructions are known to agree rationally by an argument due to
Weinberger (cf. [ALMP12, Proposition 11.1]) and, independently, Banagl-
Cappell-Shaneson [BCS03, Proposition 2].

In this section we show that when X is a connected compact oriented
IP-space of dimension n the method used in [FM13b] gives a symmetric
signature

σ∗IP(X) ∈ Ln(Z[π1X])

with the usual properties.

Remark 8.1. Recall ([LM, Section 12]) that the relaxed symmetric Poincaré
ad theory adZ

rel described in Subsection 5.2 has an analog adRrel when R is any

ring with involution. The same construction gives an ad theory ad
Z[π1X]
rel .5

4Mǐsčenko’s construction gives an element of Ln(Z[π1(X,x)]) for each x, and these are
consistent as x varies, so by Remark 7.4 one obtains a well-defined element of Ln(Z[π1X]).

5In [LM13, Section 9] it was assumed that for any object (C,ϕ) the chain complex
C is free over R (this assumption was built into the definition of the category D [LM13,
Definition 9.2(v)]). This was for two reasons: to ensure that the L groups would be
the same as in [Ran92], but it is not needed for this, see [LM, Remark B.18]; and for
functoriality ([LM13, Section 13]), but it is not needed for this, see [LM, Subsection B.7].
The same category D was used in [LM, Definition 12.1], but freeness is not needed there
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The construction in [LM13, Example 12.2(i)] generalizes to give a map

adZ[π1X] → ad
Z[π1X]
rel

and the proof of [LM, Proposition 13.3] generalizes to show that this induces
an isomorphism of bordism groups. Thus we have an isomorphism

(8.1) Ln(Z[π1X]) = (ΩZ[π1X])n
∼=−→ (Ω

Z[π1X]
rel )n

for n ≥ 0,

Because of the isomorphism (8.1), we can construct σ∗IP(X) by giving a

suitable element of (Ω
Z[π1X]
rel )n. For this in turn it suffices (by [LM13, Defi-

nition 4.2]) to construct an element of ad
Z[π1X]
rel (∗), which we do as follows.

For each x ∈ X let X̃x be the universal cover constructed in the usual way
as equivalence classes of paths starting at x. Let AX be the chain complex
of left Z[π1X] modules with

(AX)x = IS0̄
∗(X̃x;Z),

and let Z be the constant left Z[π1X] module with value Z. Choose a cycle
ξ ∈ Z ⊗Z[π1X] AX which maps to a representative for the fundamental class

ΓX ∈ IH 0̄
n(X;Z); this is always possible by [FM13b, Proposition 6.1.3].

Definition 8.2. Let (CX , DX , βX , ϕ) be defined as follows.

• CX is the chain complex of Z[π1X] modules with (CX)x = ISn̄∗ (X̃x;Z).
• Let EX be the chain complex of left Z[π1X] modules with

(EX)x = IS
Qn̄,n̄
∗ (X̃x × X̃x;Z),

where Z[π1(X,x)] acts diagonally; then DX is the chain complex of abelian
groups

Z ⊗Z[π1X] EX ,

with the evident Z/2 action.
• βX is the map

(CX)t ⊗Z[π1X] CX → DX

determined by the composites

ISn̄∗ (X̃x;Z)t⊗Z[π1(X,x)]IS
n̄
∗ (X̃x;Z) ∼= Z⊗Z[π1(X,x)](IS

n̄
∗ (X̃x;Z)⊗ISn̄∗ (X̃x;Z))

1⊗×−−−→ Z⊗Z[π1(X,x)] IS
Qn̄,n̄
∗ (X̃x × X̃x);Z),

where the first isomorphism is given by Remark 7.5.
• ϕ ∈ (DX)Z/2 is the image of ξ under the map Z⊗Z[π1X]AX → Z⊗Z[π1X]

EX induced by the diagonal maps

IS0̄
n(X̃x;Z)→ IS

Qn̄,n̄
n (X̃x × X̃x;Z).

Lemma 8.3. (CX , DX , βX , ϕ) is an element of ad
Z[π1X]
rel (∗).

either. We shall therefore assume that for objects (C,D, β, ϕ) inAZ[π1X]
rel the chain complex

C is homotopy finite but not necessarily free.
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Proof. First we need to show that CX is homotopy finite. Fix x ∈ X.
Proposition D.8 gives a quasi-isomorphism over Z[π1(X,x)] from (CX)x to a
finite chain complex A over Z[π1(X,x)]. (CX)x is chain homotopy equivalent
to a free complex over Z[π1(X,x)] by Proposition D.3(i), and [HS71, Exercise
IV.4.2] says that a quasi-isomorphism between free complexes is a chain
homotopy equivalence, so the quasi-isomorphism (CX)x → A is a chain
homotopy equivalence over Z[π1(X,x)]. Now A extends to a finite chain
complex B over Z[π1X], and the chain homotopy equivalence (CX)x → A
extends to a chain homotopy equivalence CX → B over Z[π1X].
βX is a quasi-isomorphism by Proposition D.6 and Remark D.5.
It remains to show that the slant product with (β∗)

−1([ϕ]) is an isomor-
phism. For this we observe that the proof of [FM13b, Proposition 5.17] goes
through with Z coefficients instead of F coefficients if we use Theorem E.3
in place of [FM13b, Theorem 4.1]. Inspection of the definitions in [FM13b,
Subsection 5.4] (using the fact that the map denoted Υ there is the same
as β∗) shows that (after replacing F coefficients by Z coefficients) the el-
ement denoted in the proof of [FM13b, Proposition 5.17] by ψ∗(ι) is the
same as (β∗)

−1([ϕ]), so Lemma 8.3 follows from the Z-version of [FM13b,
Proposition 5.17]. �

Next observe that the bordism class of (CX , DX , βX , ϕ) is independent of
the choice of ξ by [FM13b, Remark 5.6].

Definition 8.4. Let X be a compact oriented IP-space of dimension n.
Then σ∗IP(X) ∈ Ln(Z[π1X]) is the element which maps to the bordism class
of (CX , DX , βX , ϕ) under the isomorphism (8.1).

Remark 8.5. The properties of the symmetric signature given in [FM13b,
Subsection 5.5] remain valid (with Z coefficients instead of F coefficients) for
σ∗IP, with the same proofs, provided that Proposition D.3(i), Theorem E.3,
and Theorem E.5 are used instead of [FM13b, Proposition 5.15, Theorem
4.1, Theorem 4.5]. For example, Prop. 5.20 of [FM13b] asserts that if n is
divisible by 4, then the composition

Ln(Q[G]) −→ Ln(Q)
∼=−→W (Q),

where W (Q) is the Witt group of Q, takes the symmetric signature of a
Witt space X with π1(X) = G to the Witt class of the intersection form
on the middle dimensional, middle perversity intersection homology of X.
For IP-spaces X, the analogous statement is: If n is divisible by 4, then the
composition

Ln(Z[G]) −→ Ln(Z)
∼=−→ Z

takes σ∗IP(X) to the ordinary signature of the intersection form of X.

Remark 8.6. We have only described the universal symmetric signature of
IP-spaces. More generally, one can similarly construct the symmetric signa-
ture σ∗IP(r) ∈ Ln(Z[G]) of any reference map r : X → BG with X IP and G
any discrete group. Instead of using the intersection chains of the universal
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cover of X, one uses the intersection chains of the cover of X induced by r.
This is done in [FM13b] for global Witt maps r. For such maps, [FM13b,
Thm. 5.23] asserts that σ∗Witt(r ◦ f) = σ∗Witt(r) for orientation preserving
stratified homotopy equivalences f : X ′ → X between Witt spaces. Simi-
larly for orientation preserving stratified homotopy equivalences f between
IP-spaces,

(8.2) σ∗IP(r ◦ f) = σ∗IP(r).

9. The L-theory fundamental class

For an n-dimensional compact oriented topological manifold M , Ranicki
constructs an L-theory fundamental class [M ]L ∈ L•n(M) ([Ran92, Section
16]) which plays an important role in surgery theory. It is an oriented
homeomorphism invariant whose image under the assembly map

L•n(M)→ Ln(Z[π1M ])

is the symmetric signature σ∗(M). [M ]L can be constructed in the following
way. There is an equivalence

MSTop→ QSTop

in the stable category, where MSTop is the Thom spectrum and QSTop is
the Quinn spectrum; see [LM13, Appendix B] for details. There is an ad
theory adSTopFun which is related to adSTop in the same way that adIPFun

is related to adIP (see the end of [LM13, Section 8]), and the map given by
forgetting the chain representative is an equivalence

QSTopFun
'−→ QSTop.

The symmetric signature gives a map6

(9.1) sig : QSTopFun → QZ
≥0 = L•(Z),

so we have a map in the stable category

Sig : QSTop → L•(Z).

Now if M is an n-dimensional compact oriented topological manifold
then the identity map M → M represents an element in (ΩSTop)n(M).
Let [M ]STop denote the image of this element under the isomorphism
(ΩSTop)n(M) ∼= MSTopn(M). We have

Lemma 9.1. The image of [M ]STop under the composite

(9.2) MSTopn(M)→ (QSTop)n(M)
Sig−−→ L•(Z)n(M) = L•n(M)

is [M ]L.

6 Specifically, the end of [LM13, Section 8] gives a morphism AStopFun → Ae,∗,1, [LM13,
Section 10] gives a morphism sig : Ae,∗,1 → AZ, (which was denoted Sig in [LM13]) and
the map (9.1) is, by definition, induced by the the composite of these two morphisms.
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Proof. The construction of [M ]L is given in [Ran92, Propositions 16.15 and

16.16(ii)]. The class [M ]L is denoted by signL•
M (M) in [KMM13, Definition

8.11], and [KMM13, Proposition 13.3] says that it is S-dual to the orientation
class uL•(ν) ∈ L•(Z)k(T (ν)) (where T (ν) is the Thom complex of the normal
bundle and k is the dimension of ν). By the proof of [KMM13, Proposition
13.2], uL•(ν) is obtained by applying the composite

MSTop→ QSTop
Sig−−→ L•(Z)

to the orientation class uMSTop(ν) ∈MSTopk(T (ν)) represented by the map

T (ν)→ STopk.

Thus it suffices to show that the S-dual of uMSTop(ν) is the element we have
called [M ]STop. The S-dual of uMSTop(ν) is represented by the composite

Sn+k p−→ T (ν)
δ−→ T (ν) ∧M+ → STopk ∧M+,

where p is the Pontrjagin-Thom collapse and δ is the Thom diagonal (see for
example [Rezk13, Proposition 2.2], with the maps η and φ given on page 7 of
[Rezk13]) and by [St68, page 19 and Example 6 on page 43] this composite
represents [M ]STop. �

Remark 9.2. The composite

MSTop→ QSTop
Sig−−→ L•(Z)

is the Sullivan-Ranicki orientation (compare [LM, Remark 1.4]).

Our goal in this section is to prove

Theorem 9.3. For an n-dimensional compact oriented IP-space X there is
a fundamental class [X]L ∈ L•n(X) with the following properties:

(i) [X]L is an oriented PL homeomorphism invariant.
(ii) If X is a PL manifold then [X]L is the same as the fundamental class

constructed by Ranicki.

(We will show in the next section that [X]L assembles to the symmetric
signature σ∗IP(X) given by Definition 8.4.)

Remark 9.4. For Witt spaces, a different method for constructing a fun-
damental class is described in [CSW91].

The rest of the section is devoted to the proof of Theorem 9.3. We begin
with the construction of [X]L.

Define a category AIP,Z as follows. An object of AIP,Z is an object X of
AIP together with a map of topological spaces X → Z. A morphism from
X → Z to X ′ → Z is a morphism X → X ′ in AIP for which the diagram

X //

��

X ′

~~
Z
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commutes. There is a forgetful functor

Υ : AIP,Z → AIP,

and we define adkIP,Z(K) ⊂ prekIP,Z(K) to be the set of functors F for which

the composite Υ ◦ F is in adkIP(K). The proof of Theorem 4.4 shows that
this is an ad theory.

Now we have a functor Φ from spaces to spectra with

Φ(Z) = QIP,Z .

By Remark 3.1, the homotopy groups of QIP,Z are the same as the IP
bordism groups (ΩIP)∗(Z) defined by Pardon ([Par90, Section 5]). Pardon
proves that (ΩIP)∗ is a homology theory, and in particular this shows that
Φ is homotopy invariant in the sense of [WW95, Section 1]. We therefore
have an assembly map

α : Z+ ∧ Φ(∗)→ Φ(Z)

by [WW95, Theorem 1.1 and Observation 1.2] for all spaces Z which have
the homotopy type of a CW complex.

Theorem 9.5. α is a weak equivalence.

The proof is deferred to Section 14. Now we can define [X]L.

Definition 9.6. Let X be an n-dimensional compact oriented IP-space.
(i) Let [X]IP ∈ πn(QIP,X) be the image of the class of the identity map

X → X in (ΩIP)n(X) under the isomorphism (ΩIP)n(X) ∼= πn(QIP,X).
(ii) Let [X]L be the image of [X]IP under the composite

(9.3) πn(QIP,X)
α←−∼= (QIP)n(X)

Sig−−→ (QZ
rel,≥0)n(X)

∼=←− L•n(X),

where the last map is the isomorphism (8.1).

It remains to prove parts (i) and (ii) of Theorem 9.3. For part (i) it
suffices to show that if f : X → X ′ is an oriented PL homeomorphism then
f∗([X]IP) = [X ′]IP, and this in turn follows from the fact that the map

(I ×X) ∪1×X X ′ → X ′,

which is the identity on X ′ and takes (t, x) to f(x), is a bordism between f
and the identity map of X ′.

For part (iii), we need to compare the composites (9.2) and (9.3) for X a
PL manifold M . [LM, Section 14] gives a morphism

sigrel : Ae,∗,1 → AZ
rel

and as in Footnote 6 (with AZ
rel instead of AZ) this gives a map

sig : QSTopFun → QZ
rel,≥0

which in turn gives
Sig : QSTop → QZ

rel,≥0.
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By [LM, Proposition 14.4], (9.2) is equal to the composite

(9.4) MSTopn(M)→ (QSTop)n(M)
Sig−−→ (QZ

rel,≥0)n(M)
∼=←− L•n(M).

Next we observe that for each space Z there is an ad theory adSTop,Z defined
analogously to adIP,Z . We get a functor Ξ from spaces to spectra by letting

Ξ(Z) = QSTop,Z ,

and we have
π∗Ξ(Z) ∼= (ΩSTop)∗(Z).

Ξ is homotopy invariant, because π∗Ξ(Z) is a homology theory by [C79,
Chapter 4], and the proof of Theorem 9.5 shows that the assembly map for
Ξ is a weak equivalence.

Lemma 9.7. The composite (9.4) is equal to the composite

πnQSTop,M
α←− (QSTop)n(M)

Sig−−→ (QZ
rel,≥0)n(M)

∼=←− L•n(M)

where α is the assembly map for the functor Ξ.

We defer the proof for a moment. Next we observe that everything we
have said about topological manifolds and STop is also valid for PL manifolds
and SPL. We write Ξ′ for the PL analog of Ξ. Now consider the following
diagram.

Ξ(M) QSTop ∧M+

Sig∧1

((

αoo

Ξ′(M)

OO

��

QSPL ∧M+
αoo Sig∧1 //

OO

��

QZ
rel,≥0 ∧M+

Φ(M) QIP ∧M+
αoo

Sig∧1
66

The squares commute up to homotopy by the naturality of the assembly
map, and the triangles commute by the definition of the maps Sig. The
upper left-hand vertical map takes [M ]PL to [M ]STop, and (by Lemma 9.7)
the upper composite takes [M ]STop to the fundamental class constructed by
Ranicki. The lower left-hand vertical map takes [M ]PL to [M ]IP, and the
lower composite takes [M ]STop to the fundamental class given by Definition
9.6(ii). �

Proof of Lemma 9.7. It suffices to show that the diagram

(9.5) (ΩSTop)n(Z)

∼=
��

MSTopn(Z)
i
∼=
oo

∼= j
��

πnQSTop,Z (QSTop)n(Z)α
oo
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commutes, where Z is a space, i is the standard isomorphism and j is given
by [LM13, Appendix B].7

First we recall the definition of i (cf. [DK01, pages 224–5]). The k-th
space of the spectrum MSTop ∧ Z+ is TSTopk ∧ Z+, where TSTopk is the
Thom space. The inclusion of the 0-section gives an embedding

BSTopk → TSTopk.

Given a map f : Sn+k → TSTopk ∧ Z+, there is a homotopic map f ′ for
which the composite

Sn+k f ′−→ TSTopk ∧ Z+
p1−→ TSTopk

(where p1 is the projection) is transverse to the 0-section. Then the oriented
topological manifold (p1 ◦ f ′)−1(BSTopk) is equal to (f ′)−1(BSTopk × Z),
and i takes the homotopy class of f to the bordism class of the composite

(f ′)−1(BSTopk × Z)
f ′−→ BSTopk × Z

p2−→ Z.

Next we observe that i can be described using maps of spectra. Let
S•(TSTopk ∧Z+) be the singular complex, and let St• (TSTopk ∧Z+) be the
sub-semisimplicial set consisting of maps g : ∆n → TSTopk ∧ Z+ for which
the restriction of p1 ◦g to each face is transverse to the 0-section (cf. [LM13,
Appendix B]). Let

(MSTop ∧ Z+)t

be the spectrum whose k-th space is the geometric realization |St• (TSTopk∧
Z+)|. Given a simplex g of St• (TSTopk ∧ Z+), we obtain an element of

adkSTop,Z(∆n) by taking each oriented simplex (σ, o) to (g|σ)−1(BSTop×Z);
this gives a natural transformation

I : (MSTop ∧ Z+)t → QSTop,Z .

Next, transversality implies that the map

|St• (TSTopk ∧ Z+)| → |S•(TSTopk ∧ Z+)|
is a weak equivalence (because by [May67, Lemma 16.3, Definition 3.6, Ex-
ample 1.5 and Lemma 1.5] each element of πn of the target is represented
by an n-simplex whose faces are at the basepoint, and such a simplex can
be deformed to one that is transverse, and similarly for homotopies), and so
the map

(MSTop ∧ Z+)t →MSTop ∧ Z+

is a weak equivalence. The isomorphism i is induced by the composite

MSTop ∧ Z+
'←− (MSTop ∧ Z+)t

I−→ QSTop,Z

together with the isomorphism πnQSTop,Z
∼= (ΩSTop)n(Z).

7The referee has asked us to remind the reader that [LM13, Appendix B] uses the folk
theorem that that there is an isomorphism Ω∗(STop) → π∗(MSTop) whose construction
is similar to that on pages 19–20 of [St68].
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Now consider the diagram

MSTop ∧ Z+ MSTop ∧ Z+
=oo

(MSTop ∧ Z+)t

'

OO

I
��

MSTopt ∧ Z+

'

OO

αoo

I
��

QSTop,Z QSTop ∧ Z+.
αoo

This homotopy commutes by naturality of the assembly map (since the
assembly map for the functor MSTop∧Z+ is the identity map). On passage
to homotopy groups, the right-hand vertical composite induces the map j of
diagram (9.5), and this shows that diagram (9.5) commutes as required. �

In [Par90], Pardon computes the IP bordism groups of a point to be

(9.6) ΩIP
n (pt) ∼=


Z, n ≡ 0(4)

Z/2, n ≡ 1(4), n > 1

0, otherwise.

The isomorphisms are given by the signature (when n ≡ 0(4)) and the de
Rham invariant (when n ≡ 1(4)). These groups are very close to

Ln(Z) ∼=


Z, n ≡ 0(4)

Z/2, n ≡ 1(4)

0, otherwise.

Theorem 9.8. The map ΩIP
n (pt) → L•n(pt) = Ln(Z), given by (9.3) on a

point, is an isomorphism for all n 6= 1.

Proof. If n ≡ 2, 3(4), then both ΩIP
n (pt) and Ln(Z) vanish and the claim

holds.
Suppose that n ≡ 0(4). Then by (9.6), the signature is an isomorphism

ΩIP
n (pt) ∼= Z. The signature of a symmetric Poincaré chain complex is an iso-

morphism Ln(Z) ∼= Z. We shall show that our map ΩIP
n (pt)→ Ln(Z) sends

a generator to a generator. The complex projective space CPn/2 represents
a generator [CPn/2] ∈ ΩIP

n (pt) since it is an IP-space and has signature 1.

Let f be the map f : CPn/2 → pt. The diagram

(9.7) ΩIP
n (CPn/2)

f∗
��

// L•n(CPn/2)

f∗
��

ΩIP
n (pt) // L•n(pt)

commutes, since ΩIP
n (−) → L•n(−) is a natural transformation of homology

theories (being induced by a spectrum level map). Since the assembly map
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α is a natural transformation of functors and CPn/2 is simply connected, the
diagram

L•n(CPn/2)

f∗
��

α // Ln(Z)

f∗=id

L•n(pt) ∼=
α // Ln(Z)

commutes as well. By construction, the top horizontal arrow of diagram
(9.7) maps [idCPn/2 ] ∈ ΩIP

n (CPn/2) to the fundamental class [CPn/2]L ∈
L•n(CPn/2). By our Theorem 9.3(iii), this class agrees with Ranicki’s fun-
damental L•-homology class for manifolds. The latter class is known to
assemble to the Mischenko-Ranicki symmetric signature σ∗(CPn/2), which

is a generator of Ln(Z), since the ordinary signature of CPn/2 is 1. Now

f∗[idCPn/2 ] = [CPn/2] ∈ ΩIP
n (pt) and thus by commutativity, the bottom

arrows of the two diagrams must also map [CPn/2] to a generator and the
claim is proved.

Suppose that n ≡ 1(4) and n > 1. Then according to (9.6), the de Rham
invariant is an isomorphism ΩIP

n (pt) ∼= Z/2. The de Rham invariant of a
symmetric Poincaré chain complex is an isomorphism Ln(Z) ∼= Z/2. To
show that our map ΩIP

n (pt) → Ln(Z) sends the generator to the generator,
we can use the same argument as in the above case, replacing the signature
by the de Rham invariant and replacing the complex projective spaces by
simply connected smooth manifolds Mn with nontrivial de Rham invariant.
In dimension 5, such a manifold is given by M5 = SU(3)/SO(3). If A is a
manifold of dimension congruent 1 mod 4 and B a manifold of dimension
congruent 0 mod 4, then the de Rham invariant of the product A × B is
the de Rham invariant of A multiplied by the signature of B. Thus, the
manifolds Mn = M5 × CP(n−5)/2, all have de Rham invariant 1 and are
simply connected. The Mischenko-Ranicki symmetric signature σ∗(Mn) is
then the generator of Ln(Z), since Mn has nontrivial de Rham invariant. �

Remark 9.9. In degree n = 1, there is a discrepancy: ΩIP
1 (pt) = 0, while

L1(Z) ∼= Z/2.

10. The assembly of the fundamental class

The goal of this section is to prove that [X]L assembles to the symmetric
signature σ∗IP(X).

Before giving the precise statement (Theorem 10.12) we need some prelim-
inary work. In order to construct the relevant assembly map, we first need a
functorial model for adZ[π1Z]; adZ[π1Z] is not a functor of Z because the cat-
egory of modules over Z[π1Z] is not a functor of Z (see [LM13, Section 13]
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for an explanation of this issue in the context of R modules).8 Accordingly,
in Subsection 10.1 we give a functorial model for the category of modules
over Z[π1Z], and in Subsection 10.2 we use this to construct an ad theory

ad
Z[π1Z]
F which is a functor of Z and has a canonical map to adZ[π1Z] which

is an isomorphism on bordism groups. Subsection 10.3 gives the statement
of the main theorem and an outline of the proof; the details of the proof are
given in Subsections 10.4–10.13.

Convention 10.1. Throughout this section, Z will denote a path-connected
space.

10.1. A functorial model for the category of modules over Z[π1Z].
We use the terminology and notation of [LM, Subsection B.5] (which the
reader should consult before continuing)9 together with:

Notation 10.2. When possible we denote a schematic R module by a single
letter A rather than by a triple (M,N, T ). (Then R〈A〉 denotes the quotient
of the free R module R〈M〉 by the image of the map T : R〈N〉 → R〈M〉.)

To lighten the notation, we will denote Z[π1Z] by R(Z) and Z[π1(Z, z)]
by R(Z)z throughout this subsection.

Let us define a schematic R(Z) module to be a pair (z,A) where z is an
element of Z and A is a schematic R(Z)z module. If we think of R(Z)z as
a subcategory of R(Z) and of R(Z)z〈A〉 as a module over this subcategory,
then the Kan extension10 of R(Z)z〈A〉 is an R(Z) module which will be
denoted R(Z)〈z,A〉.

Here is an explicit description of R(Z)〈z,A〉. If we denote the set of path
homotopy classes of paths from z to z′ by pz,z′ , then R(Z)〈z,A〉 is defined
on objects by letting R(Z)〈z,A〉z′ be the quotient of

MorR(Z)(z, z
′)⊗R(Z)z〈A〉 ∼=

⊕
δ∈pz,z′

R(Z)z〈A〉

by the following equivalence relation: if (δ, a) denotes the copy of an element
a ∈ R(Z)z〈A〉 in the δ summand and γ is the class of a loop at z then

8Briefly, the point is that the obvious way of trying to make the category of R modules
a functor of R doesn’t give a functor because R3⊗R2 (R2⊗R1M) is canonically isomorphic
to, but not the same module as, R3 ⊗R1 M .

9For the benefit of the reader who doesn’t want to consult [LM, Subsection B.5], here
are the key definitions:

We define the category of schematic free R modules as follows. An object is a set M.
This should be thought of as representing the free R module generated by M, which we
denote by R〈M〉. We define a map M→ M′ to be a map of R-modules R〈M〉 → R〈M′〉.

We define the category of schematic R modules as follows. An object of this category is
a triple (M,N, T ), where M and N are schematic free R modules and T is a map N→ M.
Such a triple should be thought of as representing the quotient of R〈M〉 by the image of
T ; we write R〈(M,N, T )〉 for this quotient.

10See Appendix B.
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(δγ, a) ∼ (δ, γa); 11 it follows that for any δ ∈ pz,z′ the map which takes
a to (δ, a) is an isomorphism R(Z)z〈A〉 → R(Z)〈z,A〉z′ . The action of the
morphisms is given as follows: if ε ∈ pz′,z′′ is thought of as a morphism from
z′ to z′′ then ε takes (δ, a) to (εδ, a).

We define a map from (z,A) to (z′,A′) to be a homomorphism of R(Z)
modules R(Z)〈z,A〉 → R(Z)〈z′,A′〉.
Lemma 10.3. The functor from schematic R(Z) modules to R(Z) modules
which takes (z,A) to R(Z)〈z,A〉 is an equivalence of categories.

Proof. The functor is the identity on morphism sets, so it’s only neces-
sary to show that every R(Z) module M is isomorphic to one of the
form R(Z)〈z,A〉. Fix z ∈ Z. By [LM, Lemma B.19], there is an A
with an isomorphism R(Z)z〈A〉 → Mz, and the explicit description of
R(Z)〈z,A〉 given above shows that this isomorphism induces an isomor-
phism R(Z)〈z,A〉 →M. �

A schematic chain complex C over Z[π1Z] is a sequence of schematic
Z[π1Z] modules and maps. We write Z[π1Z]〈C〉 for the corresponding se-
quence of Z[π1Z] modules and maps. A map C → C′ of schematic chain
complexes is a map of Z[π1Z] chain complexes Z[π1Z]〈C〉 → Z[π1Z]〈C′〉.

Now let g : Z1 → Z2 be a continuous function.

Notation 10.4. For each z ∈ Z let

gz : R(Z1)z → R(Z2)g(z)

be the induced homomorphism. Let

g∗ : R(Z1)→ R(Z2)

be the induced functor.

We want to show that g induces a functor gsch from the category of
schematicR(Z1) modules to the category of schematicR(Z2) modules. First
we define gsch on objects: for a schematic R(Z1) module (z,A) we define
gsch(z,A) to be the schematic R(Z2) module (g(z), (gz)schA). To define gsch

on maps we need a lemma.

Lemma 10.5. There is a canonical isomorphism

R(Z2)〈gsch(z,A)〉 ∼= Kang∗R(Z1)〈z,A〉
Proof. Let i : R(Z1)z → R(Z1) and j : R(Z2)g(z) → R(Z2) be the inclusions.
We have

R(Z2)〈gsch(z,A)〉 = R(Z2)〈g(z), (gz)schA〉 = Kanj(R(Z2)g(z)〈(gz)schA)〉)
∼= Kanj(Kangz(R(Z1)z〈A〉)) ∼= Kanj◦gz(R(Z1)z〈A〉)
= Kang∗◦i(R(Z1)z〈A〉) ∼= Kang∗(Kani(R(Z1)z〈A〉))

= Kang∗R(Z1)〈z,A〉,

11Note that we denote composition of path homotopy classes by letting δγ be “first γ,
then δ”, analogously to composition of functions.
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where the equalities in the first line are definitions, the first isomorphism
in the second line is [LM, Equation (B.2) in Subsection B.5] and Example
B.2 and the second is Equation (B.1), the first equality in the third line is
obvious and the isomorphism is Equation (B.1), and the last equality follows
from the definition of R(Z1)〈z,A〉. �

Now for a map
t : (z,A)→ (z′,A′)

we define
gscht : gsch(z,A)→ gsch(z′,A′)

to be the map determined by the diagram

R(Z2)〈gsch(z,A)〉
gscht //

∼=
��

R(Z2)〈gsch(z′,A′)〉
∼=
��

Kang∗R(Z1)〈z,A〉
Kang∗ (t)// Kang∗R(Z1)〈z′,A′〉

where the bottom arrow is induced by t.
With these definitions, gsch is a functor from schematic R(Z1) modules

to schematic R(Z2) modules. If h is a continuous function Z2 → Z3 we
have (h ◦ g)sch = hsch ◦ gsch, so the category of schematic R(Z) modules is a
functor of Z.

10.2. A functorial model for adZ[π1Z].

Notation 10.6. As usual, let W be the standard resolution of Z by Z[Z/2]
modules.

Definition 10.7. (i) A schematic quasi-symmetric complex of dimension
n over Z[π1Z] is a pair (C, ϕ), where C is a schematic chain complex over
Z[π1Z] for which Z[π1Z]〈C〉 is homotopy finite and ϕ is a Z/2-equivariant
map

W → (Z[π1Z]〈C〉)t ⊗Z[π1Z] Z[π1Z]〈C〉
of graded abelian groups which raises degrees by n.

(ii) We define a category AZ[π1Z]
sch as follows. The objects are the schematic

quasi-symmetric complexes over Z[π1Z]. A morphism (C, ϕ) → (C′, ϕ′) is
a map of Z[π1Z] chain complexes f : Z[π1Z]〈C〉 → Z[π1Z]〈C′〉 such that if
dimϕ = dimϕ′ then (f t ⊗ f) ◦ ϕ = ϕ′.

There is a morphism

Θ : AZ[π1Z]
sch → AZ[π1Z]

of Z-graded categories which takes (C, ϕ) to (Z[π1Z]〈C〉, ϕ); this is an equiv-
alence of categories.

Definition 10.8. A K-ad with values in AZ[π1Z]
sch is a pre K ad F for which

Θ ◦ F is a K-ad.
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We write ad
Z[π1Z]
sch (K) for the set of K-ads with values in AZ[π1Z]

sch .

Proposition 10.9. (i) ad
Z[π1Z]
sch is an ad theory.

(ii) Θ induces a morphism of ad theories which is an isomorphism of
bordism groups.

This is an easy consequence of the fact that adZ[π1Z] is an ad theory and
[LM, Lemma B.23].

Next we consider functoriality. Now let g : Z → Z ′ be a continuous
function. Define a functor

gsym
sch : AZ[π1Z]

sch → AZ[π1Z′]
sch

by
gsym

sch (C, ϕ) = (gsch(C), ψ),

where ψ is the composite

W
ϕ−→ (Z[π1Z]〈C〉)t ⊗Z[π1Z] Z[π1Z]〈C〉 ι⊗ι−−→

(Kang∗(Z[π1Z]〈C〉))t ⊗Z[π1Z′] Kang∗(Z[π1Z]〈C〉) ∼=
(Z[π1Z

′]〈gsch(C)〉)t ⊗Z[π1Z′] Z[π1Z
′]〈gsch(C)〉,

where ι is given in Appendix B and the isomorphism is given by Lemma
10.5.

Proposition 10.10. Let g : Z → Z ′ and g′ : Z ′ → Z ′′ be continuous
functions. Then

(g′g)sym
sch = (g′)sym

sch g
sym
sch .

Proof. First we show that (g′g)sym
sch = (g′)sym

sch g
sym
sch on objects. Let (C, ϕ)

be an object of AZ[π1Z]
sch . Let (g′g)sym

sch (C, ϕ) = ((g′g)sch(C), ψ) and
let (g′)sym

sch g
sym
sch (C, ϕ) = (g′schgsch(C), ψ′). We have already seen that

(g′g)sch(C) = g′schgsch(C). For the proof that ψ = ψ′, first let (z,A) be
a schematic Z[π1Z] module and consider the diagram

Z[π1Z]〈(z,A)〉 ι //

ι

��

Kang∗(Z[π1Z]〈(z,A)〉)
∼= // Z[π1Z

′]〈gsch(z,A)〉

ι
��

Kang′∗Z[π1Z
′]〈gsch(z,A)〉

∼=
��

Kan(g′g)∗Z[π1Z]〈(z,A)〉
∼= // Z[π1Z

′′]〈g′schgsch(z,A)〉

By definition, the upper left corner is a Kan extension, and by the universal
property of the Kan extension (in Appendix B) it suffices to show that
the clockwise and counterclockwise composites in the diagram agree when
restricted to Z[π1(Z, z)]〈A〉, and this is a routine verification. The proof that
ψ = ψ′ is a straightforward consequence of commutativity of the diagram.
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Next we show that (g′g)sym
sch = (g′)sym

sch g
sym
sch on maps. Let f : (C, ϕ) →

(C′, ϕ′) be a map, which simply means that f is a map Z[π1Z]〈C〉 →
Z[π1Z]〈C′〉 (with (f t ⊗ f) ◦ ϕ = ϕ′ if dimϕ = dimϕ′). First we observe
that, for any schematic Z[π1Z] module (z,A), the diagram

Kan(g′g)∗Z[π1Z]〈(z,A)〉
∼= //

∼=

��

Kang′∗Kang∗Z[π1Z]〈(z,A)〉
∼=
��

Kang′∗Z[π1Z
′]〈gsch(z,A)〉

∼=
��

Z[π1Z
′′]〈(g′g)sch(z,A)〉 = // Z[π1Z

′′]〈g′schgsch(z,A)〉

commutes, as the reader can check; the fact that (g′g)sym
sch (f) =

(g′)sym
sch g

sym
sch (f) is an easy consequence of this and the definitions. �

Proposition 10.11. gsym
sch takes ads to ads.

Proof. Let F ∈ ad
Z[π1Z]
sch (K), and write

F (σ, o) = (Cσ, ϕσ,o)
Next let z ∈ Z and observe that Θ ◦F determines a pre K-ad (Θ ◦F )z with

values in AZ[π1(Z,z)], with

(Θ ◦ F )z(σ, o) = (Z[π1Z]〈Cσ〉z, (ϕσ,o)z)
where (ϕσ,o)z is the composite

W
ϕσ,o−−→ (Z[π1Z]〈Cσ〉)t ⊗Z[π1Z] Z[π1Z]〈Cσ〉

∼= (Z[π1Z]〈Cσ〉)z)t ⊗Z[π1(Z,z)] Z[π1Z]〈Cσ〉)z.
Using Definition 10.8 and Remarks 7.1 and 7.2, we see that (Θ ◦ F )z is an
ad.

Now let G = Θ ◦ gsym
sch ◦ F and write

G(σ, o) = (Z[π1Z
′]〈gsch(Cσ)〉, ψσ,o);

we need to show that G ∈ adZ[π1Z′](K). First we observe that, by Lemma
10.5 and the definition of gsym

sch , G is isomorphic to the pre K-ad G′ with

G′(σ, o) = (Kang∗(Z[π1Z]〈Cσ〉, ψ′σ,o),
where ψ′σ,o is the composite

W
ϕσ,o−−→ (Z[π1Z]〈Cσ〉)t ⊗Z[π1Z] Z[π1Z]〈Cσ〉

ι⊗ι−−→
(Kang∗(Z[π1Z]〈Cσ〉))t ⊗Z[π1Z′] Kang∗(Z[π1Z]〈Cσ〉),

so it suffices to show G′ is an ad. Now (recalling that we chose z ∈ Z), G′

determines a pre K-ad G′g(z) with

G′g(z)(σ, o) = (Kang∗(Z[π1Z]〈Cσ〉)g(z), (ψ′σ,o)g(z)),
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where (ψ′σ,o)g(z) is the composite

W
ψ′σ,o−−→ (Kang∗(Z[π1Z]〈Cσ〉))t ⊗Z[π1Z′] Kang∗(Z[π1Z]〈Cσ〉)
∼= (Kang∗(Z[π1Z]〈Cσ〉))tg(z) ⊗Z[π1(Z′,g(z))] Kang∗(Z[π1Z]〈Cσ〉)g(z)

and it suffices (using Remarks 7.1 and 7.2) to show that G′g(z) is an ad.

Finally, we observe that, by Remark B.3, G′g(z) is isomorphic to the pre

K-ad H with

H(σ, o) = (Z[π1(Z ′, g(z)]⊗Z[π1(Z,z)] (Z[π1Z]〈Cσ〉)z, χσ,o)
where χσ,o is the composite

W
(ϕσ,o)z−−−−→ (Z[π1Z]〈Cσ〉)z)t ⊗Z[π1(Z,z)] Z[π1Z]〈Cσ〉)z

→ (Z[π1(Z ′, g(z)]⊗Z[π1(Z,z)] (Z[π1Z]〈Cσ〉)z)t

⊗Z[π1(Z′,g(z)] Z[π1(Z ′, g(z)]⊗Z[π1(Z,z)] (Z[π1Z]〈Cσ〉)z,
and H is an ad by [LM, Lemma B.15], using the fact that (Θ ◦ F )z is an
ad. �

Combining Propositions 10.10 and 10.11 we see that that ad
Z[π1Z]
sch is a

functor of Z.

10.3. Statement of the main theorem of this section, and outline

of the proof. Since ad
Z[π1Z]
sch,≥0 is a homotopy invariant functor of Z, there is

an assembly map

α : Z+ ∧QZ
sch,≥0 → Q

Z[π1Z]
sch,≥0 .

Our main theorem in this section is

Theorem 10.12. The image of [X]L under the composite

X+ ∧QZ
≥0

'←− X+ ∧QZ
sch,≥0

α−→ Q
Z[π1Z]
sch,≥0

'−→ Q
Z[π1Z]
≥0

is the symmetric signature σ∗IP(X) given by Definition 8.4.

For the proof, we will use the following functors and natural transforma-
tions:

Φ
'←− Φ′

sig−→ Ψ′′
'←− Ψ′ → Ψ

Here

• Φ is the functor
Φ(Z) = QIP, Z

defined in Section 9,
• Φ′, which will be defined in Subsection 10.10, is a version of Φ which

incorporates a choice of fundamental class (cf. the ad theory adIPFun

defined in Subsection 6.1),
• Ψ is the functor

Ψ(Z) = Q
Z[π1Z]
sch,≥0
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• Ψ′ will be defined in Subsection 10.7; it is a functorial version of the

ad theory ad
Z[π1Z]
fin defined in Remark 7.6. It is needed because there

is no reasonable map from Ψ to Ψ′′ or from Ψ′′ to Ψ,
• the natural transformation Ψ′ → Ψ will be defined in Subsection

10.7, and the natural transformation Ψ′ → Ψ′′ will be defined in
Subsection 10.8,
• Ψ′′, which will be defined in Subsection 10.5, is a functorial version

of Q
Z[π1Z]
rel,≥0 (which was defined in Section 8),

• the natural transformation sig, which is a version of the symmectric
signature, will be defined in Subsection 10.11.

Now consider the diagram

X+ ∧QIP

α '

��

X+ ∧ Φ′(∗)
'oo 1∧sig //

α

��

X+ ∧Ψ′′(∗)

α

��

X+ ∧Ψ′(∗)
'oo //

α

��

X+ ∧QZ
sch,≥0

α

��
QIP,X Φ′(X)

'oo sig // Ψ′′(X) Ψ′(X)
'oo // QZ[π1X]

sch,≥0

This diagram commutes up to homotopy by the naturality of the assembly
map ([WW95, Theorem 1.1]). Now Theorem 10.12 is immediate from the
following two lemmas, which will be proved in Subsections 10.12 and 10.13
respectively.

Lemma 10.13. The image of α−1[X]IP along the top row of the diagram
above followed by the map X+ ∧QZ

sch,≥0 → X+ ∧QZ
≥0 is [X]L.

Lemma 10.14. The image of [X]IP along the bottom row followed by the

map Q
Z[π1X]
sch,≥0 → Q

Z[π1X]
≥0 is σ∗IP(X).

10.4. Background for the functor Ψ′′. In this subsection and the next

our goal is to give a functorial version of ad
Z[π1Z]
rel . The second and third

authors have done this for rings with involution in [LM, Appendix B] and
we only need to adapt that to the present context.

We need to make one important change in the framework of [LM, Appen-
dix B]. Expressions of the form R ⊗Rop⊗R N frequently occur there, where
N is an Rop ⊗ R module. In corresponding situations in the present paper
we will have a Z[π1Z]op ⊗ Z[π1Z] module N and we will use the expression

Z ⊗Z[π1Z] N ,
where Z is the constant right Z[π1Z] module with value Z and we think of
N as a left Z[π1Z] module via the map

Z[π1Z]→ Z[π1Z]op ⊗ Z[π1Z]

which takes an object z to (z, z) and a path homotopy class δ to (δ−1, δ).
(We could give a precise analogue of R⊗Rop⊗RN , but it would be isomorphic
to Z ⊗Z[π1Z] N and the latter is easier to work with.)
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The first issue that must be addressed in creating Ψ′′ is that, unfortu-

nately, ad
Z[π1Z]
rel isn’t even “approximately” functorial, that is, given a map

g : Z → Z ′ and an object (C,D, β, φ) of AZ[π1Z]
rel , there doesn’t seem to be

a reasonable way to create an object (C ′, D′, β′, φ′) of AZ[π1Z′]
rel (we could let

C ′ = Kang∗C, but there’s no reasonable candidate for D′). [LM, Subsec-

tions B.1–B.4] construct an ad theory adRRel which is approximately functo-

rial (that is, functorial up to isomorphism) and has a map to adRrel which
induces an isomorphism of bordism groups; in this subsection we generalize
this.

[LM, Definition B.3 and Lemma B.4] generalize to our context in a straigh-
forward way. The analogue of [LM, Definition B.5] is

Definition 10.15. A Relaxed quasi-symmetric complex of dimension n
over Z[π1Z] is a quadruple (C,E, γ, φ), where C is a homotopy finite
chain complex over Z[π1Z], E is a homotopy finite chain complex over
Z[π1Z]op ⊗ Z[π1Z] with a Z/2 action for which the generator acts quasi-
linearly, γ is a Z/2 equivariant Z[π1Z]op ⊗ Z[π1Z] linear quasi-isomorphism

Ct ⊗ C → E, and φ is an n-dimensional element of (Z ⊗Z[π1Z] E)Z/2.

Remark 10.16. [LM, Definition B.7] generalizes to give a category AZ[π1Z]
Rel .

Analogously to [LM, Remark B.8] we have a map

Λ : AZ[π1Z]
Rel → AZ[π1Z]

rel

which takes (C,E, γ, φ) to (C,Z ⊗Z[π1Z] E, β, φ), where β is the following
composite (in which the isomorphism is Remark7.5)

Ct ⊗Z[π1Z] C ∼= Z ⊗Z[π1Z] (Ct ⊗ C)
1⊗γ−−→ Z ⊗Z[π1Z] E.

[LM, Definitions B.10 and B.11] generalize to give a set ad
Z[π1Z]
Rel (K) for each

K; note that (as in [LM, Definition B.11(ii)]) every ad is isomorphic to a
balanced ad. [LM, Theorem B.12] generalizes to the statement that this is
an ad theory. The proof of [LM, Proposition B.17] generalizes to show that
the map

Λ : ad
Z[π1Z]
Rel → ad

Z[π1Z]
rel

induces an isomorphism of bordism groups.

Next we show that ad
Z[π1Z]
Rel is approximately functorial.

Definition 10.17. Let g : Z → Z ′ be a continuous function. Define a
functor

gRel : AZ[π1Z]
Rel → AZ[π1Z′]

Rel

as follows. For an object (C,E, γ, φ) of AZ[π1Z]
Rel , let

gRel((C,E, γ, φ) = (Kang∗(C),Kang∗⊗g∗(E), γ′, φ′),
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where γ′ is the composite

(Kang∗(C))t ⊗Kang∗(C) ∼= Kang∗⊗g∗(C
t ⊗ C)

Kang∗⊗g∗γ−−−−−−−→ Kang∗⊗g∗(E)

(which is a quasi-isomorphism by Remarks 7.3 and B.3 and the Künneth
spectral sequence [Weib94, Theorem 5.6.4]) and φ′ is the image of φ under
the map

(Z ⊗Z[π1Z] E)Z/2 → (Z ⊗Z[π1Z′] Kang∗⊗g∗(E))Z/2

(where Z denotes the Z[π1Z] module in the first expression and the Z[π1Z
′]

module in the second) which takes the class of 1 ⊗ e (where e ∈ E(z,z)) to
the class of 1⊗ id(z,z) ⊗ e.

The proof of [LM, Proposition B.15] generalizes (using Remarks 7.1, 7.2,
7.3, and B.3) to show that gRel takes ads to ads.

10.5. The functor Ψ′′. In this section we give a schematic version of

ad
Z[π1Z]
Rel . First we need to define the concept of schematic Z[π1Z]op⊗Z[π1Z]

module.
There is an isomorphism

κ : Z[π1Z]op ⊗ Z[π1Z] ∼= Z[π1(Z × Z)]

which takes δ ⊗ δ′ to δ−1 × δ′, where δ and δ′ are path homotopy classes in
Z.

Definition 10.18. (i) A schematic module over Z[π1Z]op ⊗ Z[π1Z] is a
schematic module, in the sense already defined, over Z[π1(Z × Z)].

(iii) For a schematic Z[π1Z]op ⊗ Z[π1Z] module ((z1, z2),A), define

(Z[π1Z]op ⊗ Z[π1Z])〈(z1, z2),A〉
to be the module induced from Z[π1(Z×Z)]〈(z1, z2),A〉 by the isomorphism
κ.

Definition 10.19. (i) A schematic Relaxed quasi-symmetric complex of di-
mension n is a quadruple (C,E, γ, φ), where C is a schematic Z[π1Z] chain
complex, E is a schematic Z[π1Z]op ⊗ Z[π1Z] chain complex, Z[π1Z]〈C〉 is
homotopy finite, (Z[π1Z]op ⊗ Z[π1Z])〈E〉 is a homotopy finite chain com-
plex over Z[π1Z]op ⊗ Z[π1Z] with a Z/2 action for which the generator
acts quasi-linearly, γ is a Z/2 equivariant quasi-isomorphism (Z[π1Z]〈C〉)t⊗
Z[π1Z]〈C〉 → (Z[π1Z]op⊗Z[π1Z])〈E〉 of Z[π1Z]op⊗Z[π1Z] chain complexes,

and φ is an n-dimensional element of (Z⊗Z[π1Z] (Z[π1Z]op⊗Z[π1Z])〈E〉)Z/2.

(ii) We define a category AZ[π1Z]
Rel,sch as follows. The objects of AZ[π1Z]

Rel,sch are the

schematic Relaxed quasi-symmetric complexes. A morphism (C,E, γ, φ) →
(C′,E′, γ′, φ′) is a pair (f1 : Z[π1Z]〈C〉 → Z[π1Z]〈C′〉, f2 : (Z[π1Z]op ⊗
Z[π1Z])〈E〉 → (Z[π1Z]op ⊗ Z[π1Z])〈E′〉), where f1 is a map of Z[π1Z] chain
complexes and f2 is a Z/2 equivariant map of Z[π1Z]op⊗Z[π1Z] chain com-
plexes, such that f2γ = γ′(f1⊗f1), and (if dimφ = dimφ′) (1⊗f2)∗(φ) = φ′.
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There is a functor
ΘRel : AZ[π1Z]

Rel,sch → A
Z[π1Z]
Rel

which takes (C,E, γ, φ) to (Z[π1Z]〈C〉, (Z[π1Z]op ⊗ Z[π1Z])〈E〉, γ, φ); this is
an equivalence of categories.

Definition 10.20. A K-ad with values in AZ[π1Z]
Rel,sch is a pre K-ad F for which

ΘRel ◦ F is an ad.

The proof of [LM, Proposition B.22] shows that ad
Z[π1Z]
Rel,sch is an ad theory

and that ΘRel induces an isomorphism of bordism groups.
Next we consider functoriality. Let g : Z → Z ′ be a continuous function.

Definition 10.21. Define a functor

gRel,sch : AZ[π1Z]
Rel,sch → A

Z[π1Z′]
Rel,sch

as follows. For an object (C,E, γ, φ) of AZ[π1Z]
Rel,sch, let

gRel,sch(C,E, γ, φ) = (gschC, (g × g)schE, δ, ψ),

where gsch and (g × g)sch are defined in Subsection 10.1, and (letting
C = Z[π1Z]〈C〉 and E = (Z[π1Z]op ⊗ Z[π1Z])〈E〉, and using the notation
of Definitions 10.17 and 10.18(ii) and the isomorphism of Lemma 10.5) δ is
defined by the diagram

Z[π1Z
′]〈gschC〉t ⊗ Z[π1Z

′]〈gschC〉
δ //

∼=
��

(Z[π1Z
′]op ⊗ Z[π1Z

′])〈(g × g)schE〉
∼=
��

(Kang∗(C))t ⊗ (Kang∗(C))
γ′ // Kang∗⊗g∗(E)

and ψ is the image of φ′ under the isomorphism

(Z ⊗Z[π1Z′] Kang∗⊗g∗E)Z/2

∼= (Z ⊗Z[π1Z′] (Z[π1Z
′]op ⊗ Z[π1Z

′])〈(g × g)schE〉)Z/2.

The proof of [LM, Proposition B.25] shows that gRel,sch takes ads to ads.
The reader can check that if g′ : Z ′ → Z ′′ is another continuous function

then (g′g)Rel,sch = g′Rel,schgRel,sch, so ad
Z[π1Z]
Rel,sch is a functor of Z as required.

We can now define Ψ′′ by

Ψ′′(Z) = Q
Z[π1Z]
Rel,sch,≥0.

10.6. Background for the map Ψ′ → Ψ′′. Recall Remark 7.6. In the next

subsection we will define Ψ′ to be a certain schematic version of Q
Z[π1Z]
fin . In

this subsection, as preparation for the construction of the map Ψ′ → Ψ′′, we
give the nonschematic version of this map.

To do this, we will give a map

Π : AZ[π1Z]
fin → AZ[π1Z]

Rel
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(following [LM, Remarks B.6 and B.9]).
Recall Notation 10.6. For a chain complex C over Z[π1Z], let (Ct ⊗C)W

be the chain complex over Z[π1Z]op ⊗ Z[π1Z] with

((Ct ⊗ C)W )(z1,z2) = (Ctz1 ⊗ Cz)
W

When C is finite, (Ct⊗C)W is (additively) a direct sum of copies of Ct⊗C,
and hence the natural map

Z ⊗Z[π1Z] ((Ct ⊗ C)W )→ (Z ⊗Z[π1Z] (Ct ⊗ C))W

is an isomorphism because tensor product preserves direct sums.
Now define Π by

Π(C,ϕ) = (C, (Ct ⊗ C)W , γ, φ),

where γ : Ct⊗C → (Ct⊗C)W is induced by the augmentation W → Z and
φ is the image of ϕ under the composite

((Ct ⊗ C)W )Z/2 ∼= ((Z ⊗Z[π1Z] (Ct ⊗ C))W )Z/2

∼= (Z ⊗Z[π1Z] ((Ct ⊗ C)W ))Z/2

(where the first isomorphism is Remark 7.5).
Π takes ads to ads, and and the proof of [LM, Proposition B.17] shows

that it induces an isomorphism of bordism groups.

Remark 10.22. Consider the following diagram, where the left vertical
arrow was given in Remark 7.6, the map Λ in Remark 10.16, and the lower
horizontal map in Remark 8.1:

AZ[π1Z]
fin

Π //

��

AZ[π1Z]
Rel

Λ
��

AZ[π1Z] // AZ[π1Z]
rel .

The diagram commutes up to natural isomorphism, so the following diagram
homotopy commutes, by the analog of [LM, Proposition 14.5].

Q
Z[π1Z]
fin

Π //

��

Q
Z[π1Z]
Rel

Λ
��

QZ[π1Z] // Q
Z[π1Z]
rel .

10.7. The functor Ψ′ and the map Ψ′ → Ψ. Our first task is to give a

suitable schematic version AZ[π1Z]
fin,sch of AZ[π1Z]

fin . The obvious choice would be

the subcategory of AZ[π1Z]
sch consisting of objects (C, ϕ) for which Z[π1Z]〈C〉

is finite, but there is no reasonable way to give a map from this to AZ[π1Z]
Rel,sch;

the difficulty is that given an object (C, ϕ) there is no reasonable choice for
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E. We will therefore build a choice for E into the definition of the category

AZ[π1Z]
fin,sch .

Definition 10.23. Let C be a chain complex over Z[π1Z] (resp., Z[π1Z]op⊗
Z[π1Z]). A schematic model for C is a pair (C, λ), where C is a schematic
chain complex over Z[π1Z] (resp., Z[π1Z]op ⊗ Z[π1Z]) and λ is an isomor-
phism Z[π1Z]〈C〉 → C (resp., (Z[π1Z]op ⊗ Z[π1Z])〈C〉 → C).

Definition 10.24. Define a category AZ[π1Z]
fin,sch as follows. An object is a

quadruple
(C, ϕ,E, λ)

where (C, ϕ) is an object of AZ[π1Z]
sch with Z[π1Z]〈C〉 finite and (E, λ)

is a schematic model for ((Z[π1Z]〈C〉)t ⊗ Z[π1Z]〈C〉)W . The morphisms

(C, ϕ,E, λ)→ (C′, ϕ′,E′, λ′) are the morphisms (C, ϕ)→ (C′, ϕ′) in AZ[π1Z]
sch .

Note that the definition of morphism does not involve the schematic model
(E, λ). Because of this, the functor

Θfin : AZ[π1Z]
fin,sch → A

Z[π1Z]
fin

which takes (C, ϕ,E, λ) to (Z[π1Z]〈C〉, ϕ) is an equivalence of categories.

Definition 10.25. An ad with values in AZ[π1Z]
fin,sch is a pread whose composite

with Θfin is an ad.

The proof of Proposition 10.9 shows that this gives an ad theory and that

the map ad
Z[π1Z]
fin,sch → ad

Z[π1Z]
fin induces an isomorphism of bordism groups.

Next we show that ad
Z[π1Z]
fin,sch is a functor of Z. Let g : Z → Z ′ be a

continuous map, and define a functor

gfin,sch : AZ[π1Z]
fin,sch → A

Z[π1Z′]
fin,sch

by
gfin,sch(C, ϕ,E, λ) = (gsym

sch (C, ϕ), (g × g)schE, λ′)
where gsym

sch was defined in Subsection 10.2 and λ′ is the following composite
(where the first isomorphism is given by Lemma 10.5)

(Z[π1Z
′]op ⊗ Z[π1Z

′])〈(g × g)schE〉 ∼= Kang∗⊗g∗((Z[π1Z]op ⊗ Z[π1Z])〈E〉)
Kang∗⊗g∗ (λ)−−−−−−−−→ Kang∗⊗g∗(((Z[π1Z]〈C〉)t ⊗ Z[π1Z]〈C〉)W )

∼= (Kang∗⊗g∗((Z[π1Z]〈C〉)t ⊗ Z[π1Z]〈C〉))W

∼= ((Z[π1Z
′]〈gschC〉)t ⊗ Z[π1Z

′]〈gschC〉)W .
gfin,sch takes ads to ads by Proposition 10.11. We leave it to the reader to

check that if g′ : Z ′ → Z ′′ then (g′g)fin,sch = g′fin,schgfin,sch.
Now we can define

Ψ′(Z) = Q
Z[π1Z]
fin,sch,≥0.
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The functor
Ψ′ → Ψ

is induced by the map

AZ[π1Z]
fin,sch → A

Z[π1Z]
sch

which takes (C, ϕ,E, λ) to (C, ϕ).

10.8. The map Ψ′ → Ψ′′. In order to define the map Ψ′ → Ψ′′, we first
define

Πsch : AZ[π1Z]
fin,sch → A

Z[π1Z]
Rel,sch

as follows.
On objects, Πsch is defined by

Πsch(C, ϕ,E, λ) = (C,E, γ, φ);

here γ is the composite

(Z[π1Z]〈C〉)t ⊗ Z[π1Z]〈C〉 → ((Z[π1Z]〈C〉)t ⊗ Z[π1Z]〈C〉)W

λ−1

−−→ (Z[π1Z]op ⊗ Z[π1Z])〈E〉,
(where the first map is induced by the augmentation W → Z), and (writing
C for Z[π1Z]〈C〉 and E for (Z[π1Z]op ⊗ Z[π1Z])〈E〉) φ is the image of ϕ
under the composite

((Ct ⊗ C)W )Z/2 ∼= ((Z ⊗Z[π1Z] (Ct ⊗ C))W )Z/2

∼= (Z ⊗Z[π1Z] ((Ct ⊗ C)W ))Z/2
1⊗λ−1

−−−−→ (Z ⊗Z[π1Z] E)Z/2

(where the first isomorphism is Remark 7.5).
To define Πsch on morphisms, recall that a morphism (C, ϕ,E, λ) →

(C′, ϕ′,E′, λ′) is just a map of chain complexes f : Z[π1Z]〈C〉 → Z[π1Z]〈C′〉
(such that (f ⊗ f) ◦ ϕ = ϕ′ if dimϕ = dimϕ′). We define Πsch of such a
morphism to be the morphism (f, f1), where f1 is the composite

(Z[π1Z]op ⊗ Z[π1Z])〈E〉 λ−→ ((Z[π1Z]〈C〉)t ⊗ Z[π1Z]〈C〉)W

(f⊗f)W−−−−−→ ((Z[π1Z]〈C′〉)t ⊗ Z[π1Z]〈C′〉)W

(λ′)−1

−−−−→ (Z[π1Z]op ⊗ Z[π1Z])〈E′〉.
To see that Πsch takes ads to ads, consider the diagram

AZ[π1Z]
fin,sch

Πsch //

Θfin
��

AZ[π1Z]
Rel,sch

ΘRel
��

AZ[π1Z]
fin

Π // AZ[π1Z]
Rel ,

where Θfin was defined in Subsection 10.7, ΘRel in Subsection 10.5, and Π
in Subsection 10.6. The diagram commutes up to natural isomorphism. We
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need to show that if F is an ad with values in AZ[π1Z]
fin,sch then Πsch ◦ F is an

ad, and for this it suffices by Definition 10.20 to show that ΘRel ◦ Πsch ◦ F
is an ad, and for this in turn it suffices to show that Π ◦ Θfin ◦ F is an ad.
But Θfin ◦ F is an ad by Definition 10.25, and Π takes ads to ads.

Now we can define the map

Ψ′ → Ψ′′

to be the map

Q
Z[π1Z]
fin,sch,≥0 → Q

Z[π1Z]
Rel,sch,≥0

induced by Πsch.
To see that this map is an equivalence, we only need to observe that in

the diagram above the two vertical maps and the lower horizontal map all
induce isomorphisms of bordism groups.

10.9. Background for Φ′. Recall that Φ(Z) = QIP,Z . We need to create
a functor Φ′ which is equivalent to Φ and has a symmetric signature map to
Ψ′′. For this we need a suitable ad theory for each Z, and for this in turn we
need a category A for each Z. We have seen in Subsection 6.1 that QIPFun

is equivalent to QIP and has a symmetric signature map to QZ
rel,≥0, which

suggests that we could let the objects of A be the pairs (f : X → Z, ξ),
where ξ is a representative for the fundamental class. However, this does

not map to AZ[π1Z]
Rel,sch, because an object of AZ[π1Z]

Rel,sch has the form (C,E, γ, φ)

and a pair (f : X → Z, ξ) does not give a canonical choice for C and E. This
suggests that, as in Subsection 10.7, we should include schematic models
(C, λ1) and (E, λ2) as part of the structure of an object of A (we’ll say
later what these are models of). Unfortunately, this still isn’t functorial
(cf. the proof of Lemma 10.33(i)). For functoriality, we need to add another
ingredient, namely the intersection chains that are compatible with a certain
open cover of X.

In this subsection we work out the theory of this additional ingredient,
and in the next subsection we combine this with the other ingredients to
create Φ′.

First we need some terminology and notation.
Let U be an open covering of a space X. For each perversity p̄ we write

ISp̄,U∗ (X;Z) for the subcomplex of ISp̄∗(X;Z) generated by the subcomplexes
ISp̄∗(U ;Z) with U ∈ U (this is somewhat different from the notation in
[FM13b, Section 6]).

Remark 10.26. [F07, Proposition 2.9] shows that the inclusion

ISp̄,U∗ (X;Z)→ ISp̄∗(X;Z)

is a quasi-isomorphism.

Definition 10.27. Let f : X → Z be an object of AIP,Z . The open cover
UX of X consists of the contractible open sets.
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Define a category AIP,Z,Fun as follows. The objects are pairs (f : X →
Z, ξ), where f is an object of AIP,Z and ξ is an element of IS0̄,UX

∗ (X;Z)

whose image in IS0̄
∗(X, ∂X;Z) represents the fundamental class ΓX ∈

IH 0̄
n(X, ∂X;Z); there is also an empty object of dimension n for each n. The

morphisms (f : X → Z, ξ) → (f ′ : X ′ → Z, ξ′) are morphisms g : X → X ′

in AIP,Z which, if the dimensions are equal, have the property that g∗ξ = ξ′.

Definition 10.28. Define adIP,Z,Fun(K) ⊂ prekIP,Z,Fun(K) to be the set of
functors F such that

(a) F is balanced,
(b) the composite of F with the forgetful functor AIP,Z,Fun → AIP is

an element of adkIP(K), and
(c) for each oriented cell (σ, o) of K, the equation

∂ξσ,o =
∑

ξσ′,o′

holds, where σ′ runs through the cells of ∂σ and o′ is the orientation for
which the incidence number [o, o′] is (−1)k.

Proposition 10.29. adIP,Z,Fun is a connective ad theory.

Proof. We only need to check parts (f) and (g) of [LM13, Definition 3.10].
For the proof of (f), we may assume that K and K ′ are as in the corre-

sponding part of the proof of Theorem 4.4. Let F be a K ′-ad and write

F (σ, o) = (fσ : Xσ,o → Z, ξ(σ,o)).

Let Yσ be the underlying ∂-IP-space of Xσ,o (forgetting the orientation). Let

Yτ = colim
σ∈K′

Yσ.

The proof of Theorem 4.4 shows that Yτ is a ∂-IP-space and that an orien-
tation o of τ determines an orientation of Yτ ; we let Xτ,o be Yτ with this
orientation. Let fτ : Xτ,o → Z be the map induced by the fσ. As in the
proof of Proposition 6.2, let

ξτ,o =
∑
σ∈K′

ξσ,oσ .

ξτ,o is in IS
0̄,UXτ,o
∗ (Xτ,o;Z), because by Lemma 6.7 every contractible open

set of Xσ,oσ is contained in a contractible open subset of Xτ,o. The desired
result now follows from the proofs of Theorem 4.4 and Proposition 6.2.

For the proof of (g), let F be a K-ad, and write

F (σ, o) = (fσ : Xσ,o → Z, ξσ,o).

As in the proof of Proposition 6.2, we only need to specify J(F ) for oriented
cells of the form (σ × I, o× o′) where o′ is the standard orientation. Let

gσ : Xσ,o × I → Z
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be the composite of fσ with the projection. Let s : ∆1 → I be the stan-
dard oriented homeomorphism. Recall the relative barycentric subdivision
construction from [Mu84, Section 16]. For each σ we can apply iterated
barycentric subdivision to ξσ,o × s, while holding fixed any faces that land

in Xσ,o × {0, 1}, to obtain an element ησ,o ∈ IS0̄,UXσ,o (Xσ,o × I,Z). Now let

J(F )(σ × I, o× o′) = (gσ : Xσ,o × I → Z, ησ,o).

�

The forgetful functor

Υ : AIP,Z,Fun → AIP,Z

gives a morphism adIP,Z,Fun → adIP,Z of ad theories.

Proposition 10.30. The map

QΥ : QIP,Z,Fun → QIP,Z

induced by Υ is a weak equivalence.

Proof. We need to show that the map of bordism groups

ΩΥ : (ΩIP,Z,Fun)∗ → (ΩIP,Z)∗

is an isomorphism.
To see that it is onto, let f : X → Z be an element of adIP,Z(∗). Let ξ ∈

IS0̄(X;Z) represent the fundamental class, and apply iterated barycentric

subdivision to ξ to get an element η ∈ IS0̄,UX
∗ (X;Z). Then f : X → Z is

equal to Υ(f : X → Z, η).
Next we claim that if (f : X → Z, ξ1) and (f : X → Z, ξ2) are elements

of adIP,Z,Fun(∗) with the same f then they represent the same element of
(ΩIP,Z,Fun)∗. Let g : X × I → Z be the composite of f with the projection.

The proof of [LM13, Lemma 8.2] gives an element η ∈ IS0̄(X × I;Z) with
∂η = ξ2 − ξ1. Applying iterated barycentric subdivision, holding fixed any
faces that land in X ×{0, 1}, gives an element η′ ∈ IS0̄,UX×I (X × I;Z) with
∂η′ = ξ2 − ξ1. Now let F be the I-ad which takes the cells 0, 1 and I (with
their standard orientations) respectively to (f, ξ1), (f, ξ2), and (g, η′); then
F is the desired bordism.

Now to see that ΩΥ is 1-1, let (f1 : X1 → Z, ξ1) and (f2 : X2 → Z, ξ2) be
elements of adIP,Z,Fun(∗), and let F ∈ adIP,Z(I) be an ad which takes 0 and
1 (with their standard orientations) to f1 and f2. Write g : Y → Z for the

image of I (with its standard orientation) under F . Let η ∈ IS0̄(Y ;Z) be a
representative of the fundamental class of Y , and apply iterated barycentric
subdivision to get an element η′ ∈ IS0̄,UY (Y ;Z). Then we can write

∂η′ = θ1 − θ2,

where θi ∈ IS0̄,UXi (Xi;Z) is a representative for the fundamental class of
Xi. Now we have an ad G in adIP,Z,Fun(I) which takes 0, 1 and I (with their
standard orientations) respectively to (f1 : X1 → Z, θ1), (f2 : X2 → Z, θ2),
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and (f : Y → Z, η′). This shows that (f1 : X1 → Z, θ1) and (f2 : X2 → Z, θ2)
represent the same element of (ΩIP,Z,Fun)∗, and by the previous paragraph
we see that (f1 : X1 → Z, ξ1) and (f2 : X2 → Z, ξ2) represent the same
element of (ΩIP,Z,Fun)∗. �

Remark 10.31. We make AIP,Z,Fun a functor of Z by letting g : Z → W
take (f : X → Z, ξ) to (g ◦f : X →W, ξ); this takes ads to ads by Definition
10.28.

10.10. The functor Φ′. We need a preliminary definition.

Definition 10.32. Let f : X → Z be an object of AIP,Z .

(i) For each z ∈ Z, let Z̃z → Z be the universal cover consisting of path
homotopy classes of paths starting at z.

(ii) Let Cf :X→Z be the chain complex of left Z[π1Z] modules with

(Cf :X→Z)z = IS
n̄,Uf∗(Z̃z)
∗ (f∗(Z̃z);Z).

(iii) Let Ef :X→Z be the chain complex of left Z[π1Z]op⊗Z[π1Z] modules
with

(Ef :X→Z)(z,z′) = IS
Qn̄,n̄,Uf∗(Z̃z)×f∗(Z̃z′ )
∗ (f∗(Z̃z)× f∗(Z̃z′);Z).

Now define a category AIP,Z,Fun,sch as follows. The objects are sextuples

(f : X → Z, ξ,C, λ1,E, λ2),

where (f : X → Z, ξ) is an object of AIP,Z,Fun, (C, λ1) is a schematic model
for Cf :X→Z , and (E, λ2) is a schematic model for Ef :X→Z . A morphism
(f : X → Z, ξ,C, κ,E, λ) → (f ′ : X ′ → Z, ξ′,C′, κ′,E′, λ′) is a morphism
(f : X → Z, ξ)→ (f ′ : X ′ → Z, ξ′) in AIP,Z,Fun.

There is a forgetful functor AIP,Z,Fun,sch → AIP,Z,Fun, and we define
adIP,Z,Fun,sch(K) ⊂ preIP,Z,Fun,sch(K) to be the set of functors F such that

the composite of F with the forgetful functor is an element of adkIP,Z,Fun(K).
Lemma 10.3 shows that the forgetful functor is an equivalence of categories,
and then the proof of Proposition 10.9 shows that adIP,Z,Fun,sch is an ad
theory and that the forgetful functor induces an isomorphism of bordism
groups (ΩIP,Z,Fun,sch)∗ → (ΩIP,Z,Fun)∗.

In order to make adIP,Z,Fun,sch a functor of Z we need a lemma. Recall
Notation 10.4.

Lemma 10.33. Let g : Z →W .
(i) For each z ∈ Z there is a canonical isomorphism

Z[π1(W, g(z))]⊗Z[π1(Z,z)] (Cf :X→Z)z ∼= (Cg◦f :X→W )g(z),

and for each pair (z, z′) there is a canonical isomorphism

Z[π1(W ×W, (g(z), g(z′)))]⊗Z[π1(Z×Z,(z,z′))] (Ef :X→Z)(z,z′)

∼= (Eg◦f :X→W )(g(z),g(z′)).
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(ii) There are canonical isomorphisms

Kang∗Cf :X→Z ∼= Cg◦f :X→W

and
Kang∗⊗g∗Ef :X→Z ∼= Eg◦f :X→W

Proof. We give the proofs for Cf :X→Z ; the proofs for Ef :X→Z are similar.

Proof of (i). The left action of π1(Z, z) on Z̃z is given by

δ · ε = εδ−1.

There is a homeomorphism

π1(W, g(z))×π1(Z,z) Z̃z → g∗W̃g(z)

which takes (α, ε) to (ε(1), (g ◦ ε)α−1). Pulling back to X gives a homeo-
morphism

π1(W, g(z))×π1(Z,z) f
∗Z̃z ≈ f∗(π1(W, g(z))×π1(Z,z) Z̃z)

≈−→ f∗g∗W̃g(z)

≈ (g ◦ f)∗W̃g(z).

Since (by Definition 10.27) the restriction of f∗Z̃z to each U ∈ Uf∗Z̃z is

trivial, the canonical map

Z[π1(W, g(z))]⊗Z[π1(Z,z)] IS
n̄
∗ (T ;Z)→ ISn̄∗ (π1(W, g(z))×π1(Z,z) T ;Z)

is an isomorphism for each T ∈ Uf∗Z̃z . Now the following composite (where

the first and fourth isomorphisms are given by [FM13b, Proposition 6.3]) is
the required isomorphism.

Z[π1(W, g(z))]⊗Z[π1(Z,z)] (Cf :X→Z)z

= Z[π1(W, g(z))]⊗Z[π1(Z,z)] IS
n̄,Uf∗Z̃z
∗ (f∗Z̃z;Z)

∼= Z[π1(W, g(z))]⊗Z[π1(Z,z)] colim ISn̄∗ (T ;Z)

∼= colim(Z[π1(W, g(z))]⊗Z[π1(Z,z)] IS
n̄
∗ (T ;Z))

∼= colim ISn̄∗ (π1(W, g(z))×π1(Z,z) T ;Z)

∼= IS
n̄,U(g◦f)∗W̃g(z)
∗ ((g ◦ f)∗W̃g(z);Z) = (Cg◦f :X→W )g(z)

Proof of (ii). As z varies, the following composite (where the second map
is the isomorphism from part (i)) gives a map of Z[π1Z] modules:

(Cf :X→Z)z → Z[π1(W, g(z))]⊗Z[π1(Z,z)] (Cf :X→Z)z
∼=−→ (Cg◦f :X→W )g(z),

and this induces a map of Z[π1W ] modules

h : Kang∗Cf :X→Z → Cg◦f :X→W .



L-FUNDAMENTAL CLASS FOR IP-SPACES AND THE NOVIKOV CONJECTURE 55

It suffices to show that hg(z) is an isomorphism for any z. By Remark B.3,
it suffices to show that the composite

Z[π1(W, g(z)]⊗Z[π1(Z,z)] (Cf :X→Z)z ∼= (Kang∗(Cf :X→Z))g(z)
hg(z)−−−→ (Cg◦f :X→W )g(z)

is an isomorphism. But this composite is the same as the map in part (i),
since both are Z[π1(W, g(z)] linear and they agree on (Cf :X→Z)z. �

Now for a map g : Z →W we define a functor

gFun,sch : AIP,Z,Fun,sch → AIP,W,Fun,sch

by

gFun,sch(f : X → Z, ξ,C, λ1,E, λ2)

= (g ◦ f : X →W, ξ, gschC, λ′1, (g × g)schE, λ′2),

where λ′1 is the composite

Z[π1W ]〈gschC〉 ∼= Kang∗Z[π1Z]〈C〉 Kang∗λ1−−−−−→ Kang∗Cf :X→Z
∼= Cg◦f :X→W

(where the first isomorphism is Lemma 10.5 and the second is Lemma 10.33)
and λ2 is the composite

(Z[π1W ]op ⊗ Z[π1W ])〈(g × g)schE〉
∼= Kang∗⊗g∗(Z[π1Z]op ⊗ Z[π1Z])〈E〉

Kang∗⊗g∗λ2−−−−−−−−→ Kang∗⊗g∗Ef :X→Z ∼= Eg◦f :X→W

gFun,sch takes ads to ads by Remark 10.31, and thus adIP,Z,Fun,sch is a
functor of Z as required.

We now define
Φ′(Z) = QIP,Z,Fun,sch

10.11. Symmetric signature. First we give the analog of a definition from
Section 8.

Definition 10.34. For an object f : X → Z of AIP,Z , define Af :X→Z to be
the chain complex of left Z[π1Z] modules with

(Af :X→Z)z = IS
0̄,Uf∗Zz
∗ (f∗Zz;Z).

For each z ∈ Z, the canonical map

Z⊗Z[π1(Z,z)] (Af :X→Z)z = Z⊗Z[π1(Z,z)] IS
0̄,Uf∗Zz
∗ (f∗Zz;Z)→ IS0̄UX

∗ (X;Z)
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is an isomorphism, because it is the same as the following composite (where
the first and fourth isomorphisms are given by [FM13b, Proposition 6.3]):

Z⊗Z[π1(Z,z)] IS
0̄,Uf∗Zz
∗ (f∗Zz;Z) ∼= Z⊗Z[π1(Z,z)] colim IS0̄

∗(V ;Z)

∼= colim(Z⊗Z[π1(Z,z)] IS
0̄
∗(V ;Z)) ∼= colim IS0̄

∗(U ;Z) ∼= IS0̄,UX
∗ (X;Z).

Recall that we write Z for the constant Z[π1Z] module with value Z. Using
Remark 7.1, we obtain an isomorphism

Z ⊗Z[π1Z] Af :X→Z ∼= Z⊗Z[π1(Z,z)] (Af :X→Z)z ∼= IS0̄,UX
∗ (X;Z)

which the reader can check is independent of the choice of z.

Definition 10.35. Define a functor

sig : AIP,Z,Fun,sch → A
Z[π1Z]
Rel,sch

by
sig(f : X → Z, ξ,C, λ1,E, λ2) = (C,E, γ, φ),

where γ is the composite

(Z[π1Z]〈C〉)t ⊗ Z[π1Z]〈C〉 λ1⊗λ1−−−−→ (Cf :X→Z)t ⊗ Cf :X→Z
×−→ Ef :X→Z

λ−1
2−−→ (Z[π1Z]op ⊗ Z[π1Z])〈E〉

and φ is the image of ξ under the following composite (where the arrow is
induced by the diagonal map):

IS0̄,UX
∗ (X;Z) ∼= Z ⊗Z[π1Z] Af :X→Z → Z ⊗Z[π1Z] Ef :X→Z .

1⊗λ−1
2−−−−→ Z ⊗Z[π1Z] (Z[π1Z]op ⊗ Z[π1Z])〈E〉

The definitions show that sig is a natural transformation as Z varies.

Proposition 10.36. If K is strict and F ∈ adkIP,Z,Fun,sch(K) then sig ◦F ∈
(ad

Z[π1Z]
Rel,sch,≥0)k(K).

Proof. Let F ∈ adIP,Z,Fun,sch(K). By Definition 10.20 we need to show that
ΘRel ◦ sig ◦ F is an ad, and for this we need to show (see Remark 10.16)
that ΘRel ◦ sig ◦ F is closed and well-behaved and that its composite with
the map

Λ : AZ[π1Z]
Rel → AZ[π1Z]

rel

satisfies the analog of [LM, part (i)(b) of Definition 12.10].
ΘRel ◦ sig ◦ F is closed by property (c) of Definition 10.28.
For the proof that ΘRel◦sig◦F is well-behaved, first note that by Definition

10.28(a), F is balanced, so we can write

F (σ, o) = (fσ : Xσ,o → Z, ξσ,o,Cσ, (λ1)σ,Eσ, (λ2)σ).

Also write Yσ for the underlying ∂-IP-space of Xσ,o (forgetting the orien-
tation). It suffices to show that the functors Cfσ :Yσ→Z and Efσ :Yσ→Z are
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well-behaved. We will prove this for the first, the proof for the second is
similar.

Choose z ∈ Z. It suffices to show that the functor IS
n̄,Uf∗σ(Z̃z)

i (f∗σ(Z̃z);Z)
is well-behaved. Let σ ∈ K, and for each τ ⊂ σ let Wτ be the collection of
all intersections of sets in UYτ , and for each U ∈ Wτ let Ũ be the inverse

image of U in f∗τ (Z̃z). The map

colim
U∈Wτ

ISn̄i (Ũ ;Z)→ IS
n̄,Uf∗τ (Z̃z)

i (f∗τ (Z̃z);Z)

is an isomorphism for each τ by [FM13b, Proposition 6.3], so the well-
behavedness will be an immediate consequence of Lemma D.1(iii), with S =
∪τ⊂σWτ and S ′ = ∪τ∈∂σWτ , once we verify the hypotheses of that Lemma.
Hypothesis (a) follows from Definition 10.27, and hypothesis (b) is part (iii)
of Lemma 10.37 below. For hypothesis (c), it suffices to show that for each
U ∈ S the map

ISn̄i (U ;Z)/ colim
V ∈S with V (U

ISn̄i (V ;Z)→ Si(U ;Z)/ colim
V ∈S with V (U

Si(V ;Z)

is a monomorphism (because the target of this map is free over Z) and this
follows from parts (iii) and (ii) of Lemma 10.37. This concludes the proof
that sig ◦ F is well-behaved.

To see that Λ ◦ ΘRel ◦ sig ◦ F satisfies the analog of [LM, part (i)(b) of
Definition 12.10], we first observe that the map

IS
n̄,Uf∗σ(Z̃z)
∗ (f∗σ(Z̃z);Z)→ ISn̄∗ (f∗σ(Z̃z);Z)

is a quasi-isomorphism by Remark 10.26, and that, if S ′ is as above, the
composite

colim
τ⊂∂σ

IS
n̄,Uf∗τ (Z̃z)
∗ (f∗τ (Z̃z);Z) ∼= colim

U∈S′
ISn̄∗ (Ũ ;Z)→ ISn̄∗ (∂f∗σ(Z̃z);Z)

is a quasi-isomorphism by Lemma 10.37(iv). It therefore suffices to show
that the map

H∗(HomZ[π1(Z,z)](IS
n̄
∗ (f∗σ(Z̃z);Z),Z[π1(Z, z)])

\((1⊗γσ)∗)−1([φσ ])−−−−−−−−−−−−→ IH n̄
dimσ−k−∗(f

∗
σ(Z̃z), ∂f

∗
σ(Z̃z);Z)

is an isomorphism for each σ. The rest of the proof is the same as the
corresponding part of the proof of Proposition 6.6, except that Yσ is replaced
by f∗σ(Z̃z). �

With notation as in the proof of well-behavedness in Proposition 10.36,
say that a subset T of S is saturated if for every U ∈ T we have {V |V ∈
S and V ⊂ U} ⊂ T . For every saturated T , write XT for colimU∈T U ,
and give this the filtration which restricts to the filtration of Proposition
A.2 on each U ∈ T (note that an open subset of a ∂-pseudomanifold is a

∂-pseudomanifold by [F, Lemma 2.7.7]). Write X̃T for colimU∈T Ũ .
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Lemma 10.37. (i) For every pair of saturated sets T ′ ⊂ T , there is a neigh-
borhood W of XT ′ in XT such that the inclusion XT ′ → W is a stratified
deformation retract, where the retraction r : W → XT ′ has the property that
r(x) ∈ U whenever x ∈ U ∈ T .

(ii) For every saturated T and every i ∈ Z, the intersection of
ISn̄i (XK ;Z) and

∑
U∈T Si(U ;Z) (considered as subgroups of Si(XK ;Z)) is∑

U∈T IS
n̄
i (U).

(iii) If K is strict then for every saturated T the map

colim
U∈T

ISn̄∗ (U ;Z)→
∑
U∈T

ISn̄∗ (U ;Z)

is an isomorphism.
(iv) For every saturated T the map

colim
U∈T

ISn̄∗ (Ũ ;Z)→ ISn̄∗ (X̃T )

is a quasi-isomorphism.

The proof is the same as the proof of Lemma 6.7.

10.12. Proof of Lemma 10.13. We need to show that α−1[X]IP is taken
to [X]L by the composite

X+ ∧QIP
'←− X+ ∧QIP,∗,Fun,sch

1∧sig−−−→ X+ ∧QZ
Rel,sch,≥0

'←− X+ ∧QZ
fin,sch,≥0

→ X+ ∧QZ
sch,≥0 → X+ ∧QZ

≥0.

This is the same as the composite

X+ ∧QIP
'←− X+ ∧QIP,∗,Fun,sch

1∧sig−−−→ X+ ∧QZ
Rel,sch,≥0 → X+ ∧QZ

Rel,≥0

'←− X+ ∧QZ
fin,≥0 → X+ ∧QZ

≥0,

which by Remark 10.22 is homotopic to the composite

X+ ∧QIP
'←− X+ ∧QIP,∗,Fun,sch

1∧sig−−−→ X+ ∧QZ
Rel,sch,≥0 → X+ ∧QZ

Rel,≥0

1∧Λ−−→ X+ ∧QZ
rel,≥0

'←− X+ ∧QZ
≥0.

Now Lemma 10.13 follows from Definition 9.6(ii) and

Lemma 10.38. The diagram

QIP,∗,Fun,sch
sig //

��

QZ
Rel,sch,≥0

��
QZ

Rel,≥0

Λ
��

QIPFun
sig // QZ

rel,≥0
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commutes up to homotopy, where the upper map was constructed in Subsec-
tion 10.11, the lower map in Subsection 6.3, and the left map is induced by
the forgetful functor.

Proof. By the analog of [LM, Proposition 14.5], it suffices to give a natural
quasi-isomorphism ν from the composite

AIP,∗,Fun,sch
sig−→ AZ

Rel,sch → AZ
Rel

Λ−→ AZ
rel

to the composite

AIP,∗,Fun,sch → AIPFun
sig−→ AZ

rel.

By Definition 10.32, Cf :X→∗ = ISn̄,UX∗ (X;Z) and Ef :X→∗ = IS
Qn̄,n̄,UX×X
∗ (X×

X;Z), and by Definition 10.34 we have Af :X→∗ = IS0̄,UX
∗ (X;Z). Thus the

first composite takes the object

(X → ∗, ξ,C, λ1,E, λ2)

to
(Z〈C〉,Z〈E〉, β, ϕ),

where β is the map

(Z〈C〉)t⊗Z〈C〉 λ1⊗λ1−−−−→ (ISn̄,UX∗ (X;Z))t⊗ISn̄,UX∗ (X;Z)
×−→ IS

Qn̄,n̄,UX×X
∗ (X×X;Z)

λ−1
2−−→ Z〈E〉

and ϕ is the image of ξ under the diagonal map

IS0̄,UX
∗ (X;Z)→ IS

Qn̄,n̄,UX×X
∗ (X ×X;Z).

The second composite takes (X → ∗, ξ,C, λ1,E, λ2) to

(ISn̄∗ (X;Z), IS
Qn̄,n̄
∗ (X ×X;Z), β′, ϕ′),

where β′ is the map

(ISn̄∗ (X;Z))t ⊗ ISn̄∗ (X;Z)
×−→ IS

Qn̄,n̄
∗ (X ×X;Z)

and ϕ′ is the image of ξ under the map

IS0̄,UX
∗ (X;Z)→ IS0̄

∗(X;Z)→ IS
Qn̄,n̄
∗ (X ×X;Z).

The natural quasi-isomorphism is given by the maps

Z〈C〉 λ1−→ ISn̄,UX∗ (X;Z)→ ISn̄∗ (X;Z)

and

Z〈E〉 λ2−→ IS
Qn̄,n̄,UX×X
∗ (X ×X;Z)→ IS

Qn̄,n̄
∗ (X ×X;Z).

�
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10.13. Proof of Lemma 10.14. Let X be a compact connected oriented

IP-space of dimension n. Recall Definition 9.6, and let [X
id−→ X] denote the

class of the identity map in (ΩIP)n(X). We need to show that the image of

[X
id−→ X] under the following composite is σ∗IP(X).

(ΩIP,X)n
'←− (ΩIP,X,Fun,sch)n

sig−→ (Ω
Z[π1X]
Rel,sch,≥0)n

'←− (Ω
Z[π1X]
fin,sch,≥0)n → (Ω

Z[π1X]
sch,≥0 )n

→ (Ω
Z[π1X]
≥0 )n = Ln(Z[π1X])

Using Remark 10.22 we see that this is the same as the composite

(ΩIP,X)n
'←− (ΩIP,X,Fun,sch)n

sig−→ (Ω
Z[π1X]
Rel,sch,≥0)n → (Ω

Z[π1X]
Rel,≥0 )n

Λ−→ (Ω
Z[π1X]
rel,≥0 )n

∼=←− (Ω
Z[π1X]
≥0 )n = Ln(Z[π1X])

Recall that the first map in this composite is induced by the forgetful

functor, so the image of [X
id−→ X] under this map is the class of any object

of the form
(id : X → X, ξ,C, λ1,E, λ2).

By Definition 8.4 it suffices to show

Lemma 10.39. The image of the class of (id : X → X, ξ,C, λ1,E, λ2) under
the composite

(ΩIP,X,Fun,sch)n
sig−→ (Ω

Z[π1X]
Rel,sch,≥0)n → (Ω

Z[π1X]
Rel,≥0 )n

Λ−→ (Ω
Z[π1X]
rel,≥0 )n

is the class of the object (CX , DX , βX , ϕ) given by Definition 8.2.

Proof. The image of (id : X → X, ξ,C, λ1,E, λ2) under the composite is
represented by the following ∗-ad (where β is given by Definition 10.35 and
Remark 10.16, and φ is given by Definition 10.35)

F = (Z[π1X]〈C〉,Z ⊗Z[π1X] (Z[π1X]op ⊗ Z[π1X])〈E〉, β, φ).

The following maps give a morphism of ads from this to (CX , DX , βX , ϕ):

Z[π1X]〈C〉 λ1−→ Cid:X→X → CX

and

Z ⊗Z[π1X] (Z[π1X]op ⊗ Z[π1X])〈E〉 1⊗λ2−−−→ Z ⊗Z[π1X] Eid:X→X

→ Z ⊗Z[π1X] EX .

The result now follows from [LM, Lemma 13.5]. �
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11. The Stratified Novikov Conjecture

Let G be a discrete group and BG its classifying space. Recall that the
strong Novikov conjecture for G asserts that the assembly map

α : L•n(BG) −→ Ln(Z[G])

is rationally injective. The Q-localization of any spectrum is a graded
Eilenberg-MacLane spectrum, see e.g. [Rud98, Theorem 7.11]. Thus there
is a splitting

(11.1) L•(Z)⊗Q '
∏
j≥0

K(Q, 4j).

A morphism φ : E → F between two ring Q-local spectra E,F is a ring
morphism if and only if φ∗ : π∗(E) → π∗(F ) is a ring homomorphism (loc.
cit.). The product on π∗(L•) is

Lp(Z)⊗ Lq(Z) −→ Lp+q(Z),

given by sending chain complexes C,D to their tensor product C ⊗ D. If
p and q are divisible by 4 (which is the only nontrivial case after tensoring
with Q), then Lp(Z) ∼= Z, a generator is given by the symmetric signa-

ture σ∗(CP p/2) ∈ Lp(Z), and the product sends σ∗(CP p/2) ⊗ σ∗(CP q/2) to

σ∗(CP p/2×CP q/2). Under the isomorphism induced by the splitting (11.1)
on π∗, this product induces a product on the homotopy groups of the graded
Eilenberg-MacLane spectrum, which underlies a spectrum level ring struc-
ture. By the above remark, the equivalence (11.1) is then a morphism of
ring spectra. It induces natural isomorphisms of homology theories

SX : L•n(X)⊗Q
∼=−→

⊕
j≥0

Hn−4j(X;Q).

and cohomology theories

SX : (L•)n(X)⊗Q
∼=−→

∏
j≥0

Hn+4j(X;Q).

Since SX is induced by a morphism of ring spectra, it maps the unit
1 ∈ (L•)0(pt)⊗Q to the unit 1 ∈ H0(pt;Q) and preserves products.

An n-dimensional compact IP-space X possesses characteristic classes
Lj(X) ∈ Hj(X;Q), which are the Poincaré duals of the Hirzebruch L-
classes when X is a smooth manifold. These classes have been introduced
by Goresky and MacPherson in [GM80] (at least for spaces without odd
codimensional strata, but the method works whenever one has a self-dual
intersection chain sheaf, see [Ban07]). Goresky and MacPherson adapt a
method of Thom, which exploits the bordism invariance of the signatures of
transverse inverse images of maps to spheres. For singular X, these classes
need not lift to the cohomology of X under capping with the (ordinary)
fundamental class. We shall denote the total L-class by L(X). An inclusion
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Y ↪→ X of PL spaces is called normally nonsingular if Y possesses a regular
neighborhood in X which can be given the structure of a disk-block-bundle
over Y .

Lemma 11.1. Let X be an n-dimensional compact IP-space. The isomor-
phism SX maps the rational L-theory fundamental class [X]L to the Goresky-
MacPherson L-class L(X).

Proof. Let Y m be a compact IP-space and j : Y m ↪→ Xn a normally non-
singular inclusion with trivial normal bundle ν. Let Dν = Dn−m × Y be
the total space of its disk bundle, Sν = Sn−m−1 × Y the total space of its
sphere bundle. Note that Dν is a ∂-IP space. Let u ∈ Hn−m(Dν, Sν;Q) be
the Thom class of the normal bundle. The composition

Hk(X;Q)→ Hk(X,X − Y ;Q)
∼=← Hk(Dν, Sν;Q)

u∩−→∼= Hk−n+m(Dν;Q)
π∗→∼= Hk−n+m(Y ;Q)

(−1)s→ Hk−n+m(Y ;Q),

where s = 1
2(n −m + 1)(n −m) and π : Dν → Y is the bundle projection,

defines a map
j! : Hk(X;Q) −→ Hk−n+m(Y ;Q).

If Z is any topological space andR any coefficient ring, let ε∗ : H0(Z;R)→ R
be the augmentation map. By the Thom-Goresky-MacPherson construc-
tion, the L-classes are uniquely characterized by the following two properties
([Ban07, Proposition 8.2.11]):

• If j : Y m ↪→ Xn is a normally nonsingular inclusion with trivial
normal bundle, then

Lk−n+m(Y ) = j!Lk(X).

• ε∗L0(X) = σ(X), the signature of X.

Thus the lemma is proven if we show

(1) If j : Y m ↪→ Xn is a normally nonsingular inclusion with trivial
normal bundle, then

(SY [Y ]L)k−n+m = j!(SX [X]L)k;

and
(2) ε∗(SX [X]L)0 = σ(X).

We turn to (1). Let ν be the normal bundle of j. We write S0 as S0 =
{y−, y+}. Let e ∈ H1(D1, S0;Q) be the element obtained as the image of
the unit 1 ∈ H0(y+;Q) under the composition

H0(y+;Q)
∼=←− H0(S0, y−;Q)

δ−→ H1(D1, S0;Q),

where the left arrow is an excision isomorphism and δ is the connecting
homomorphism of the triple (D1, S0, y−). The (n − m)-fold cross-product
e× · · · × e yields an element en−m ∈ Hn−m(Dn−m, Sn−m−1;Q). The Thom
class u arising in the definition of the map j! is then given by u = en−m×1 ∈
Hn−m(Dν, Sν;Q), where 1 ∈ H0(Y ;Q). Analogous classes in L•-homology
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and ΩIP can be constructed in a similar fashion: If A is any abelian group,
we shall briefly write AQ for A⊗ZQ. Let eL ∈ (L•)1(D1, S0)Q be the element
obtained as the image of the unit 1 ∈ (L•)0(y+)Q under the composition

(L•)0(y+)Q
∼=←− (L•)0(S0, y−)Q

δ−→ (L•)1(D1, S0)Q.

The (n − m)-fold cross-product eL × · · · × eL yields an element en−mL ∈
(L•)n−m(Dn−m, Sn−m−1)Q. Set uL = en−mL × 1 ∈ (L•)n−m(Dν, Sν)Q, where
1 ∈ (L•)0(Y )Q is the unit.

We claim that

(11.2) S(D1,S0)(eL) = e.

To see this, we observe that as S is a natural transformation of cohomology
theories, the diagram

(L•)0(y+)Q

S ∼=
��

(L•)0(S0, y−)Q
∼=

exc
oo

S ∼=
��

δ // (L•)1(D1, S0)Q

S ∼=
��∏

j≥0H
4j(y+;Q)

∏
j≥0H

4j(S0, y−;Q)
∼=

exc
oo δ //

∏
j≥0H

4j+1(D1, S0;Q)

commutes and hence

S(eL) = Sδ exc−1(1) = δ exc−1 S(1) = δ exc−1(1) = e.

We show next that

(11.3) S(Dν,Sν)(uL) = u.

Since S(Dν,Sν) is induced by a morphism of ring spectra, it preserves products
on cohomology. Thus, using (11.2),

S(uL) = S(eL × · · · × eL × 1)

= S(eL)× · · · × S(eL)× S(1)

= e× · · · × e× 1

= u.

Let eIP ∈ (ΩIP)1(D1, S0)Q be the element obtained as the image of the
unit 1 ∈ (ΩIP)0(y+)Q under the composition

(ΩIP)0(y+)Q
∼=←− (ΩIP)0(S0, y−)Q

δ−→ (ΩIP)1(D1, S0)Q.

The (n − m)-fold cross-product eIP × · · · × eIP yields an element en−mIP ∈
(ΩIP)n−m(Dn−m, Sn−m−1)Q. Set uIP = en−mIP × 1 ∈ (ΩIP)n−m(Dν, Sν)Q,
where 1 ∈ (ΩIP)0(Y )Q is the unit. The cap-product of µ :=
[id(Dn−m,Sn−m−1)] ∈ (ΩIP)n−m(Dn−m, Sn−m)Q with en−mIP is given by

(11.4) en−mIP ∩ µ = (−1)s[pt ↪→ Dn−m] ∈ (ΩIP)0(Dn−m)Q,
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as we shall now verify. Set µ1 = [id(D1,S0)] ∈ (ΩIP)1(D1, S0)Q. Then µ is
the (n−m)-fold cross product

µ = µ1 × · · · × µ1

and thus

en−mIP ∩ µ = (eIP × · · · × eIP) ∩ (µ1 × · · · × µ1)

= (−1)s1(eIP ∩ µ1)× · · · × (eIP ∩ µ1),

where s1 = 1
2(n−m)(n−m−1). Let i : (S0,∅) ↪→ (S0, y−) be the canonical

inclusion. To compute eIP ∩ µ1, we consider the diagram

Ω1
IP(D1, S0)Q ⊗ (ΩIP)1(D1, S0)Q

∂
��

∩ // (ΩIP)0(D1)Q

Ω0
IP(S0)Q

δ′

OO

⊗ (ΩIP)0(S0)Q

i∗
��

∩ // (ΩIP)0(S0)Q

ι

OO

Ω0
IP(S0, y−)Q

∼= exc
��

i∗

OO

⊗ (ΩIP)0(S0, y−)Q
∩ // (ΩIP)0(S0)Q

Ω0
IP(y+)Q ⊗ (ΩIP)0(y+)Q

∼= exc

OO

∩ // (ΩIP)0(y+)Q,

ι+

OO

whose middle and bottom portion commute, while the top portion anti-
commutes, since

(δ′a) ∩ α = (−1)deg(δ′a)a ∩ ∂α = −a ∩ ∂α
for an IP-cobordism class a of degree 0. The image of µ1 under i∗∂ is
[i : (S0,∅) ↪→ (S0, y−)], while the image of [idy+ ] ∈ (ΩIP)0(y+) under the
excision isomorphism is [(y+,∅) ↪→ (S0, y−)]. Now

[(y+,∅) ↪→ (S0, y−)] = [i] ∈ (ΩIP)0(S0, y−)Q

via the bordism W = ItI (disjoint union of two intervals) and F : W → S0

defined by mapping the first copy of I by the constant map to y+ and
mapping the second copy of I to y−. Then the disjoint union {y+} t S0 is
contained in ∂W , F restricted to {y+} t S0 agrees with the disjoint union
of the inclusion y+ ↪→ S0 and the identity map S0 → S0, while F maps
∂W − ({y+} t S0) to y−. Hence (W,F ) is a valid bordism. Consequently,

eIP ∩ µ1 = δ′i∗ exc−1(1) ∩ µ1

= −ιι+(1 ∩ exc−1 i∗∂(µ1))

= −ιι+(exc−1 i∗∂(µ1))

= −ιι+[idy+ ]

= −[{y+} ↪→ D1]
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and so, with s2 = n−m,
en−mIP ∩ µ = (−1)s1(−1)s2 [{y+} ↪→ D1]× · · · × [{y+} ↪→ D1]

= (−1)s[pt ↪→ Dn−m].

For any pair (W,V ) of IP-spaces, n = dimW, let Si : (ΩIP)n(W,V )Q →
L•n(W,V )Q be the composition

(ΩIP)n(W,V )
A←−∼= (QIP)n(W,V )

Sig−−→ (QZ
rel,≥0)n(W,V )

∼=←− L•n(W,V )

(which is just (9.3) in the absolute case), tensored with idQ. By Section 13,
we also have a corresponding multiplicative transformation of cohomology
theories Si : Ω∗IP(W,V )→ (L•)∗(W,V ). Thus the arguments used above for
the transformation S can be applied to Si to show that

(11.5) Si(uIP) = uL.

If φ : E → F is any morphism of ring spectra, then the diagram

Ep(Z)⊗ Eq(Z)
φ∗⊗φ∗//

∩E
��

F p(Z)⊗ Fq(Z)

∩F
��

Eq−p(Z)
φ∗

// Fq−p(Z)

commutes (see e.g. [Ada74, Prop. III.9.1 (v)].) Therefore, in view of (11.3)
and (11.5), the following diagram commutes:

(ΩIP)n(X)Q
Si //

��

L•n(X)Q
SX
∼=

//

��

⊕
qHn−4q(X;Q)

��
(ΩIP)n(X,X − Y )Q

Si // L•n(X,X − Y )Q
S(X,X−Y )

∼=
//
⊕

qHn−4q(X,X − Y ;Q)

(ΩIP)n(Dν, Sν)Q
Si //

uIP∩−
��

∼= exc

OO

L•n(Dν, Sν)Q
S(Dν,Sν)

∼=
//

uL∩−
��

∼= exc

OO

⊕
qHn−4q(Dν, Sν;Q)

u∩−
��

∼= exc

OO

(ΩIP)m(Y ×Dn−m)Q
Si //

π∗∼=
��

L•m(Y ×Dn−m)Q
SY×Dn−m

∼=
//

π∗∼=
��

⊕
qHm−4q(Y ×Dn−m;Q)

π∗∼=
��

(ΩIP)m(Y )Q
Si // L•m(Y )Q

SY
∼=

//
⊕

qHm−4q(Y ;Q)

The left column, multiplied by (−1)s, defines a map j!
IP : (ΩIP)n(X)Q →

(ΩIP)m(Y )Q. The image of [X]IP in (ΩIP)n(X,X − Y )Q equals the image of
[id(Dν,Sν)] ∈ (ΩIP)n(Dν, Sν)Q under the excision isomorphism; the required
bordism is given by the ∂-IP-spaceW obtained from gluing the cylinderX×I
to the cylinder Dν × I along the canonical inclusion Dν × {1} ↪→ X × {0}.
The map F : W → X is defined by F (x, t) = x for (x, t) ∈ X × I and
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(x, t) ∈ Dν × I. Note that F maps ∂W − (X × {1} tDν × {0}) to X − Y ,
whence (W,F ) is indeed a viable bordism. Using the cross product on IP-
bordism

(ΩIP)n−m(Dn−m, Sn−m−1)Q ⊗ (ΩIP)m(Y )Q
×−→ (ΩIP)n(Dν, Sν)Q,

we may express the element [id(Dν,Sν)] as

[id(Dν,Sν)] = µ× [Y ]IP.

Thus, using (11.4), we find that

π∗(uIP ∩ [id(Dν,Sν)]) = π∗((e
n−m
IP × 1) ∩ (µ× [Y ]IP))

= π∗((−1)deg(1) deg(µ)(en−mIP ∩ µ)× (1 ∩ [Y ]IP))

= π∗((e
n−m
IP ∩ µ)× (1 ∩ [Y ]IP))

= (−1)sπ∗([pt ↪→ Dn−m]× [Y ]IP)

= (−1)s[Y ]IP.

This proves that
j!
IP[X]IP = [Y ]IP.

By the commutativity of the above diagram,

j!SX [X]L = j!SXSi[X]IP = SY Sij!
IP[X]IP = SY Si[Y ]IP = SY [Y ]L,

which proves property (1).

It remains to establish property (2). The map f : X → pt from X to a
point induces a homomorphism

f∗ :
⊕
q

Hn−4q(X;Q) −→
⊕
q

Hn−4q(pt;Q)

such that (SX [X]L)0 = f∗SX [X]L. If the dimension n is not divisible by 4,
then

⊕
qHn−4q(pt;Q) = 0 and thus ε∗f∗SX [X]L = 0 = σ(X), that is, (2)

holds. Assume that n is divisible by 4, so that
⊕

qHn−4q(pt;Q) = H0(pt;Q).
Using the commutative diagram

L•n(X)Q
SX
∼=
//

f∗
��

⊕
qHn−4q(X;Q)

f∗
��

L•n(pt)Q
Spt

∼=
//
⊕

qHn−4q(pt;Q)

we can write

(11.6) f∗SX [X]L = Sptf∗[X]L.

Let {1} = π1(pt) denote the trivial fundamental group of the point. The
associated assembly map

L•n(pt) = L•n(B{1})
α{1}−→ Ln(Z[{1}])
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is an isomorphism. Recall ([Ran80, Prop. 7.2]) that when n is divisible by
4, there is an isomorphism σ : Ln(Z[{1}]) ∼= Z given by the signature σ of a
symmetric algebraic Poincaré complex. The diagram

L•n(pt)Q
Spt

∼=
//
⊕

qHn−4q(pt;Q)

L•n(B{1})Q
α{1} ∼=

��

H0(pt;Q)

ε∗∼=
��

Ln(Z[{1}])Q
σ
∼=

// Q

commutes, as the calculation

ε∗Spt[pt]L = ε∗(L
∗(pt) ∩ [pt]Q) = ε∗(1 ∩ [pt]Q) = ε∗[pt]Q = 1

= σ(σ∗(pt)) = σ(α{1}[pt]L),

using e.g. [Ran92, Remark 16.17(i)], shows. (The formula SM [M ]L =
L∗(M) ∩ [M ]Q holds for any closed smooth oriented n-manifold, where
L∗(M) ∈ H∗(M ;Q) is the Hirzebruch L-class and [M ]Q ∈ Hn(M ;Q) the
rational fundamental class. Note that σ(σ∗(pt)) = 1, since the composition

ΩSO
0 (pt)

σ∗−→ L•0(pt) = L0(Z)
σ−→ Z

is the signature homomorphism σ : ΩSO
0 (pt)→ Z, which sends the generator

[id : pt → pt] to the signature of a point, which equals 1.) Using this
diagram, we obtain

(11.7) ε∗Sptf∗[X]L = σα{1}f∗[X]L.

Let G = π1(X) be the fundamental group of X and r : X → BG a classifying
map for the universal cover of X. The commutative diagram of spaces

X
f //

r

��

pt

BG // B{1}

induces a commutative diagram

L•n(X)Q
f∗ //

r∗
��

L•n(pt)Q

L•n(BG)Q // L•n(B{1})Q.

Since the assembly map, obtained e.g. by applying [WW95, Thm. 1.1] to
the homotopy functor Z 7→ L•(Zπ1(Z)), is a natural transformation, the
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diagram

L•n(BG)Q //

αG
��

L•n(B{1})Q
α{1}
��

Ln(Z[G])Q
f∗ // Ln(Z[{1}])Q

commutes. Using these two squares, we get

(11.8) f∗αGr∗[X]L = α{1}f∗[X]L.

The ordinary signature information is contained in the symmetric signature
by

(11.9) σf∗σ
∗
IP(X) = σ(X),

as follows from Remark 8.5. Putting equations (11.6), (11.7), (11.8) and
(11.9) together, we compute

ε∗(SX [X]L)0 = ε∗f∗SX [X]L = ε∗Sptf∗[X]L = σα{1}f∗[X]L

= σf∗αGr∗[X]L = σf∗σ
∗
IP(X) = σ(X),

as was to be shown. �

Let G = π1(X) be the fundamental group and r : X → BG a classifying
map for the universal cover of X. The map r induces a homomorphism

H∗(X;Q) −→ H∗(BG;Q)

on homology. The higher signatures of X are the rational numbers

〈a, r∗L(X)〉, a ∈ H∗(BG;Q).

Theorem 11.2. Let X be an n-dimensional compact IP-space whose fun-
damental group G = π1(X) satisfies the strong Novikov conjecture. Then
the higher signatures of X are stratified homotopy invariants.

Proof. Let X and X ′ be n-dimensional compact IP-spaces with fundamental
group G and f : X ′ → X an orientation preserving stratified homotopy
equivalence. If r : X → BG is a classifying map for the universal cover of
X, then r′ = r ◦ f : X ′ → BG is a classifying map for the universal cover of
X ′. We must prove that

r′∗L(X ′) = r∗L(X) ∈ H∗(BG;Q).

By Theorem 9.3(ii), the assembly map

L•n(X) −→ Ln(Z[G])

maps [X]L to σ∗IP(X). By naturality, the assembly map for the space X
factors through BG (see also [Dav00, p. 216]):

L•n(X) //

r∗
��

Ln(Z[G])

L•n(BG)

α

88
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(similarly for X ′). Using this factorization, we may write

αr∗[X]L = σ∗IP(X), αr′∗[X
′]L = σ∗IP(X ′).

By the stratified homotopy invariance (8.2) of the IP symmetric signature,

σ∗IP(X) = σ∗IP(r) = σ∗IP(rf) = σ∗IP(r′) = σ∗IP(X ′).

As α is by assumption rationally injective, it follows that

r∗[X]L = r′∗[X
′]L ∈ L•n(BG)⊗Q.

Using the commutative diagram

L•n(X)⊗Q r∗ //

SX ∼=
��

L•n(BG)⊗Q

SBG∼=
��⊕

j Hn−4j(X;Q)
r∗ //

⊕
j Hn−4j(BG;Q)

(and the analogous diagram for X ′), together with Lemma 11.1, we deduce

r∗L(X) = r∗SX [X]L = SBGr∗[X]L

= SBGr
′
∗[X

′]L = r′∗SX′ [X
′]L = r′∗L(X ′).

�

An analytic version of Theorem 11.2 has been proven by Albin-Leichtnam-
Mazzeo-Piazza in [ALMP13]. The scope of their theorem is in fact larger,
as it applies even to those non-Witt spaces, for which a so-called analytic
self-dual mezzoperversity exists. It was shown in [ABLMP13] that such
perversity data corresponds topologically to the Lagrangian structures of
Banagl as introduced in [Ban02]. A comparison of the analytic argument
to our argument shows that the role of our L•n(X) is played in the analytic
context by K∗(X). The role of the isomorphisms SX is played by the Chern
character. The group Ln(Z[G]) corresponds to K∗(C

∗
rG), while our assembly

map α corresponds to the assembly map K∗(BG) → K∗(C
∗
rG) used in the

analytic argument.

12. Multiplicativity and commutativity

Recall from Definition 6.1 that the symmetric signature map

Sig : MIP →MZ
rel,≥0

is the following composite in the homotopy category of spectra:

MIP
'←−MIPFun

sig−→MZ
rel,≥0.

In this section we show that this composite is weakly equivalent to a com-
posite of ring maps between commutative ring spectra. Specifically, we show
the following. Recall Remarks 4.5 and 6.4.
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Theorem 12.1. There are symmetric ring spectra A, B and C, a commu-
tative symmetric ring spectrum D, and a strictly commutative diagram

(12.1) MIP A
'oo ' //Mcomm

IP

MIPFun

'

OO

sig
��

B
'oo ' //

'

OO

��

Mcomm
IPFun

'
OO

��
MZ

rel,≥0 C
'oo ' // D

in which the horizontal arrows, the upper vertical arrows and the lower right
vertical arrow are ring maps.

Remark 12.2. D is weakly equivalent to (MZ
rel,≥0)comm by [LM, Remark

18.3].

The rest of this section is devoted to the proof of Theorem 12.1. The top
half of the diagram has already been constructed in Remark 6.4. For the
lower half we will use the method of the proof of [LM, Theorem 1.3] (it will
be straightforward to check that the maps MIPFun ← B→Mcomm

IPFun given by
the proof in this section are the same as those given by Remark 6.4).

Remark 12.3. In order to apply the proof of [LM, Theorem 1.3] without
change we would need to know (by analogy with the paragraph before [LM,
Definition 15.5]) that the cross product gave a natural quasi-isomorphism
from the functor

(AIPFun)×l
sig×l−−−→ (AZ

rel)
×l ⊗−→ AZ

rel

to the functor

(AIPFun)×l → AIPFun
sig−→ AZ

rel

(where the unmarked arrow is the product in AIPFun). But this is not the
case, for the simple reason that the cross product does not give a map

IS
Qn̄,n̄
∗ (X ×X;Z)⊗l → IS

Qn̄,n̄
∗ (X×l ×X×l;Z)

(cf. [F, Lemma 6.4.1]). Our first task is to provide a suitable substitute,
which will be given in Proposition 12.11.

Definition 12.4. Let Y1, . . . , Yk be stratified PL ∂-pseudomanifolds and
give Y1 × · · · × Yk the product stratification. Define a perversity Qk on
Y1 × · · · × Yk by

Qk(S1 × · · · × Sk) =

{
0 if all Si are regular,

2s− 2 +
∑
n̄(Si) otherwise,

where the Si are strata and s is the number of Si that are singular.

In particular, Q1 = n̄ and Q2 = Qn̄,n̄.
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Lemma 12.5. The cross product induces a quasi-isomorphism

IS
Qj
∗ (Y1×· · ·×Yj ;Z)⊗ISQk∗ (Yj+1×· · ·×Yj+k;Z)→ IS

Qj+k
∗ (Y1×· · ·×Yj+k;Z).

This is immediate from [F, Theorem 6.4.6 and Remark 6.4.7]. We need a
more general version of this.

Definition 12.6. (i) Let A be a finite totally ordered set. A partition ρ of
A is a collection B1, . . . , Bk of disjoint subsets of A such that ∪Bi = A and
a < a′ whenever a ∈ Bi, a′ ∈ Bi′ with i < i′.

(ii) Let X1, . . . , Xl be stratified PL ∂-pseudomanifolds and let

ρ = {B1, . . . , Bk}
be a partition of {1, . . . , l}. Let Yi =

∏
j∈Bi Xj and give Yi the product

stratification. Define
ISρ∗(X1 × . . .×Xl;Z)

to be
ISQk∗ (Y1 × . . .× Yk;Z).

Lemma 12.7. The cross product induces a quasi-isomorphism

ISρ∗(X1×· · ·×Xl;Z)⊗ISρ′∗ (Xl+1×· · ·×Xl+m;Z)→ ISρ∪ρ
′

∗ (X1×· · ·×Xl+m;Z).

This is immediate from Lemma 12.5.

Definition 12.8. Let ρ = {B1, . . . , Bj} and ρ′ = {C1, . . . , Ck} be two par-
titions of a set A. Then ρ′ is a refinement of ρ if each Ci is contained in
some Bi.

Lemma 12.9. Let ρ and ρ′ be partitions of {1, . . . , l}. If ρ′ is a refinement
of ρ then

ISρ∗(X1 × · · · ×Xl;Z) ⊂ ISρ′∗ (X1 × · · · ×Xl;Z)

and the inclusion is a quasi-isomorphism.

Proof. First we claim that the perversity that gives ISρ∗ is ≤ the perversity

that gives ISρ
′
∗ ; the inclusion follows from this. It suffices to check the case

where one piece in ρ is divided into two pieces in ρ′; this means that one of
the factors Yi is replaced by two factors Y ′ and Y ′′. If Y ′ and Y ′′ are not
both singular it’s easy to verify the claim. Otherwise we need to show

n̄(Y ′ × Y ′′) ≤ n̄(Y ′) + n̄(Y ′′) + 2,

and this follows by checking the cases where codimY ′ and codimY ′′ are both
even, or both odd, or one is even.

To show the quasi-isomorphism it suffices to show that

ISn̄∗ (X1 × · · · ×Xl;Z) ↪→ ISρ∗(X1 × · · · ×Xl;Z)



72 MARKUS BANAGL, GERD LAURES, AND JAMES E. MCCLURE

is a quasi-isomorphism for every ρ. This in turn follows by induction from
the following commutative diagram, where we let ρ = {B1, . . . , Bk} and
ρ1 = {B2, . . . , Bk}.

ISn̄∗ (
∏
i∈B1

Xi;Z)⊗ ISn̄∗ (
∏
i/∈B1

Xi;Z)
× //

��

ISn̄∗ (X1 × · · · ×Xl;Z)

��
ISn̄∗ (

∏
i∈B1

Xi;Z)⊗ ISρ1
∗ (

∏
i/∈B1

Xi;Z)
× // ISρ∗(X1 × · · · ×Xl;Z)

Here the horizontal arrows are quasi-isomorphisms by [F, Theorem 6.4.6
and Remark 6.4.7] and the left vertical arrow is a quasi-isomorphism by the
inductive hypothesis, so the right vertical arrow is a quasi-isomorphism as
required. �

Next is the analogue of Lemma 6.5 for this situation. Recall [LM, Defini-
tion 15.3(i)].

Lemma 12.10. (i) Let l ≥ 1 and let ρ = {B1, . . . , Bk} be a par-
tition of {1, . . . , l}. Let ρ̂ be the partition {B1, . . . , Bk, B1, . . . , Bk} of
{1, . . . , l}

∐
{1. . . . , l}. Let (Xi, ξi) for 1 ≤ i ≤ l be objects of AIPFun. Give

each Xi the stratification of Proposition A.2 and give X1 × · · · × Xl and
(X1 × · · · × Xl) × (X1 × · · · × Xl) the product stratifications. Let ι be the
inclusion map

IS
Qn̄,n̄
∗ ((X1×· · ·×Xl)×(X1×· · ·×Xl);Z) ⊂ ISρ̂∗((X1×· · ·×Xl)×(X1×· · ·×Xl);Z)

given by Lemma 12.9. Then (C,D, β, ϕ) is an object of AZ
rel, where

C = ISρ∗(X1 × · · · ×Xl;Z),

D = ISρ̂∗((X1 × · · · ×Xl)× (X1 × · · · ×Xl);Z),
β is the cross product followed by the inclusion ι, and
ϕ is the image of ξ1 × · · · × ξl under the map induced by the diagonal

IS0̄
∗(X1 × · · · ×Xl;Z) → IS

Qn̄,n̄
∗ ((X1 × · · · ×Xl) × (X1 × · · · ×Xl);Z)

followed by ι.
(ii) For 1 ≤ i ≤ l, let fi : (Xi, ξi) → (X ′i, ξ

′
i) be a morphism in AIPFun.

Let (C,D, β, ϕ) and (C ′, D′, β′, ϕ′) be the objects of AZ
rel corresponding to

the l-tuples {(Xi, ξi)} and {(X ′i, ξ′i)}. Then the fi induce a morphism
(C,D, β, ϕ)→ (C ′, D′, β′, ϕ′).

Proof. Part (i) follows from Lemma 12.9 and the fact (shown in the proof
of Lemma 6.5(i)) that ISn̄∗ (X1 × · · · × Xl;Z) is homotopy finite. Part (ii)
follows from the proof of Lemma 6.5(ii). �

Now we can give the statement promised in Remark 12.3. Let

sigρ : (AIPFun)×l → AZ
rel

be the functor given by Lemma 12.10, and recall [LM, Definition 12.14].
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Proposition 12.11. Let {B1, . . . , Bk} be a partition of {1, . . . , l}, let ρi be
a partition of Bi for 1 ≤ i ≤ k, let ρ denote ρ1 ∪ · · · ∪ ρk, and let ρ′ be a
refinement of ρ. There is a natural quasi-isomorphism from

(AIPFun)×l
∏

sigρi−−−−→ (AZ
rel)
×k ⊗−→ AZ

rel

to

(AIPFun)×l
sigρ′−−−→ AZ

rel

given by the maps

ISρ1
∗ (

∏
i∈B1

Xi;Z)⊗ · · · ⊗ ISρk∗ (
∏
i∈Bk

Xi;Z)

×−→ ISρ∗(X1 × · · · ×Xl;Z)→ ISρ
′
∗ (X1 × · · · ×Xl;Z)

and

ISρ̂1
∗ ((

∏
i∈B1

Xi)× (
∏
i∈B1

Xi);Z)⊗ · · · ⊗ ISρ̂k∗ ((
∏
i∈Bk

Xi)× (
∏
i∈Bk

Xi);Z)

×−→ ISρ̂∗(

k∏
j=1

((
∏
i∈Bf

Xi)× (
∏
i∈Bf

Xi));Z) ∼= ISρ̂∗((

l∏
i=1

Xi)× (

l∏
i=1

Xi);Z)

→ ISρ̂
′
∗ ((

l∏
i=1

Xi)× (
l∏

i=1

Xi);Z).

This is immediate from Lemmas 12.7 and 12.9. Next we need the analogue
of [LM, Definition 15.4]. Recall [LM, Definition 15.3(ii)].

Definition 12.12. Let j ≥ 0 and let r : {1, . . . , j} → {u, v}. Let Ai denote
AIPFun if r(i) = u and AZ

rel if r(i) = v.
(i) Let 1 ≤ m ≤ j. A surjection

h : {1, . . . , j} → {1, . . . ,m}
is adapted to r if r is constant on each set h−1(i) and h is injective on r−1(v).

(ii) Given a surjection

h : {1, . . . , j} → {1, . . . ,m}
which is adapted to r, and a partition ρi of h−1(i) for 1 ≤ i ≤ m, define

(h, ρ1, . . . , ρm)� : A1 × · · · × Aj → (AZ
rel)
×m

by
(h, ρ1, . . . , ρm)�(x1, . . . , xj) = (iεy1, . . . , ym),

where iε is the sign that arises from putting the objects x1, . . . , xj into the
order xθ(h)−1(1), . . . , xθ(h)−1(j) and

yi =

{
sigρi({xp}p∈h−1(i)) if h−1(i) ⊂ r−1(u),

xh−1(i) if h−1(i) ∈ r−1(v).
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(iii) A datum of type r is a tuple

(h, ρ1, . . . , ρm, η),

where h is a surjection which is adapted to r, ρi is a partition of h−1(i), and
η is an element of Σj with the property that h ◦ η = h.

(iv) Given a datum
d = (h, ρ1, . . . , ρm, η),

of type r, define
d� : A1 × · · · × Aj → AZ

rel

to be the composite

A1 × · · · × Aj
η−→ Aη−1(1) × · · · × Aη−1(j) = A1 × · · · × Aj

(h,ρ1,...,ρm)�−−−−−−−−→ (AZ
rel)
×m ⊗−→ AZ

rel,

where η permutes the factors with the usual sign.

Finally, we have the analogue of [LM, Definition 15.5].

Definition 12.13. For data of type r, define

(h, ρ1, . . . , ρm, η) ≤ (h′, ρ′1, . . . , ρ
′
m′ , η

′)

if for each i ∈ {1, . . . ,m} there is a p ∈ {1, . . . ,m′} such that η−1(h−1(i)) is

contained in η′−1(h′−1(p)) and η′η−1 takes each piece of the partition ρi to
a union of pieces of the partition ρ′p.

With these changes, the proof of [LM, Theorem 1.3] goes through to
construct the lower half of Diagram (12.1). This completes the proof of
Theorem 12.1.

13. Multiplicativity of the L-theory fundamental class

In this section we prove

Theorem 13.1. Let X and Y be compact oriented IP spaces. Then

[X × Y ]L = [X]L × [Y ]L.

Remark 13.2. We will use the results of Section 12, but one could give a
simpler proof of Theorem 13.1 using only part of the machinery of Section
12.

The first step in the proof of Theorem 13.1 is to observe that we can
replace the spectra Q in Definition 9.6 by the equivalent symmetric spectra
M. Each of the symmetric spectra MIP,Z , Z+ ∧MIP, Z+ ∧MZ

rel,≥0 and

Z+ ∧MZ
≥0 is semistable ([HSS00, Definition 5.6.1]) by [LM13, Corollary

17.9(i)] and [Sch08, Examples 4.2 and 4.7], and hence their “true” (i.e.,
derived) homotopy groups agree with their homotopy groups by [Sch08,
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Example 5.5]. Thus for a compact oriented IP space Z of dimension l the
class [Z]L is the image of [Z]IP under the composite
(13.1)

(ΩIP)l(Z)
∼=−→ πlMIP,Z

α←−∼= πl(Z+∧MIP)
Sig−−→ πl(Z+∧MZ

rel,≥0)
∼=←− πl(Z+∧MZ

≥0)

(where the first map is given by Remark 3.1 and [LM13, Proposition 17.7]).
Next we observe that the functors in (13.1) have product operations. For

the first functor (and for any spaces X and Y ), Cartesian product induces
a map

(ΩIP)m(X)⊗ (ΩIP)n(Y )→ (ΩIP)m+n(X × Y )

by [F, Lemma 2.11.7]. For the second functor, Cartesian product induces

AIP,X ×AIP,Y → AIP,X×Y

and this induces a map

MIP,X ∧MIP,Y →MIP,X×Y

which gives the desired product. The third, fourth and fifth functors in
(13.1) have products because MIP, MZ

rel,≥0 and MZ
≥0 are ring spectra.

It therefore suffices to show that the maps in the composite (13.1) preserve
products. For the second map this follows from Proposition F.1, for the third
map from Theorem 12.1, and for the fourth map from [LM, Remark 13.2].
We will denote the first map by χ, so it remains to show

Lemma 13.3. The map

χ : (ΩIP)∗(Z)
∼=−→ π∗MIP,Z

preserves products.

The rest of this section gives the proof of this lemma.
Recall that for a spectrum Q or a symmetric spectrum M we write Qk

and Mk for the k-th space. The map χ can be written as the composite
(13.2)

(ΩIP)l(Z)
∼=−→ πl(QIP,Z)0 → πl+k(QIP,Z)k → πl+k(MIP,Z)k → πlMIP,Z

for k ≥ 1, where the first arrow is given by Remark 3.1, the second is the
suspension map ([LM13, page 44] and Appendix G), the third is described
in [LM13, top of page 53], and the fourth is given by the definition of the
homotopy groups of a spectrum.

If f : W → Z is a map from an l-dimensional compact oriented IP
space to Z, and if p ≤ l + 2, let us write f [l+1] (resp., f [p,l+2−p]) for the
∆l+1-ad (resp., ∆p ×∆l+2−p-ad) which takes the top cell with its canonical

orientation to f and all other cells to ∅ → Z. Then f [l+1] is a simplex
in (MIP,Z)1 with all faces at the basepoint, so it determines an element of

πl+1(MIP,Z)1 which we will denote by f [l+1]. Similarly, f [p,l+2−p] determines
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an element of πl+2(MIP,Z)2 which we will denote by f [p,l+2−p]. From [LM13,
Sections 15 and 17] (but using the signs in Appendix G) we see that

(13.3) χ([f ]) is represented by f [l+1] ∈ πl+1(MIP,Z)1

and

(13.4) χ([f ]) is represented by − f [0,l+2] ∈ πl+2(MIP,Z)2.

Now let g : U → X and h : V → Y be maps from compact oriented IP
spaces of dimensions m and n respectively; we need to show that

(13.5) χ([g])χ([h]) = χ([g × h]).

By (13.3) and the proof of [Sch, Theorem I.4.54], χ([g])χ([h]) is represented
by the composite

S1 ∧S1 ∧Sm ∧Sn → S1 ∧Sm ∧S1 ∧Sn
g[m+1]∧h[n+1]

−−−−−−−−−→ (MIP,X)1 ∧ (MIP,Y )1

→ (MIP,X×Y )2

(cf. [Sch, I.4.55]). By [LM13, Section 18] this composite is equal to

−(g × h)[m+1,n+1] (for the sign, note that the first map has degree (−1)m

and the last map includes a sign of (−1)m+1 by [LM13, Remark 18.3]) so

by (13.4) the proof of(13.5) reduces to showing that (g × h)[m+1,n+1] =

(g × h)[0,m+n+2], and for this in turn it suffices to show for 0 ≤ l ≤ m that

(13.6) (g × h)[m+1−l,n+1+l] = (g × h)[m−l,n+2+l].

To prove (13.6), let F be the (∆m+1−l ×∆n+2+l)-ad which takes

• the top cell (with its canonical orientation) to the composite

U × V × I → U × V g×h−−→ X × Y
(where the first map is the projection),
• the cell ∂0∆m+1−l × ∆n+2+l (with its canonical orientation) to

(−1)m+n times

U × V × {1} → U × V g×h−−→ X × Y,
• the cell ∆m+1−l × ∂0∆n+2+l (with its canonical orientation) to

(−1)n−l times

U × V × {0} → U × V g×h−−→ X × Y,
• and all other cells to the map ∅ → X × Y .

Then F determines a map

Φ : ∆m+1−l ×∆n+1+l+1 → (MIP,X×Y )2,

and the restriction of Φ to the boundary of ∆m+1−l × ∆n+2+l (which is
nullhomotopic) is easily seen (using the signs in Appendix F below) to
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be (−1)m+n(g × h)[m−l,n+2+l] + (−1)m+1+n(g × h)[m+1−l,n+1+l]; this proves

(13.6) and completes the proof of Lemma 13.3 �

14. Proof of Theorem 9.5

By [WW95, Observation 1.3] it suffices to show that Φ is strongly excisive.
The fact that (ΩIP)∗ is a strongly additive homology theory implies that,
for any collection of spaces {Xα}, the canonical map

π∗(
∨

Φ(Xα)) ∼=
⊕

π∗(Φ(Xα)) ∼=
⊕

ΩIP∗(Xα) −→ ΩIP∗(
∨
Xα)

∼= π∗(Φ(
∨
Xα))

is an equivalence. Hence, Φ preserves arbitrary coproducts and it suffices
to show that Φ preserves homotopy cocartesian squares. First we observe
that Φ takes monomorphisms to cofibrations in the level model structure
given by [MMSS01, Theorem 6.5] (because a monomorphism Z → Z ′ gives
a map from the k-th space of QIP,Z to the k-th space of QIP,Z′ which is the
inclusion of a sub-CW-complex). For a based space W , let

Φ̄(W ) = Φ(W )/Φ(∗).
Then the natural map

Φ(W )→ Φ̄(W+)

(where + denotes a disjoint basepoint) is a weak equivalence because (ΩIP)∗
is a homology theory and thus

π∗Φ(W ) ∼= ΩIP∗(W ) ∼= ΩIP∗(W+)/ΩIP∗(∗) ∼= π∗Φ̄(W+).

It therefore suffices to show that Φ̄ takes homotopy cocartesian squares of
based spaces to homotopy cocartesian squares of spectra.

As a first step we give a relationship between ΣΦ̄(W ) and Φ̄(ΣW ). Let
CW be the cone I ∧W , where 1 is the basepoint of I, and let S(W ) denote
the pushout of the diagram

Φ̄(CW )← Φ̄(W )→ Φ̄(CW ).

Since Φ̄(CZ) is contractible, and since Φ̄ takes monomorphisms to cofibra-
tions in the level model structure, S(W ) is weakly equivalent to ΣΦ̄(W ).
Since ΣW is the pushout of

CW ←W → CW,

there is an evident map

S : S(W )→ Φ̄(ΣW ).

Lemma 14.1. S is a weak equivalence for all W .

We defer the proof for a moment. Let

B
i←− A j−→ C
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be a diagram of based spaces. The homotopy pushout of this diagram is the
pushout of the diagram

Mi←↩ A ↪→Mj,

where Mi and Mj are the mapping cylinders; we will denote this pushout
by D. The homotopy pushout of

Φ̄(B)
Φ̄(i)←−− Φ̄(A)

Φ̄(j)−−−→ Φ̄(C)

is (up to weak equivalence) the pushout, which we will denote by E, of

Φ̄(Mi)←↩ Φ̄(A) ↪→ Φ̄(Mj).

It therefore suffices to show that the map E → Φ̄(D) is a weak equivalence.
Consider the diagram

πiΦ̄(A)

=
��

// πi(Φ̄(B) ∨ Φ̄(C))

��

// πiE

��

// πiS(A)

S
��

// πi(S(B) ∨ S(C))

��
πiΦ̄(A) // πiΦ̄(B ∨ C) // πiΦ̄(D) // πiΦ̄(ΣA) // πiΦ̄(ΣB ∨ ΣC),

where the rightmost vertical arrow is induced by the maps

S(B)
S−→ Φ̄(ΣB)→ Φ̄(ΣB ∨ ΣC)

and

S(C)
S−→ Φ̄(ΣC)→ Φ̄(ΣB ∨ ΣC).

The top row of the diagram is exact because it is πi of a cofiber sequence.
The fact that (ΩIP)∗ is a homology theory implies that the second row of the
diagram is exact (because it is πiΦ̄ of a cofiber sequence), and also that the
second vertical arrow is an isomorphism. The fourth and fifth vertical arrows
are isomorphisms by Lemma 14.1, and hence the middle vertical arrow is an
isomorphism as required.

It remains to prove Lemma 14.1. We begin by describing a suspension
map

s : πiΦ̄(W )→ πi+1S(W ).

Let a ∈ πiΦ̄(W ). Let κi(W ) denote the kernel of the map πiΦ(W )→ πiΦ(∗);
then κi(W )→ πiΦ̄(W ) is an isomorphism (because the short exact sequence
πiΦ(∗)→ πiΦ(W )→ πiΦ̄(W ) is split by the map W → ∗), so a comes from
an element ã ∈ κi(W ). Let Φ0(W ) denote the 0-th space of the spectrum
Φ(W ) ([LM13, Definitions 15.8 and 15.4]). Since Φ(W ) is an Ω spectrum
([LM13, Proposition 15.9]) and Φ0(W ) is a Kan complex ([LM13, Lemma
15.12]), ã is represented by an i-simplex σ of Φ0(W ) with all faces at the
basepoint. Let σ′ be the image of σ in Φ0(CW ); then σ′ represents an
element of κi(CW ). Since κi(CW ) = 0, there is an (i + 1)-simplex τ of
Φ0(CW ) with ∂0(τ) = σ and all other faces at the basepoint. Let τ1 and τ2

be the images of τ under the two inclusions of Φ̄0(CW ) into the 0-th space
of S(W ) and let

(14.1) D = ∆i ∪d0∆i ∆i;
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then τ1 and τ2 give a map

a : D/∂D → S(W )

which represents s(a).
Combining the map s with the weak equivalence between S(W ) and

ΣΦ̄(W ) gives the usual suspension map πiΦ̄(W ) → πi+1ΣΦ̄(W ), as the
reader can verify, so s is an isomorphism.

It therefore suffices to show that the composite

(14.2) (ΩIP)i(W, ∗) ∼= ker((ΩIP)i(W )→ (ΩIP)i(∗)) ∼= κi(W ) ∼= πiΦ̄(W )

s−→ πi+1S(W )
S−→ πi+1Φ̄(ΣW ) ∼= (ΩIP)i+1(ΣW, ∗)

is an isomorphism. We will show that this composite is equal to the suspen-
sion isomorphism

(14.3) s′ : (ΩIP)i(W, ∗)→ (ΩIP)i+1(ΣW, ∗)
of the homology theory (ΩIP)∗. First we give an explicit description of

the composite (14.2). Let b ∈ (ΩIP)i(W, ∗) and let b̃ be the corresponding

element of ker((ΩIP)i(W ) → (ΩIP)i(∗)). Then b̃ is represented by a map
f : M →W where M is an i-dimensional IP-space which is a boundary; say
M = ∂N . Recall that k-simplices of Φ0(W ) are the same thing as elements
of ad0

IP,W (∆k). Let σ be the i-simplex of Φ0(W ) which takes ∆i to f and

all faces of ∆i to ∅ → W , and let σ′ be the image of σ in Φ0(CW ). We
can construct an (i+ 1)-simplex τ of Φ0(CW ) with ∂0(τ) = σ′ and all other
faces at the basepoint as follows. Let P be

(I ×M) ∪1×M N,

let g : P → CW take (t, x) ∈ I ×M to [t, f(x)] ∈ CW and N to [1, ∗], and
finally let τ take ∆i+1 to g, d0∆i+1 to f , and the remaining faces to ∅ →W .
Let τ1 and τ2 be the images of τ under the two maps Φ0(CW )→ Φ̄0(ΣW );
then (with the notation of Equation (14.1)) τ1 and τ2 give a map

b : D/∂D → Φ̄0ΣW

which represents an element of πi+1Φ̄(ΣW ), and the image of this element
in (ΩIP)i+1(ΣW, ∗) is the image of b under the composite (14.2).

Next we show that this description of the image of b in πi+1Φ̄(ΣW ) can
be simplified. Let the two copies of CW in ΣW be [−1, 0]∧W and [0, 1]∧W ,
where the basepoints of [−1, 0] and [0, 1] are −1 and 1. Let

Q = N ∪−1×M ([−1, 1]×M) ∪1×M N,

and let h : Q → ΣW take (t, x) to [t, f(x)] and both copies of N to the
basepoint. Let τ3 be the (i+ 1)-simplex of Φ0(ΣW ) which takes ∆i+1 to h
and all faces of ∆i+1 to ∅ → ΣW ; then τ3 gives a map

b′ : ∆i+1/∂∆i+1 → Φ̄(ΣW ),

and we claim that b and b′ represent the same element of πi+1Φ̄(ΣW ). To
see this, let υ be the (i+ 2)-simplex of Φ0(ΣW ) such that
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• υ(∆i+2) is the composite

I ×Q p−→ Q
h−→ ΣW

(where p is the projection),
• υ(d0∆i+2) = h ◦ p|0×Q,
• υ(d1∆i+2) = h ◦ p|1×(N∪−1×M ([−1,0]×M)),

• υ(d2∆i+2) = h ◦ p|1×(([0,1]×M)∪1×MN),
• υ takes all other faces to ∅ → ΣW .

Then υ gives a homotopy between b and b′ which verifies the claim.
The element of (ΩIP)i+1(ΣW, ∗) corresponding to b′ is represented by the

map h : Q → ΣW ; this completes our calculation of the image of b under
the composite (14.2).

Next we claim that the image of b under the map (14.3) is represented by
h|Q′ , where

Q′ = ([−1, 1]×M) ∪1×M N.

To see this, recall that the suspension map s′ is defined to be the inverse of
the composite

(ΩIP)i+1(ΣW, ∗) q←−∼= (ΩIP)i+1(C ′W,W )
∂−→ (ΩIP)i(W, ∗),

where C ′W = [−1, 1] ∧ W (with the basepoint of [−1, 1] at 1), q is the
quotient map, and ∂ is the boundary map of the homology theory (ΩIP)∗.
Now consider the map

k : Q′ → C ′W

which takes (t, x) to [t, f(x)] and N to the basepoint. Recall from [Par90,
Section 5] that the boundary map ∂ is defined as in [C79, Section 4]; thus
∂[k] = [f ] = b. We also have q ◦ k = h|Q′ , so s′(b) is represented by h|Q′ as
claimed.

To complete the proof of Lemma 14.1 we observe that h and h|Q′ represent
the same element of (ΩIP)i+1(ΣW, ∗) because the composite

I ×Q p−→ Q
h−→ ΣW

(where p is the projection) is a bordism, in the sense of [C79, Section 4],
between h and h|Q′ .

Appendix A. The intrinsic filtration of a finite-dimensional PL
space

LetX be a PL space. Say that two points x1, x2 ∈ X are equivalent if there
are neighborhoods U1 of x1 and U2 of x2 with a PL homeomorphism of pairs
(U1, x1) ≈ (U2, x2). Let X be finite dimensional. Choose a triangulation
of X, and let X(i) be the i-skeleton of this triangulation. The intrinsic
filtration of X is the filtration Xi for which x ∈ Xi if and only if all points
equivalent to x are in X(i). This filtration is independent of the chosen
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triangulation because it is the coarsest PL CS stratification12 of X (cf. [F,
Remark 2.10.7]). We will use the notation Xi throughout this appendix to
denote the intrinsic filtration of X.

Proposition A.1. Let X be a finite-dimensional PL space.
(i) If U is an open subset of X then U i = Xi ∩ U .
(ii) If M is a PL manifold of dimension m then

(X ×M)i =

{
Xi−m ×M m ≤ i ≤ dimX +m,

∅ otherwise.

(iii) If f : X → Y is a PL homeomorphism then f(Xi) = Y i.
(iv) If X is a PL pseudomanifold then the intrinsic filtration on X is a

stratification in the sense of Definition 2.5.

Proof. Part (i) is [F, Lemma 2.10.16], part (ii) is [F, Lemma 2.10.17], part
(iii) is immediate from the definition of the intrinsic filtration, and part (iv)
is [F, Proposition 2.10.18]. �

The following fact is [F, Proposition 2.10.23].

Proposition A.2. Let X be a PL ∂-pseudomanifold, and define subsets
X[i] by letting X[i] ∩ (X − ∂X) = (X − ∂X)i and

X[i] ∩ ∂X =

{
(∂X)i−1 1 ≤ i ≤ dimX,

∅ otherwise.

Then the filtration X[i] gives X the structure of a stratified PL ∂-
pseudomanifold. �

Appendix B. Modules over additive categories.

See [Lück, Section 9A] for an introduction to this topic.
An additive category is a small category in which the morphism sets are

abelian groups and the composition is bilinear. A functor between additive
categories is additive if it is a homomorphism on each morphism set.

Example B.1. A ring is the same thing as an additive category with a
single object, and a ring homomorphism is an additive functor.

By a left (resp., right) module over an additive category C we mean a
covariant (resp., contravariant) additive functor M from C to the category
of abelian groups; we write Mc for the value of M at an object c of C.

IfM and N are left modules over C and N we define HomC(M,N ) to be
the abelian group of natural transformations.

If M is a right module over C and N is a left module, the tensor product
M⊗C N is the abelian group⊕

c∈ Ob(C)

(Mc ⊗Nc)/Q;

12The definition of CS stratification is a weaker version of Definition 2.5.
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here Q is generated by the elementsM(f)(m)⊗ n−m⊗N (f)(n), where f
runs through the morphisms in C, m ∈Mtarget(f), and n ∈ Nsource(f).

The tensor product of two additive categories C and C′ is the additive
category whose object set is Ob(C)×Ob(C′), and whose morphism set from
(c1, c

′
1) to (c2, c

′
2) is MorC(c1, c2)⊗Mor′C(c

′
1, c
′
2).

A (C, C′) bimodule is a left module over Cop ⊗ C′.
Let F : C → C′ be an additive functor. The canonical bimodule determined

by F is the (C, C′) bimodule PF which takes (c, c′) to MorC′(F (c), c′), with
the evident action on morphisms. IfM is a left C module, the Kan extension
of M along F , denoted KanFM, is the left C′ module that takes c′ to
PF (−, c′)⊗CM, with the evident action on morphisms.

Example B.2. If h : R→ S is a ring homomorphism and M is an R-module
then KanhM is isomorphic to S ⊗RM .

There is a natural map ι : M → KanFM which takes m ∈ Mc to
idF (c)⊗m. There is a natural bijection between HomC′(KanFM,N ) (where
N is a C′ module) and HomC(M,N ) which takes h to h ◦ ι.

If G : C′ → C′′ is an additive functor there is an isomorphism

PG ⊗C′ PF ∼= PG◦F
of (C, C′′) bimodules which on objects is induced by the composition map
MorC′′(G(c′), c′′) ⊗MorC′(F (c), c′) → MorC′′(G(F (c)), c′′); thus there is an
isomorphism of C′′ modules

(B.1) KanG(KanF (M)) ∼= KanG◦FM.

For use in Section 10 we record

Remark B.3. Recall the definition of the additive category Z[π1Z] from
Section 7 (and also recall that we denote composition of path homotopy
classes by letting δγ be “first γ, then δ”, analogously to composition of
functions). Let g : Z → Z ′ be a map of connected spaces, and let g∗ :
Z[π1Z]→ Z[π1Z

′] be the induced functor. Let M be a Z[π1Z] module and
let z ∈ Z. We can give an explicit description of Kang∗(M)g(z), as follows.
By definition, Kang∗(M)g(z) is Pg∗(−, g(z)) ⊗Z[π1Z]M, and Pg∗(w, g(z)) is
the free abelian group generated by the path homotopy classes δ from g(w)
to g(z). There is a map

Z[π1(Z ′, g(z)]⊗Z[π1(Z,z)]Mz → Kang∗(M)g(z)

which takes γ ⊗ m to the class of γ ⊗ m. This map is an isomorphism
(it’s straightforward to check that its inverse takes δ ⊗ n, where δ is a path
homotopy class from g(w) to g(z) and n ∈ Mw, to δ(g ◦ ε)−1 ⊗ εn, where ε
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is any path homotopy class from w to z). The diagram

Mz

ι
))

// Z[π1(Z ′, g(z)]⊗Z[π1(Z,z)]Mz

∼=
��

Kang∗(M)g(z)

commutes.
Similarly, for z1, z2 ∈ Z and modules M1,M2 over Z[π1Z], there is an

isomorphism

(Z[π1(Z ′, g(z1)]⊗Z[π1(Z,z1)] (M1)z1)⊗ (Z[π1(Z ′, g(z2)]⊗Z[π1(Z,z2)] (M2)z2)

→ Kang∗⊗g∗(M1 ⊗M2)(g(z1),g(z2)).

Appendix C. Subdivision of singular simplices

In this section we record some facts related to subdivision which will be
needed in the next section.

Recall that intersection chains can be defined for any filtered space ([F03,
Section 2]). For a chain η, write supp(η) for the support of η, that is, the
union of the images of the singular simplices that have nonzero coefficient
in η.

Proposition C.1. Let Z be a filtered space, let U ⊂ Z be open, and let p̄ be
a perversity. Then there is an operation which takes each singular simplex
s to a chain s̄, with the following properties.

(i) If supp(s) ⊂ U then s̄ = s.
(ii) supp(s̄) ⊂ U ∩ supp(s).
(iii) If s is allowable then so are all singular simplices that belong to s̄.
(iv) If ξ =

∑
aisi is an element of ISp̄∗(Z;Z) with ai ∈ Z, write

ξ̄ =
∑

ais̄i.

Then ξ̄ ∈ ISp̄∗(U ;Z).

Proof. In the construction of [FM13b, page 155 line −7 to page 156 line 19],
ignore ξi, replace B by the set of all singular simplices, replace Bj by the set
of singular simplices of dimension j, and replace U1 by U . Define s̄ by the
equation on line 15 of page 156 of [FM13b]. Then (i) and (ii) are immediate,
and (iii) follows from [F07, Lemma 2.6]. To see (iv), first note that Equation
(9) on page 156 of [FM13b] remains valid with the same proof. Let k be the
dimension of ξ. Then

∂ξ̄ ≡
∑

t∈Bk−1 notallowable

∑
s∈Bk

cξ(s)c∂s(t)

 t̄
modulo allowable singular simplices. The expression in brackets is equal to
the coefficient of t in ∂ξ, and this is zero because ξ is an intersection chain.
Hence ξ̄ is allowable. �
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Lemma C.2. Let Z be a filtered space, let {W1, . . . ,Wn} be an open cover
of Z, let p̄ be a perversity and let i ∈ Z. Then

(i) the intersection of ISp̄i (Z;Z) with
∑

j Si(Wj ;Z) (considered as sub-

groups of Si(Z;Z)) is
∑

j IS
p̄
i (Wj ;Z), and

(ii) ISp̄i (Z;Z)/
∑

j IS
p̄
i (Wj ;Z) is free over Z.

Proof of Lemma C.2. For part (i), the proof is by induction on n. Let

ξ ∈ ISp̄i (Z;Z) ∩
n∑
j=1

Si(Wj ;Z).

Write
ξ =

∑
amsm;

then every supp(sm) is contained in some Wj . Apply Proposition C.1 with

U = W1 to get ξ̄ ∈ ISp̄∗(W1;Z). Parts (i) and (ii) of Proposition C.1 show
that every singular simplex that belongs to ξ − ξ̄ has support in some Wj

with j ≥ 2. Let Z ′ = ∪nj=2Wj . Then ξ − ξ̄ is an element of

ISp̄i (Z ′;Z) ∩
n∑
j=2

Si(Wj ;Z),

so by the inductive hypothesis

ξ − ξ̄ ∈
n∑
j=2

ISp̄i (Wj ;Z),

and therefore

ξ ∈
n∑
j=1

ISp̄i (Wj ;Z)

as required.
For part (ii), note that by part (i) the map

ISp̄i (Z;Z)/
∑
j

ISp̄i (Wj ;Z)→ Si(Z,Z)/
∑
j

Si(Wj ;Z)

is 1-1 and that Si(Z,Z)/
∑

j Si(Wj ;Z) is freely generated by the singular
simplices that do not land in any Wj . �

Remark C.3. Part (i) of this result gives a simple proof of [FM13b, Lemma
6.11], as follows. With the notation of that Lemma,

ξ1 = −ξ2 − · · · − ξm,
so every singular simplex that belongs to ξ1 has support in some Ui with
i ≥ 2. Thus

ξ1 ∈ ISp̄∗(X;Z) ∩
m∑
i=2

S∗(U1 ∩ Ui;Z),
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and by Lemma C.2(i) there exist ηi ∈ ISp̄∗(Ui ∩ U1;Z) for 2 ≤ i ≤ m with

ξ1 = −η2 − · · · − ηm
as required.

Appendix D. Extensions of some results from [FM13b]

In this appendix we show that the results of [FM13b, Subsections 6.2 and
6.3] remain valid with the field F replaced by Z. We will use the notation
of those subsections, except that we denote singular chains by S∗ instead of

C∗ and we write ISp̄∗ instead of I p̄C∗ and ISp̄,U∗ instead of I p̄UC∗.
First we have an analog of [FM13b, Lemma 6.6] (the extra generality in

the statement is used in Subsections 6.3 and 10.11).
We need some definitions and notation. Let Z be a filtered space and let

p̄ be a perversity. Let p : Z̃ → Z be a regular cover with automorphism
group π, and for a subset A ⊂ Z write Ã for p−1(A). Recall that A is said to

be evenly covered if the cover Ã → A is trivial. Let S be a finite collection
of subsets of Z, and let C(S) be the category whose objects are the elements
of S and whose morphisms are inclusions. Let

Φ : C(S)→ Z[π]−mod

be the functor that takes A to ISp̄∗(Ã;Z). For each element A of S let C(A)
be the full subcategory of C(S) whose objects are the elements of S which
are proper subsets of A, and let C(A) be the cokernel of the map

colim
B∈C(A)

ISp̄∗(B;Z)→ ISp̄∗(A;Z).

Let
Ψ : C(S)→ Z[π]−mod

be the functor which takes A to⊕
B∈S andB⊂A

Z[π]⊗C(B)

and has the obvious definition on morphisms.

Lemma D.1. Suppose that, for every A ∈ S,
(a) A is evenly covered,
(b) the map

colim
B∈C(A)

ISp̄∗(B;Z)→ ISp̄∗(A;Z)

is a monomorphism, and
(c) C(A) is free over Z.
Then
(i) Φ is naturally isomorphic to Ψ, and

(ii) colimA∈C(S) IS
p̄
∗(Ã;Z) ∼=

⊕
A∈S Z[π]⊗C(A), and

(iii) for each S ′ ⊂ S, the map

colim
A∈C(S′)

ISp̄∗(Ã;Z)→ colim
A∈C(S)

ISp̄∗(Ã;Z)
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has a left inverse over Z[π].

Proof of Lemma D.1. Part (ii) follows from part (i), since
⊕

A∈S Z[π]⊗C(A)
satisfies the universal property to be colimA∈C(S) Ψ(A), and (iii) is immediate
from part (ii).

Proof of (i). For each A ∈ S, choose an isomorphism ιA from the trivial
cover π × A → A to p|A and a splitting sA of the map ISp̄∗(A;Z) → C(A).
Let

νA : Ψ(A)→ Φ(A)

be the map whose restriction to Z[π]⊗C(B) is the composite

Z[π]⊗C(B)
1⊗sB−−−→ Z[π]⊗ISp̄∗(B;Z) ∼= ISp̄∗(π×B;Z)

ιB−→ ISp̄∗(B̃;Z)→ ISp̄∗(Ã;Z).

This is a natural transformation Ψ→ Φ. To see that νA is an isomorphism,
let us assume inductively that this has been shown for all B ⊂ A. Consider
the diagram

colimB∈C(A) Ψ(B)

colim νB
��

// Ψ(A)

νA
��

// Z[π]⊗C(A)

=

��
colimB∈C(A) Φ(B) // Φ(A) // Z[π]⊗C(A),

where the upper right arrow is the projection and the lower right arrow is
the composite

Φ(A)
ι−1
A−−→ ISp̄∗(π ×A;Z) ∼= Z[π]⊗ ISp̄∗(A;Z)→ Z[π]⊗C(A).

The diagram commutes, and the left vertical arrow is an isomorphism, so it
suffices to show that the rows are short exact. For the upper row this is clear,
and for the lower row this follows from hypothesis (b) and the definition of
C(A). �

Remark D.2. If all A ∈ S are open and S is closed under intersection then
hypotheses (a) and (b) of Lemma D.1 are satisfied: (a) follows from [FM13b,
Proposition 6.3] and (b) from [FM13b, Proposition 6.3] and Lemma C.2(ii).

Next we have the analog of [FM13b, Proposition 6.4].

Proposition D.3. Let Z be a filtered space and let A be an open subset of
Z. Let p̄ be a perversity.

(i) If Z has a finite covering by evenly covered open sets (in particular, if

Z is compact) then ISp̄∗(Z̃, Ã;Z) is chain homotopy equivalent over Z[π] to
a nonnegatively-graded chain complex of free Z[π]-modules.

(ii) For all Z, ISp̄∗(Z̃, Ã;Z) is chain homotopy equivalent over Z[π] to a
nonnegatively-graded chain complex of flat Z[π]-modules.

This follows from the proof of [FM13b, Proposition 6.4], using Lemma
D.1 and Remark D.2(ii) instead of [FM13b, Lemma 6.6].

Our next goal is to prove an analogue of [FM13b, Proposition 6.5]. First
recall that with Z coefficients the Künneth theorem that was used in the
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proof of [FM13b, Proposition 6.5] requires a hypothesis about torsion; see
[F, Definition 6.4.5 and Theorem 6.4.7] for the precise statement. It will be
useful to have the following terminology from [GS83].

Definition D.4. Let p̄ be any perversity. A pseudomanifold is called lo-
cally p̄-torsion free if IH p̄

c−2−p̄(c)(L
′) is torsion free for every link L′, where

dimL′ = c− 1.

Remark D.5. IP-spaces are locally m̄-torsion free, since if c − 1 is even,
c − 2 − m̄(c) = 1

2(c − 1) and IH(c−1)/2(L′) = 0, while if c − 1 is odd,
c− 2− m̄(c) = c

2 − 1 and IHc/2−1(L′) is torsion free.

The proof of [FM13b, Proposition 6.5] goes through without change to
show

Proposition D.6. Let X be a stratified PL ∂-pseudomanifold which is lo-
cally p̄-torsion free or locally q̄-torsion free and let A be an open subset of
X. Then the cross product

ISp̄∗(X̃, Ã;Z)⊗Z IS
q̄
∗(X̃, Ã;Z)→ IS

Qp̄,q̄
∗ (X̃ × X̃, Ã× X̃ ∪ X̃ × Ã;Z)

induces a quasi-isomorphism

Z⊗Z[π] (ISp̄∗(X̃, Ã;Z)⊗Z IS
q̄
∗(X̃, Ã;Z))

→ Z⊗Z[π] IS
Qp̄,q̄
∗ (X̃ × X̃, Ã× X̃ ∪ X̃ × Ã;Z).

Remark D.7. Let us say that a perversity is classical if it satisfies the origi-
nal definition given by Goresky and MacPherson in [GM80]. By [F, Theorem
5.5.1], if X is a stratified PL pseudomanifold, X is the same PL pseudoman-
ifold with the intrinsic stratification, and p̄ is a classical perversity, then the
canonical map

ISp̄∗(X;Z)→ ISp̄∗(X;Z)

is a quasi-isomorphism.

Next we have the analogue of [FM13b, Proposition 5.15], except that we
require the perversity to be classical.

Proposition D.8. Let X be a compact stratified PL ∂-pseudomanifold. Let
p̄ be a classical perversity. Then ISp̄∗(X̃;Z) is quasi-isomorphic over Z[π] to
a finite Z[π] chain complex.

Proof. It suffices to show that [FM13b, Lemma 6.7] remains valid with F
replaced by Z. The only place in the proof of that result where the hypothesis
that F is a field is used is in the second paragraph of the proof of Lemma
6.9, as part of the verification that ISp̄∗(St(s);F ) is homotopy finite over F ,
so we need to prove that ISp̄∗(St(s);Z) is homotopy finite over Z, where s is
a simplex with no vertices in ∂X.

For the remainder of the proof, for a PL space Y , we will write Y ∗ for Y
with its intrinsic filtration.
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It suffices to show that ISp̄∗(St(s)∗;Z) is homotopy finite over Z, because
this is quasi-isomorphic to ISp̄∗(St(s);Z) by Remark D.7, and hence it is
chain homotopy equivalent because both chain complexes are free over Z.

It is shown in the proof of [FM13b, Lemma 6.9] that St(s) is homeo-
morphic as a PL space to the open cone c◦A, where A = (∂s) ∗ Lk(s), so
it suffices to show that ISp̄∗((c

◦A)∗;Z) is homotopy finite over Z. Now by
Proposition A.1 the restriction of the filtration of (c◦A)∗ to A× (0, 1) is the
same as the filtration of A∗ × (0, 1). Hence if we let let B be

([0,
1

2
]×A)/(0× x ∼ 0× y),

with the filtration inherited from (c◦A)∗, then the evident homotopy equiv-
alence from (c◦A)∗ to B is a stratified homotopy equivalence (see [FM13a,
Appendix A] for the definition of stratified homotopy equivalence). Thus
(by the last paragraph of [FM13a, Appendix A]) it suffices to show that the
intersection chain complex of B with this filtration is homotopy finite over
Z.

Next we need a lemma:

Lemma D.9. B, with the filtration inherited from (c◦A)∗, is a stratified PL
∂-pseumanifold.

Before proving this, we note that it implies, by [F, Corollary 5.4.6], that
the intersection chain complex of B is quasi-isomorphic (and hence chain ho-

motopy equivalent) to the simplicial intersection chain complex IC p̄,T∗ (B;Z)

for any suitable triangulation T . Since B is compact, IC p̄,T∗ (B;Z) is a finite
chain complex, which completes the proof of Proposition D.8. �

Proof of Lemma D.9. First we show that Lk(s) is a PL pseudomanifold.
The fact that it satisfies part (a) of Definition 2.1 is immediate from the
corresponding condition for X and the definition of Lk(s). The fact that
Lk(s) satisfies part (b) of Definition 2.1 follows easily from the corresponding
condition for X, the definition of Lk(s), and the fact that s is not contained
in ∂X.

Now it follows that A = (∂s) ∗ Lk(s) is a PL pseudomanifold, and hence
A∗ is a stratified PL pseudomanifold by Proposition A.1(iv).

Next we observe that B is the union of two open sets U1 and U2, each of
which (with its inherited filtration) is a ∂-stratified PL pseudomanifold: let
U1 = ([0, 1

2) × A)/(0 × x ∼ 0 × y), which is a stratified PL pseudomanifold
because it is homeomorphic as a filtered space to (c◦A)∗ and hence to St(s)∗,
and let U2 be ((0, 1

2 ]×A), which is a stratified PL ∂-pseudomanifold because

(by Proposition A.1) it is homeomorphic as a filtered space to ((0, 1
2 ] ×

A∗). �

Appendix E. Universal Poincaré and Lefschetz duality

In this appendix we give the analogues of [FM13b, Theorems 4.1 and 4.5]
for Z coefficients.
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First we construct a suitable cap product, following the method of
[FM13b, Section 3].

Let X be a stratified PL ∂-pseudomanifold.
Let p : X̃ → X be a regular cover with group π. For any subset A of X

we write Ã for p−1(A). We assume that X̃ is stratified by the preimages of

the strata of X. Note that ISp̄∗(X̃;Z) possesses a left Z[π]-module structure

induced by the geometric action of π on X̃.

Notation E.1. (i) Given a perversity p̄ on X, the perversity on X̃ which
takes a stratum S to p̄(p(S)) will also be denoted by p̄.

(ii) We will write IS̄∗p̄(X̃;Z) for HomZ[π](IS
p̄
∗(X̃;Z),Z[π]) and IH̄∗p̄ (X̃;Z)

for the cohomology groups of this complex.

Now recall Definition D.4 and suppose that p̄, q̄ and r̄ are perversities
with Dr̄ ≥ Dp̄ + Dq̄ and that X is either locally p̄-torsion free or locally
q̄-torsion free.

Let
d̃ : IH r̄

∗(X;Z)→ H∗(IS
p̄
∗(X̃;Z)t ⊗Z[π] IS

q̄
∗(X̃;Z))

be the composition

IH r̄
∗(X;Z)

∼=←− H∗(Z⊗Z[π] IS
r̄
∗(X̃;Z))

1⊗d−−→ H∗(Z⊗Z[π] IS
Qp̄,q̄
∗ (X̃ × X̃;Z))

∼=←− H∗(Z⊗Z[π] (ISp̄∗(X̃;Z)⊗Z IS
q̄
∗(X̃;Z)))

∼= H∗(IS
p̄
∗(X̃;Z)t ⊗Z[π] IS

q̄
∗(X̃;Z)).

Here d is the diagonal map given by [FM13a, Proposition 4.2.1], the first
isomorphism is given by Proposition [FM13b, Proposition 6.1.3], and the
second isomorphism is given by Proposition D.6 (this is why the torsion free
assumption is needed). The third isomorphism is elementary.

Now we can define the cap product

(E.1) IH̄ i
q̄(X̃;Z)⊗ IH r̄

j (X;Z)→ IH p̄
j−i(X̃, ;Z)

by
α a x = (1⊗ α)d̃(x)

(using the fact that H∗(IS
p̄
∗(X̃;Z)t) is the same Z-module as IH p̄

∗ (X̃;Z)).
Similarly, we get a cap product

IH̄ i
q̄(X̃, Ã;Z)⊗ IH r̄

j (X,A ∪B;Z)→ IH p̄
j−i(X̃, B̃;Z)

when A and B are open subsets of X.

Remark E.2. If the covering p : X̃ → X is trivial then IS̄∗p̄(X̃;Z) is

canonically isomorphic to Hom(ISp̄∗(X;Z),Z[π]) and hence IH̄∗p̄ (X̃;Z) is

canonically isomorphic to IH p̄
∗ (X;Z[π]). Under this isomorphism the cap

product (E.1) corresponds to the cap product

IH̄ i
q̄(X;Z[π])⊗ IH r̄

j (X;Z)→ IH p̄
j−i(X, ;Z[π]).



90 MARKUS BANAGL, GERD LAURES, AND JAMES E. MCCLURE

Let us write
(IH̄ i

p̄)c(X̃;Z)

for
colim
K

IH̄ i
p̄(X̃, X̃ − K̃;Z)

where K runs through the compact subsets of X (the subscript c stands for
“compact supports”; cf. [F, Section 7.4]).

As in [FM13b, Section 4], we obtain a map

D : (IH̄ i
p̄)c(X̃;Z)→ IHDp̄

n−i(X̃;Z).

Now we can state the analogue of [FM13b, Theorem 4.1] for Z coefficients.

Theorem E.3 (Universal Poincaré duality). Let X be a Z-oriented PL

pseudomanifold and let p : X̃ → X be a regular covering of X. Suppose that
X is locally p̄-torsion free (in particular this is the case if X is an IP space
and p̄ = m̄, by Remark D.5). Then D is an isomorphism.

For the proof of Theorem E.3 we use [F, Theorem 5.1.4], with F∗(U) =

(IH̄∗p̄ )c(Ũ ;Z), G∗(U) = IHDp̄
n−i(Ũ ;Z), and Φ = D. We need to verify the

four conditions in [F, Theorem 5.1.4].
For condition 1, we first observe that the Mayer-Vietoris sequence for

F∗ exists because if U ⊂ V are open subsets of X then the inclusion
ISp̄∗(Ũ ;F ) ↪→ ISp̄∗(Ṽ ;F ) is split as a map of Z[π]-modules (this follows
from the proof of [F07, Proposition 2.9]: use the construction in that proof
with X taken to be V and the ordered open cover taken to be (U, V )). The
rest of the verification of condition 1 is the same as the proof of [F, Lemma
7.4.8], except that we use the following instead of [F, Proposition 7.3.59]:

Lemma E.4. There exist chains

βU−L ∈ ISp̄∗(U − L)⊗Z[π] IS
q̄
∗(U − L,U −K ∪ L),

βU∩V ∈ ISp̄∗(U ∩ V )⊗Z[π] IS
q̄
∗(U ∩ V,U ∩ V −K ∪ L)

and
βV−K ∈ ISp̄∗(V −K)⊗Z[π] IS

q̄
∗(V −K,V −K ∪ L)

such that βU−L + βU∩V + βV−K represents d̃(ΓK∪L) ∈ H∗(IS
p̄
∗(X) ⊗Z[π]

IS q̄∗(X,X −K ∪ L)).

The proof of Lemma E.4 is entirely parallel to the proof of [FM13a,
Lemma 6.9], except that we use [FM13b, Proposition 6.1.2] to show that
the map

λ : H∗(Z⊗Z[π] colim
W∈C

IS
Qp̄,q̄
∗ (W̃ × W̃ , W̃ × (W̃ − K̃ ∪ L̃)))

→ H∗(Z⊗Z[π] IS
Qp̄,q̄
∗ (Ỹ , Ỹ − (X̃ × (K̃ ∪ L̃))))

is an isomorphism.
Returning to the proof of Theorem E.3, the verification for condition 2 is

the same as the corresponding part of the proof of [F, Theorem 8.2.4]; the
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excision needed for part of the argument is given by [FM13b, Proposition
6.1.2].

As background for conditions 3 and 4, we note that [F, Theorem 8.2.4]
remains valid with Z[π] coefficients instead of Z coefficients, with the same
proof.

Now for condition 3, we observe that the covering p pulls back trivially to
Ri× cL, so condition 3 follows from Remark E.2 and the Z[π] version of [F,
Theorem 8.2.4] (the hypothesis of condition 3 isn’t needed for this purpose).

The verification of condtion 4 is the same as for condition 3. This con-
cludes the proof of Theorem E.3.

Finally, we have the analog of [FM13b, Theorem 4.5].

Theorem E.5 (Universal Lefschetz Duality). Let X be an n-dimensional
compact PL ∂-pseudomanifold with a Z-orientation of X − ∂X and let p :
X̃ → X be a regular covering of X. Suppose that X is locally p̄-torsion free
(in particular this is the case if X is an IP space and p̄ = m̄, by Remark
D.5). Then the cap product with ΓX gives isomorphisms

IH̄ i
p̄(X̃, p

−1(∂X);F )→ IHDp̄
n−i(X̃;F )

and
IH̄ i

p̄(X̃;F )→ IHDp̄
n−i(X̃, p

−1(∂X);F ).

The proof is the same as for [FM13b, Theorem 4.5].

Appendix F. Multiplicativity of the assembly map

This appendix gives the proof of

Proposition F.1. Let F be a homotopy invariant functor from spaces to
spectra, and suppose that there is a natural transformation

µ : F(X) ∧ F(Y )→ F(X × Y ).

Then the diagram

(X+ ∧ F(∗)) ∧ (Y+ ∧ F(∗))

α∧α
��

µ // (X × Y )+ ∧ F(∗)

α
��

F(X) ∧ F(Y )
µ // F(X × Y )

commutes up to homotopy, where α denotes the assembly map.

Let us recall the definition of the assembly map from [WW95, page 334].
The construction uses homotopy colimits (see [WW95, Section 1] for a brief
description of the homotopy colimit construction). For a space X, let CX
(which is denoted simp(X) in [WW95]) be the category whose objects are
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maps ∆n → X, and whose morphisms are commutative triangles

∆m f∗ //

!!

∆n

}}
X

where f∗ is the map induced by a monotone injection13 from {0, . . . ,m} to
{0, . . . , n}. There is a natural equivalence in the homotopy category

λ : X → hocolim
CX

∗

(see below) where ∗ denotes the functor which takes all objects to a point.
Let D be the functor from CX to spaces which takes ∆n → X to ∆n. The
assembly map is the following composite in the homotopy category of spectra
(where ∧ is the derived smash product)

X+ ∧ F(∗) λ∧1−−→ (hocolim
CX

∗)+ ∧ F(∗) ∼= hocolim
CX

F(∗)

'←− hocolim
CX

F ◦D → F (X).

Our first task is to give an explicit description of λ (this was left as an
exercise for the reader in [WW95]). We need a lemma.

Lemma F.2. The map

hocolim
CX

D → colim
CX

D

is a weak equivalence.

Proof. The category CX is a Reedy category ([H03, Def 15.1.2]; the subcate-

gory
−→
CX is equal to CX and the subcategory

←−
CX has only identity morphisms)

which has fibrant constants ([H03, Definition 15.10.1]) by the proof of [H03,
Proposition 15.10.4(1)]. The functor D is Reedy cofibrant ([H03, Definition
15.3.3(2)]) and the result follows by [H03, Theorem 19.9.1(1)]. �

Now let SX be the semisimplicial set whose n-simplices are the maps
∆n → X. Then λ can be chosen14 to be the composite

X
'←− |SX| = colim

CX
D
'←− hocolim

CX
D
'−→ hocolim

CX
∗.

Our next lemma gives a multiplicative property of λ. Let

d : CX×Y → CX × CY
13It is not clear why [WW95] does not use all monotone maps in this definition. The

reader can check that using all monotone maps would give the same assembly map, and
would allow us to work with simplicial rather than semisimplicial sets in what follows.

14To know that this is a correct choice, the paragraph after Observation 1.3 in [WW95]
says that one simply has to show that it gives an assembly map with the properties in
[WW95, Theorem 1.1], and this follows from the fact that this choice of λ is natural with
respect to X.
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be the functor which takes f : ∆n → X×Y to the pair (p1 ◦f, p2 ◦f), where
p1 and p2 are the projections.

Lemma F.3. (i) The diagram

X × Y λ×λ //

λ

��

(hocolim
CX

∗)× (hocolim
CY

∗)

hocolim
CX×Y

∗ δ // hocolim
CX×CY

∗

∼=
OO

commutes, where δ is induced by d and the verical arrow is induced by the
projections CX×Y → CX and CX×Y → CY .

(ii) The map δ in part (i) is a weak equivalence.

The proof of part (i) is left to the reader. Part (ii) follows from (i) and
the fact that λ is a weak equivalence.

Next we need some notation. For a space Z let Λ denote the composite

Z+ ∧ F(∗) λ∧1−−→ (hocolim
CZ

∗)+ ∧ F(∗) ∼= hocolim
CZ

F(∗).

Let
δ′ : hocolim

CX×Y
F(∗)→ hocolim

CX×CY
F(∗)

be the map induced by d; this is a weak equivalence by Lemma F.3(ii). Let
E be the functor from CX ×CY to spaces that takes (∆m → X,∆n → Y ) to
∆m ×∆n, and let

δ′′ : hocolim
CX×Y

F ◦D → hocolim
CX×CY

F ◦ E

be the map induced by d and the diagonal maps ∆n → ∆n ×∆n.
To complete the proof of Proposition F.1, we need only observe that the

following diagram is commutative:

X+ ∧ F(∗) ∧ Y+ ∧ F(∗) //

Λ∧Λ

��

(X × Y )+ ∧ F(∗)

Λ

��
hocolim
CX

F(∗) ∧ hocolim
CY

F(∗) // hocolim
CX×CY

F(∗) hocolim
CX×Y

F(∗)δ′oo

hocolim
CX

F ◦D ∧ hocolim
CY

F ◦D //

'
OO

��

hocolim
CX×CY

F ◦ E

'
OO

((

hocolim
CX×Y

F ◦Dδ′′oo

'
OO

��
F(X) ∧ F(Y ) // F(X × Y )
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Appendix G. Corrections to some signs in [LM13]

This appendix is only relevant for the proof of Lemma 13.3. All references
are to [LM13].

In Definition 15.4(i), the i-th face map adk(∆n)→ adk(∆n−1) should be
(−1)i times the composite with the map induced by the i-th coface map
∆n−1 → ∆n. There should also be an analogous sign in Definition 17.2.

In order for Proposition 17.8 to be true with this sign, the paragraph that
comes after Lemma 15.7 needs to be replaced by the following.

“Next observe that for each n there is an isomorphism of Z-graded cate-
gories

ν : Cell(∆n+1, ∂0∆n+1 ∪ {0})→ Cell(∂0∆n+1)

which lowers degrees by 1, defined as follows: a simplex σ of ∆n+1 which is
not in ∂0∆n+1 ∪ {0} contains the vertex 0. Let ν take σ (with its canonical
orientation) to the simplex of ∂0∆n spanned by the vertices of σ other than
0 (with its canonical orientation). Let

θ : Cell(∆n+1, ∂0∆n+1 ∪ {0})→ Cell(∆n)

be the composite of η with the isomorphism induced by the face map ∆n →
∂0∆n+1. θ is incidence-compatible, so by part (e) of Definition 3.10 it induces
a bijection

θ∗ : adk(∆n)→ adk+1(∆n+1, ∂0∆n+1 ∪ {0}).′′

This change leads to corresponding changes in Section 16 and Lemma
17.11, which we leave to the interested reader.
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Verlag, Boston, 1984.

[CSW91] S. E. Cappell, J. L. Shaneson, and S. Weinberger, Classes topologiques car-
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