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Abstract. To a stratified singular space X, we associate new spaces I p̄X, its
perversity p̄-intersection spaces, such that when X is a closed, oriented pseu-

domanifold, the ordinary rational cohomology of I p̄X is Poincaré dual to the

ordinary rational homology of I q̄X if p̄ and q̄ are complementary perversities.
The homology of I p̄X is not isomorphic to intersection homology so that a new

duality theory for pseudomanifolds is obtained, which addresses certain needs in

string theory related to the existence of massless D-branes in the course of coni-
fold transitions and their faithful representation as cohomology classes. While

intersection homology accounts correctly for all massless D-branes in type IIA

string theory, the homology of intersection spaces accounts correctly for all mass-
less D-branes in type IIB string theory. In fact, for singular Calabi-Yau conifolds,

the two theories are mirrors of each other in the sense of mirror symmetry. The

new theory also allows for certain types of cap products that are known not to
exist for intersection homology. Using these products, we show that capping with

the symmetric L-homology fundamental class induces an isomorphism between
the rational symmetric L-cohomology of Im̄X and the rational L-homology of

In̄X. Perversity p̄-intersection vector bundles on X may be defined as actual

vector bundles on I p̄X. In the present monograph, the construction of I p̄X is
carried out for isolated singularities and, more generally, for two-strata spaces

with trivial link bundle. It is based on an in-depth and autonomous homotopy

theoretic analysis of spatial homology truncation, where an emphasis was placed
on investigating functoriality.
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Preface

The primary concern of the work presented here is Poincaré duality for spaces
that are not manifolds, but are still put together from manifolds that form the strata
of a stratification of the space. Goresky and MacPherson’s intersection homology
[GM80], [GM83], see also [B+84], [KW06], [Ban07], associates to a stratified
pseudomanifoldX chain complexes IC p̄∗ (X;Q) depending on a perversity parameter p̄,
whose homology IH p̄

∗ (X;Q) = H∗(IC
p̄
∗ (X;Q)) satisfies generalized Poincaré duality

across complementary perversities when X is closed and oriented. L2-cohomology
[Che80], [Che79], [Che83] associates to a triangulated pseudomanifold X equipped
with a suitable conical Riemannian metric on the top stratum a differential complex
Ω∗(2)(X), the complex of differential L2-forms ω on the top stratum of X such that dω

is L2 as well, whose cohomology H∗(2)(X) = H∗(Ω∗(2)(X)) satisfies Poincaré duality (at

least when X has no strata of odd codimension; in more general situations one must
choose certain boundary conditions). The linear dual of IHm̄

∗ (X;R) is isomorphic
to H∗(2)(X), by integration. In the present work, we adopt the “spatial philosophy”

outlined in the announcement [Ban09], maintaining that a theory of Poincaré duality
for stratified spaces benefits from being implemented on the level of spaces, with
passage to coarser filters such as chain complexes, homology or homotopy groups
occurring as late as possible in the course of the development. Thus we pursue here
the following program. To a stratified pseudomanifold X, associate spaces

I p̄X,

the intersection spaces of X, such that the ordinary homology H̃∗(I
p̄X;Q) satis-

fies generalized Poincaré duality when X is closed and oriented. If X has no odd-
codimensional strata and p̄ is the middle perversity p̄ = m̄, then we are thus assigning
to a singular pseudomanifold a (rational) Poincaré complex. The resulting homology

theory X ; H̃∗(I
p̄X) is not isomorphic to intersection homology or L2-cohomology.

In fact, it solves a problem in type II string theory related to the existence of massless
D-branes, which is neither solved by ordinary homology nor by intersection homology.
We show that while IHm̄

∗ (X) is the correct theory in the realm of type IIA string

theory (giving the physically correct counts of massless particles), H̃∗(I
m̄X) is the

correct theory in the realm of type IIB string theory. In other words, the two theories

IHm̄(X), H̃∗(I
m̄X) form a mirror pair in the sense of mirror symmetry in algebraic

geometry. We will return to these considerations in more detail later in this preface.

The assignment X ; I p̄X should satisfy the following requirements:

(1) H̃∗(I
p̄X;Q) should satisfy generalized Poincaré duality across complemen-

tary perversities,

v
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(2) H̃∗(I
p̄X;Q) should be a mirror of IHm̄

∗ (X;Q) in the sense of mirror sym-
metry,

(3) X ; I p̄X should be as “natural” as possible,
(4) X should be modified as little as possible (only near the singularities; the

homotopy type away from the singularities should be completely preserved),
(5) if X is a finite cell complex, then I p̄X should again be a finite cell complex,

and
(6) X ; I p̄X should be homotopy-theoretically tractable, so as to facilitate

computations.

Note that full naturality in (3) with respect to all continuous maps is too much
to expect, since a corresponding property cannot be achieved for intersection homol-
ogy either. In order to demonstrate (6), we have worked out numerous examples
throughout the text, giving concrete intersection spaces for pseudomanifolds ranging
from toy examples to complex algebraic 3-folds and Calabi-Yau conifolds arising in
mathematical physics. In the present monograph, we carry out the above program for
pseudomanifolds with isolated singularities as well as, more generally, for two-strata
spaces with arbitrary bottom stratum but trivial link bundle. In addition, we make
suggestions for how to proceed when there are more than two strata, or when the
link bundle is twisted. Future research will have to determine the ultimate domain of
pseudomanifolds for which an intersection space is definable. Throughout the general
development of the theory, we assume the links of singular strata to be simply con-
nected. In concrete applications, this assumption is frequently unnecessary, see also
the paragraph preceding Example 2.2.8. In the example, we discuss the intersection
space of a concrete space whose links are not simply connected. Our construction of
intersection spaces is of a homotopy-theoretic nature, resting on technology for spatial
homology truncation, which we develop in this book. This technology is completely
general, so that it may be of independent interest.

What are the purely mathematical advantages of introducing intersection spaces?
Algebraic Topology has developed a vast array of functors defined on spaces, many
of which do not factor through chain complexes. For instance, let E∗ be any gener-
alized homology theory, defined by a spectrum E, such as K-theory, L-theory, stable
homotopy groups, bordism and so on. One may then study the composite assignment

X ; I p̄E∗(X) := E∗(I
p̄X).

Section 2.7, for example, studies symmetric L-homology, where E∗ is given by Ran-
icki’s symmetric L-spectrum E = L•. We show in Corollary 2.7.4 that capping with
the L•-homology fundamental class of an n-dimensional oriented compact pseudo-
manifold X with isolated singularities indeed induces a Poincaré duality isomorphism

H̃0(Im̄X;L•)⊗Q
∼=−→ H̃n(I n̄X;L•)⊗Q.

K-theory is discussed in Section 2.8. A p̄-intersection vector bundle on X may be de-
fined as an actual vector bundle on I p̄X. More generally, given any structure group
G, one may define principal intersection G-bundles over X as homotopy classes of
maps I p̄X → BG. In Example 2.8.1, we show that there are infinitely many distinct
7-dimensional pseudomanifolds X, whose tangent bundle elements in the KO-theory

K̃O(X−Sing) of their nonsingular parts do not lift to K̃O(X), but do lift to K̃O(I n̄X),
where n̄ is the upper middle perversity. So this framework allows one to formulate
the requirement that a pseudomanifold have a p̄-intersection tangent bundle, and by
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varying p̄, the severity of this requirement can be adjusted at will. Ultimately, one
may want to study the Postnikov tower of I p̄X and view it as a “p̄-intersection Post-
nikov tower” of X.

A further asset of the spatial philosophy is that cochain complexes will auto-
matically come equipped with internal multiplications, making them into differen-
tial graded algebras (DGAs). The Goresky-MacPherson intersection chain complexes
IC p̄∗ (X) are generally not algebras, unless p̄ is the zero-perversity, in which case
IC p̄∗ (X) is essentially the ordinary cochain complex of X. (The Goresky-MacPherson
intersection product raises perversities in general.) Similarly, the differential complex
Ω∗(2)(X) of L2-forms on X − Sing is not an algebra under wedge product of forms

because the product of two L2-functions need not be L2 anymore (consider for ex-
ample r−1/3 for small r > 0). Using the intersection space framework, the ordinary
cochain complex C∗(I p̄X) of I p̄X is a DGA, simply by employing the ordinary cup
product. For similar reasons, the cohomology of I p̄X is by default endowed with in-
ternal cohomology operations, which do not exist for intersection cohomology. These
structures, along with Massey triple products and other secondary and higher order
operations, remain to be investigated elsewhere. Operations in intersection cohomol-
ogy that weaken the perversity by a factor of two have been constructed in [Gor84].

In Section 2.6, we construct cap products of the type

(1) H̃r(Im̄X)⊗ H̃i(X)
∩−→ H̃i−r(I

n̄X).

These products have their applications not only in formulating and proving duality
statements, but also in developing various characteristic class formulae, which may
lead to extensions of the results of [BCS03], [Ban06a]. An m̄-intersection vector
bundle on X has Chern classes in Heven(Im̄X). Characteristic classes of pseudomani-
folds, such as the L-class, generally lie only in H∗(X;Q) and do not lift to intersection
homology or to H∗(I

m̄X;Q), see for example [GM80], [Ban06b]. Consequently, the
ordinary cap product Hr(Im̄X) ⊗Hi(I

m̄X) → Hi−r(I
m̄X) is useless in multiplying

the Chern classes of the bundle and the characteristic classes of the pseudomanifold.
The above product (1) then enables one to carry out such a multiplication. The
product (1) seems counterintuitive from the point of view of intersection homology
because an analogous product

IHr(X)⊗Hi(X) 99K IHi−r(X)

on intersection homology cannot exist. The motivational Section 2.6.1 explains why
the desired product cannot exist for intersection homology but does exist for inter-
section space homology. The products themselves are constructed in Section 2.6.3.

Let us briefly indicate how intersection spaces are constructed. We are guided
initially by mimicking spatially what intersection homology does algebraically. By
Mayer-Vietoris sequences, the overall behavior of intersection homology is primarily
controlled by its behavior on cones. If L is a closed n-dimensional manifold, n > 0,
then

IH p̄
r (

◦
cone(L)) ∼=

{
Hr(L), r < n− p̄(n+ 1),

0, otherwise,
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where
◦

cone(L) denotes the open cone on L and we are using intersection homology
built from finite chains. Thus, intersection homology is a process of truncating the
homology of a space algebraically above some cut-off degree given by the perversity
and the dimension of the space. This is also apparent from Deligne’s formula for the
intersection chain sheaf. The task at hand is to implement this spatially. Let C be a
category of spaces, that is, a category with a functor i : C→ Top to the category Top
of topological spaces and continuous maps. (For instance, C might be a subcategory
of Top and i the inclusion functor, but it might also be spaces endowed with extra
structure with i the forgetful functor, etc.) Let p : Top → HoTop be the natural
projection functor to the homotopy category of spaces, sending a continuous map to
its homotopy class. Suppose then that we had a functor

t<k : C −→ HoTop,

where k is a positive integer, together with a natural transformation embk : t<k → pi
(think of pi as the “identity functor”) such that

embk(L)∗ : Hr(t<k(L)) −→ Hr(pi(L))

is an isomorphism for r < k, while Hr(t<k(L)) = 0 for r ≥ k, for all objects L in
C. We refer to such a functor as a spatial homology truncation functor. Let X be an
n-dimensional closed pseudomanifold with one isolated singular point. Such an X is
of the form

X = M ∪∂M=L cone(L),

where L, a closed manifold of dimension n − 1, is the link of the singularity, and
M , a compact manifold with boundary ∂M = L, is the complement of a small open
cone-neighborhood of the singularity. Assume that L gives rise to an object L in C.
The intersection space I p̄X is defined to be the homotopy cofiber of the composition

t<k(L)
embk(L)−→ pi(L) = L = ∂M ↪→M,

where k = n− 1− p̄(n), see Definition 2.2.3. In other words: we attach the cone on a
suitable spatial homology truncation of the link to the exterior of the singularity along
the boundary of the exterior. The two extreme cases of this construction arise when
k = 1 and when k is larger than the dimension of the link. In the former case, t<1(L)
is a point (at least when L is path connected) and thus I p̄X is homotopy equivalent to
the nonsingular part X −Sing of X. In the latter case no actual truncation has to be
performed, t<k(L) = L, embk(L) is the identity map and thus I p̄X = X. If there are
several isolated singularities, then we perform spatial homology truncation on each of
the links. If the singularities are not isolated, a process of fiberwise spatial homology
truncation applied to the link bundle has to be used, see Section 2.9. If there are
more than two nested strata, then more elaborate homotopy colimit constructions
involving iterated truncation techniques can be used.

Theorem 2.2.5 establishes generalized Poincaré duality for the rational homol-
ogy of intersection spaces and simultaneously analyzes the relation to intersection
homology, both in the isolated singularity case. This relation is of a “reflective” na-
ture (which is also responsible for both theories being mirrors of each other in the
context of singular Calabi-Yau 3-folds). The requisite abstract language of reflective
diagrams is introduced in Section 2.1. Of particular interest here is to understand
what happens at the cut-off degree k, which is the middle dimension for the middle
perversity. The reflective diagram shows that while IH p̄

k (X) is generally smaller than
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both Hk(X −Sing) and Hk(X), being a quotient of the former and a subgroup of the
latter, Hk(I p̄X), on the other hand, is generally bigger than both Hk(X − Sing) and
Hk(X), containing the former as a subgroup and mapping to the latter surjectively.
Section 3.9 contains an example of a singular quintic S (a conifold) in P4 such that
H3(IS) has rank 204, but IH3(S) has only rank 2. Corollary 2.2.7 computes the
difference of the Euler characteristics of the two theories. As far as Witt groups are
concerned, both theories lead to equivalent intersection forms: We prove in Theorem
2.5.2 that for a pseudomanifold X of dimension n = 4m, the symmetric intersection
form on IHm̄

2m(X) and the symmetric intersection form on H2m(Im̄X) determine the
same element in the Witt group of the rationals. In particular, the signature of the
two forms are equal. Definition 2.9.1 contains the construction of I p̄X for a space X
with a positive dimensional singular stratum with untwisted link bundle. Theorem
2.9.7 establishes generalized Poincaré duality in this context.

As our approach relies on the ability to perform spatial homology truncation,
Chapter 1 is devoted to a systematic investigation of this problem. The investiga-
tion and results are of a general nature and can be read and used independently of
any interest in intersection spaces. Throughout the development, we strive to remain
firmly on the plane of elementary homotopy theory, using only classical instruments,
working unstably, avoiding simplicial or model theoretic language, as such language
does not seem to yield any particular advantage here. Our spaces in this chapter will
be simply connected CW-complexes because, just as Hilton [Hil65] does, we wish to
avail ourselves of the Hurewicz and the Whitehead theorem. Spatial homology trun-
cation on the object level has been studied by several researchers: the Eckmann-Hilton
dual of the Postnikov decomposition is the homology decomposition (or Moore space
decomposition) of a space, see [Hil65], [BJCJ59], [Moo]. It seems that the problem
has not received much attention on the morphism level; see, however, [Bau88] for
a tower of categories. Consequently, we focus on aspects of functoriality, and this is
where homology truncation turns out to be harder than Postnikov truncation because
obstructions surface that do not arise in the Postnikov picture. Given a space X, let
pn(X) : X → Pn(X) denote a stage-n Postnikov approximation for X. If f : X → Y is
any map, then there exists, uniquely up to homotopy, a map pn(f) : Pn(X)→ Pn(Y )
such that

X
f - Y

Pn(X)

pn(X)

?
pn(f)- Pn(Y )

pn(Y )

?

homotopy commutes. In the introductory Section 1.1.1 we give an example that shows
that this property does not Eckmann-Hilton dualize to spatial homology truncation.
Thus a homology truncation functor in this naive sense cannot exist. Our solution pro-
poses to consider spaces endowed with an extra structure. Morphisms should preserve
this extra structure; one obtains a category CWn⊃∂ . What is this extra structure?
Hilton’s homology decomposition really depends on a choice of complement to the
group of n-cycles inside of the n-th chain group. Such a complement always exists
and pairs (space, choice of complement) are the objects of CWn⊃∂ ; morphisms are
cellular maps that map the complement chosen for the domain to the complement
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chosen for the codomain. The Compression Theorem 1.1.32 shows that such mor-
phisms can always be compressed into spatial homology truncations. The upshot at
this stage is that we obtain a covariant assignment

t<n : CWn⊃∂ −→ HoCWn−1

of objects and morphisms into the rel (n − 1)-skeleton homotopy category of CW-
complexes together with a natural transformation embn from t<n to the identity, such
that for every object (K,Y ) of CWn⊃∂ , where K is a simply connected CW-complex
and Y a complement as discussed above,

embn(K,Y )∗ : Hr(t<n(K,Y )) −→ Hr(K)

is an isomorphism for r < n and Hr(t<n(K,Y )) = 0 for r ≥ n, see the first part of
Theorem 1.1.41. (Note that we do not at this stage claim that t<n is a functor on
all of CWn⊃∂ .) This solves the first order problem of the existence of compressions
of maps. Immediately, the second order problem of the uniqueness of compressions
presents itself. Example 1.1.9 shows that even when domain and codomain of a map
f have unique homological n-truncations and f does have a homological n-truncation,
the homotopy class of that truncation may not be uniquely determined by f . The
obvious idea of imposing the above requirement of complement-preservation also on
homotopies and then just applying the Compression Theorem 1.1.32 to compress
the homotopy into spatial homology truncations does not work. We call a map n-
compression rigid, if its compression into n-truncations agrees with f on the (n− 1)-
skeleton and is unique up to rel (n− 1)-skeleton homotopy, see Definition 1.1.33 and
Proposition 1.1.34. Example 1.1.35 exposes a map that is not compression rigid, even
though its domain and codomain have unique n-truncations. As an instrument for
understanding compression rigidity, we introduce virtual cell groups V Cn of a space,
so named because they are homotopy groups which are not themselves cellular chain
groups, but they sit naturally between two actual cellular chain groups of certain
cylinders. The virtual cell groups come equipped with an endomorphism so that we
can formulate the concept of a 1-eigenclass (or eigenclass for short) for elements of
V Cn. We show that a map is compression rigid if and only if the homotopies coming
from the homotopy commutativity of the transformation square associated to embn
can be chosen to be eigenclasses in V Cn. For 2-connected spaces, virtual cell groups
are computed in Proposition 1.1.18. An obstruction theory for compression rigidity
is set up in Section 1.2. Case studies of compression rigid categories are presented in
Section 1.3. The second part of Theorem 1.1.41 asserts that the covariant assignment
t<n is a functor on n-compression rigid subcategories of CWn⊃∂ . The dependence of
the spatial homology truncation t<n(K,Y ) on Y is discussed by Proposition 1.1.25,
Scholium 1.1.26, Proposition 1.1.27 and Corollaries 1.1.30, 1.1.31. Proposition 1.1.25
gives a necessary and sufficient condition for t<n(K,Y ) and t<n(K,Y ) to be homotopy
equivalent rel (n−1)-skeleton, where Y, Y are two choices of complements. Section 1.4
deals with the truncation of homotopy equivalences, Section 1.5 with the truncation
of inclusions, and Section 1.6 with iterated truncation. In Section 1.7, we investigate
spatial homology truncation followed by localization at odd primes. Theorem 1.7.3

establishes that this composite assignment t
(odd)
<n is a functor on 2-connected spaces.

The key ingredients here are the compression rigidity obstruction theory together
with Proposition 1.2.8, which calculates a pertinent homotopy group and shows that
it is all 2-torsion.
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There are important classes of spaces where no complement Y has to be cho-
sen and the compression rigidity obstructions vanish. We study one such class in
detail, namely spaces with vanishing odd-dimensional homology. We refer to this
class as the interleaf category, ICW. It includes for instance simply connected 4-
manifolds, smooth compact toric varieties, homogeneous spaces arising as the quotient
of a complex simply connected semisimple Lie group by a parabolic subgroup (e.g.
flag manifolds, Grassmannians), and smooth Schubert varieties. A truncation functor
t<n : ICW → HoCW and cotruncation functor t≥n : ICW → HoCW are defined.
Mostly, but not exclusively, in the context of the interleaf category, we investigate
continuity properties of the homology truncation of homeomorphisms. We show in
Theorem 1.10.3 that truncation of cellular self-homeomorphisms of an interleaf space
is a continuous H-map into the grouplike topological monoid of self-homotopy equiv-
alences of the homology truncation of the space. In Section 1.11, we discuss fiberwise
homology truncation for mapping tori (general simply connected fiber), flat bundles
over spaces whose fundamental group G has a K(G, 1) of dimension at most 2 (for
example flat bundles over closed surfaces other than RP 2; again for general simply
connected fiber), and fiber bundles over a sphere of dimension greater than 1, with
interleaf fiber.

Since spatial homology truncation of a space L in general requires making a choice
of a certain type of subgroup Y in the n-th chain group of L in order to obtain an
object (L, Y ) in CWn⊃∂ , and since the construction of intersection spaces uses this
truncation on the links L of singularities, the homotopy type of the intersection space
I p̄X may well depend, to some extent, on choices. We show (Theorem 2.3.1) that the
rational homology of I p̄X is well-defined and independent of choices. Furthermore,
we give sufficient conditions, in terms of the homology of the links in X and the
homology of X − Sing, for the integral homology of I p̄X in the cut-off degree to be
independent of choices. Away from the cut-off degree, the integral homology is always
independent of choices. The conditions are often satisfied in algebraic geometry for
the middle perversity, for instance when X is a complex projective algebraic 3-fold
with isolated hypersurface singularities that are weighted homogeneous and “well-
formed”, see Theorem 2.3.7. This class of varieties includes in particular conifolds,
to be discussed below. Theorem 2.4.2 asserts that the homotopy type of I p̄X is well-
defined independent of choices when all the links are interleaf spaces.

It was mentioned before that the homology of intersection spaces addresses cer-
tain questions in type II string theory — let us expand on this. Our viewpoint is
informed by [GSW87], [Str95] and [Hüb97]. In addition to the four dimensions
that model space-time, string theory requires six dimensions for a string to vibrate.
Due to supersymmetry considerations, these six dimensions must be a Calabi-Yau
space, but this still leaves a lot of freedom. It is thus important to have mechanisms
to move from one Calabi-Yau space to another. A topologist’s take on this might
be as follows, disregarding the Calabi-Yau property for a moment. Since any two 6-
manifolds are bordant (ΩSO

6 = 0) and since, by Morse theory, any bordism is obtained
by performing a finite sequence of surgeries, surgery is not an unreasonable vessel to
travel between 6-manifolds. Note also that every 3-dimensional homology class in a
simply connected smooth 6-manifold can be represented, by the Whitney embedding
theorem, by an embedded 3-sphere with trivial normal bundle. Physicists’ conifold
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transition starts out with a nonsingular Calabi-Yau 3-fold, passes to a singular vari-
ety (the conifold) by a deformation of complex structure, and arrives at a different
nonsingular Calabi-Yau 3-fold by a small resolution of singularities. The deforma-
tion collapses embedded 3-spheres to isolated singular points, whose link is S3 × S2.
The resolution resolves the singular points by replacing each one with a CP 1. As
we review in Section 3.6, massless particles in four dimensions should be recorded as
classes by good cohomology theories for Calabi-Yau varieties. In type IIA string the-
ory, there are charged twobranes present that wrap around the CP 1 2-cycles and that
become massless when those 2-cycles are collapsed to points by the resolution map,
see Section 3.5. We show that intersection homology accounts for all of these mass-
less twobranes and thus is the physically correct homology theory for type IIA string
theory. However, in type IIB string theory, there are charged threebranes present
that wrap around the 3-spheres and that become massless when those 3-spheres are
collapsed to points by the deformation of complex structure. Neither the ordinary
homology of the conifold, nor its intersection homology (or L2-cohomology) accounts
for these massless threebranes. In Proposition 3.7.4 we prove that the homology of
the intersection space of the conifold yields the correct count of these threebranes.
From this point of view, the homology of intersection spaces appears to be a physi-
cally suitable homology theory in the IIB regime. The theory in particular answers a
question posed by [Hüb97] in this regard. Given a Calabi-Yau 3-fold M , the mirror
map associates to it another Calabi-Yau 3-fold W such that type IIB string theory
on R4 ×M corresponds to type IIA string theory on R4 ×W . If M and W are non-
singular, then b3(W ) = (b2 + b4)(M) + 2 and b3(M) = (b2 + b4)(W ) + 2 for the Betti
numbers of ordinary homology. The preceding discussion suggests that if M and W
are singular, HIIA

∗ is a type IIA D-brane-complete homology theory with Poincaré
duality, and HIIB

∗ is a type IIB D-brane-complete homology theory with Poincaré
duality, then one should expect that

rkHIIA
3 (M) = rkHIIB

2 (W ) + rkHIIB
4 (W ) + 2,

rkHIIA
3 (W ) = rkHIIB

2 (M) + rkHIIB
4 (M) + 2,

rkHIIB
3 (M) = rkHIIA

2 (W ) + rkHIIA
4 (W ) + 2, and

rkHIIB
3 (W ) = rkHIIA

2 (M) + rkHIIA
4 (M) + 2.

Corollary 3.8.5 establishes that this is indeed the case for HIIA
∗ (−) = IH∗(−) and

HIIB
∗ (−) = H∗(I−) when M and W are conifolds. Thus (IH∗(−), H∗(I−)) is a

mirror-pair in this sense. Intersection homology and the homology of intersection
spaces reveal themselves as the two sides of one coin.

Prerequisites. In Chapter 1, we assume that the reader is acquainted with the ele-
mentary homotopy theory of CW complexes, [Whi78], [Hil53], [Hat02]. In Chapter
2, a rudimentary knowledge of stratification theory, pseudomanifolds, and intersection
homology is useful. In addition to the references already mentioned in the beginning
of this preface, the reader may wish to consult [GM88], [Wei94], [Sch03]and [Pfl01].
A geometric understanding of intersection homology in terms of PL or singular chains
is sufficient. Sheaf-theoretic methods are neither used nor required in this book. Re-
garding Chapter 3, we have made an attempt to collect in Sections 3.1 – 3.6 all the
background material from string theory that we need for our predominantly math-
ematical arguments in Sections 3.7 –3.9. Specific competence in, say, quantum field
theory, is not required to read this chapter.
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Notation and Conventions: Our convention for the mapping cylinder Y ∪f X × I
of a map f : X → Y is that the attaching is carried out at time 1, that is, the points
of X × {1} ⊂ X × I are attached to Y using f . For products in cohomology and
homology, we will use the conventions of Spanier’s book [Spa66]. In particular, for
an inclusion i : A ⊂ X of spaces and elements ξ ∈ Hp(X), x ∈ Hn(X,A), the formula
∂∗(ξ ∩ x) = i∗ξ ∩ ∂∗x holds for the connecting homomorphism ∂∗ (no sign). For the
compatibility between cap- and cross-product, one has the sign

(ξ × η) ∩ (x× y) = (−1)p(n−q)(ξ ∩ x)× (η ∩ y),

where ξ ∈ Hp(X), η ∈ Hq(Y ), x ∈ Hm(X), and y ∈ Hn(Y ).





CHAPTER 1

Homotopy Theory

1.1. The Spatial Homology Truncation Machine

1.1.1. Introduction. The Eckmann-Hilton dual of the Postnikov decomposi-
tion of a space is the homology decomposition (or Moore space decomposition) ([Zab76,
page 44], [Hil65], [BJCJ59], [Moo]) of a space. Let us give a brief review of this
decomposition, based on dualizing the Postnikov decomposition.

A Postnikov decomposition for a simply connected CW-complex X is a commu-
tative diagram

...

q4

��
P3(X)

q3

��
X

p1

$$JJJJJJJJJJ
p2 //

p3

::tttttttttt
P2(X)

q2

��
P1(X) = pt

such that pn∗ : πr(X)→ πr(Pn(X)) is an isomorphism for r ≤ n and πr(Pn(X)) = 0
for r > n. Let Fn be the homotopy fiber of qn. Then the exact sequence

πr+1(PnX)
qn∗→ πr+1(Pn−1X)→ πr(Fn)→ πr(PnX)

qn∗→ πr(Pn−1X)

shows that Fn is an Eilenberg-MacLane space K(πnX,n). Constructing Pn+1(X)
inductively from Pn(X) requires knowing the n-th k-invariant, which is a map of the
form kn : Pn(X) → Yn. The space Pn+1(X) is then the homotopy fiber of kn. Thus
there is a homotopy fibration sequence

K(πn+1X,n+ 1) −→ Pn+1(X)
qn+1−→ Pn(X)

kn−→ Yn.

This means that K(πn+1X,n + 1) is homotopy equivalent to the loop space ΩYn.
Consequently,

πr(Yn) ∼= πr−1(ΩYn) ∼= πr−1(K(πn+1X,n+ 1)) =

{
πn+1X, r = n+ 2,

0, otherwise,

and we see that Yn is a K(πn+1X,n+ 2). Thus the n-th k-invariant is a map

kn : Pn(X)→ K(πn+1X,n+ 2).

1
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Note that it induces the zero map on all homotopy groups, but is not necessarily
homotopic to the constant map. The original space X is weakly homotopy equivalent
to the inverse limit of the Pn(X).

Applying the paradigm of Eckmann-Hilton duality , we arrive at the homology
decomposition principle from the Postnikov decomposition principle by changing

• the direction of all arrows,
• π∗ to H∗,
• loops Ω to suspensions S,
• fibrations to cofibrations and fibers to cofibers,
• Eilenberg-MacLane spaces K(G,n) to Moore spaces M(G,n), and
• inverse limits to direct limits.

A homology decomposition (or Moore space decomposition) for a simply connected
CW-complex X is a commutative diagram

...

X≤3

j3
zzvvvvvvvvvv

i4

OO

X X≤2
j2

oo

i3

OO

X≤1 = pt

j1

ddHHHHHHHHHH
i2

OO

such that jn∗ : Hr(X≤n) → Hr(X) is an isomorphism for r ≤ n and Hr(X≤n) = 0
for r > n. Let Cn be the homotopy cofiber of in. Then the exact sequence

Hr(X≤n−1)
in∗→ Hr(X≤n)→ Hr(Cn)→ Hr−1(X≤n−1)

in∗→ Hr−1(X≤n)

shows that Cn is a Moore space M(HnX,n). Constructing X≤n+1 inductively from
X≤n requires knowing the n-th k-invariant , which is a map of the form kn : Yn →
X≤n. The space X≤n+1 is then the homotopy cofiber of kn. Thus there is a homotopy
cofibration sequence

Yn
kn−→ X≤n

in+1−→ X≤n+1 −→M(Hn+1X,n+ 1).

This means that M(Hn+1X,n + 1) is homotopy equivalent to the suspension SYn.
Consequently,

H̃r(Yn) ∼= H̃r+1(SYn) ∼= H̃r+1(M(Hn+1X,n+ 1)) =

{
Hn+1X, r = n,

0, otherwise,

and we see that Yn is an M(Hn+1X,n). Thus the n-th k-invariant is a map

kn : M(Hn+1X,n)→ X≤n.

It induces the zero map on all reduced homology groups, which is a nontrivial state-
ment to make in degree n:

kn∗ : Hn(M(Hn+1X,n)) ∼= Hn+1(X) −→ Hn(X) ∼= Hn(X≤n).
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The original space X is homotopy equivalent to the direct limit of the X≤n.

The Eckmann-Hilton duality paradigm, while being a very valuable organiza-
tional principle, does have its natural limitations, as we shall now discuss. Postnikov
approximations possess rather good functorial properties: Let pn(X) : X → Pn(X) be
a stage-n Postnikov approximation for X, that is, pn(X)∗ : πr(X)→ πr(Pn(X)) is an
isomorphism for r ≤ n and πr(Pn(X)) = 0 for r > n. If Z is a space with πr(Z) = 0
for r > n, then any map g : X → Z factors up to homotopy uniquely through Pn(X),
see [Zab76]. In particular, if f : X → Y is any map and pn(Y ) : Y → Pn(Y ) is a
stage-n Postnikov approximation for Y , then, taking Z = Pn(Y ) and g = pn(Y ) ◦ f,
there exists, uniquely up to homotopy, a map pn(f) : Pn(X)→ Pn(Y ) such that

X
f - Y

Pn(X)

pn(X)

?
pn(f)- Pn(Y )

pn(Y )

?

homotopy commutes. One of the starting points for our development of the spa-
tial homology truncation machine presented in this book was the fact that the above
functorial property of Postnikov approximations does not dualize to homology decom-
positions. Let us discuss an example based on suggestions of [Zab76] that illustrates
this lack of functoriality for Moore space decompositions. Let X = S2 ∪2 e

3 be a
Moore space M(Z/2, 2) and let Y = X ∨ S3. If X≤2 and Y≤2 denote stage-2 Moore
approximations for X and Y , respectively, then X≤2 = X and Y≤2 = X. We claim
that whatever maps i : X≤2 → X and j : Y≤2 → Y such that i∗ : Hr(X≤2)→ Hr(X)
and j∗ : Hr(Y≤2) → Hr(Y ) are isomorphisms for r ≤ 2 one takes, there is always a
map f : X → Y that cannot be compressed into the stage-2 Moore approximations,
i.e. there is no map f≤2 : X≤2 → Y≤2 such that

X
f - Y

X≤2

i

6

f≤2- Y≤2

j

6

commutes up to homotopy. We shall employ the universal coefficient exact sequence
for homotopy groups with coefficients. If G is an abelian group and M(G,n) a Moore
space, then there is a short exact sequence

0→ Ext(G, πn+1Y )
ι−→ [M(G,n), Y ]

η−→ Hom(G, πnY )→ 0,

where Y is any space and [−,−] denotes pointed homotopy classes of maps. The
map η is given by taking the induced homomorphism on πn and using the Hurewicz
isomorphism. This universal coefficient sequence is natural in both variables. Hence,
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the following diagram commutes:

0 - Ext(Z/2, π3Y≤2)
ι≤2- [X≤2, Y≤2]

η≤2- Hom(Z/2, π2Y≤2) - 0

0 - Ext(Z/2, π3Y )

E2π3(j)

?
ι- [X≤2, Y ]

j∗

?
η- Hom(Z/2, π2Y )

π2(j)∗=id

?
- 0

0 - Ext(Z/2, π3Y )

id=EY π2(i)

6

ι- [X,Y ]

i∗

6

η- Hom(Z/2, π2Y )

π2(i)∗=id

6

- 0

Here we will briefly write E2(−) = Ext(Z/2,−) so that E2(G) = G/2G, and EY (−) =
Ext(−, π3Y ). By the Hurewicz theorem, π2(X) ∼= H2(X) ∼= Z/2, π2(Y ) ∼= H2(Y ) ∼=
Z/2, and π2(i) : π2(X≤2) → π2(X), as well as π2(j) : π2(Y≤2) → π2(Y ), are isomor-
phisms, hence the identity. If a homomorphism φ : A→ B of abelian groups is onto,
then E2(φ) : E2(A) = A/2A → B/2B = E2(B) remains onto. By the Hurewicz
theorem, Hur : π3(Y ) → H3(Y ) = Z is onto. Consequently, the induced map
E2(Hur) : E2(π3Y )→ E2(H3Y ) = E2(Z) = Z/2 is onto. Let ξ ∈ E2(H3Y ) be the gen-
erator. Choose a preimage x ∈ E2(π3Y ), E2(Hur)(x) = ξ and set [f ] = ι(x) ∈ [X,Y ].
Suppose there existed a homotopy class [f≤2] ∈ [X≤2, Y≤2] such that j∗[f≤2] = i∗[f ].
Then

η≤2[f≤2] = π2(j)∗η≤2[f≤2] = ηj∗[f≤2] = ηi∗[f ] = π2(i)∗η[f ] = π2(i)∗ηι(x) = 0.

Thus there is an element ε ∈ E2(π3Y≤2) such that ι≤2(ε) = [f≤2]. From

ιE2π3(j)(ε) = j∗ι≤2(ε) = j∗[f≤2] = i∗[f ] = i∗ι(x) = ιEY π2(i)(x)

we conclude that E2π3(j)(ε) = x since ι is injective. By naturality of the Hurewicz
map, the square

π3Y≤2
π3(j)- π3Y

0 = H3Y≤2

Hur

?
H3(j)- H3Y

Hur

?

commutes and induces a commutative diagram upon application of E2(−):

E2(π3Y≤2)
E2π3(j)- E2(π3Y )

0 = E2(H3Y≤2)

E2(Hur)

?
E2(H3(j))- E2(H3Y ).

E2(Hur)

?

It follows that

ξ = E2(Hur)(x) = E2(Hur)E2π3(j)(ε) = E2H3(j)E2(Hur)(ε) = 0,

a contradiction. Therefore, no compression [f≤2] of [f ] exists. We will return to this
example at a later point, where an explicit geometric description of the map f will
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also be given.

From the point of view adopted in this monograph, the lack of functoriality of
Moore approximations is due to the wrong choice of morphisms between spaces. The
way in which we will approach the problem is to change the categorical setup: Instead
of considering CW-complexes and cellular maps between them, we will consider CW-
complexes endowed with extra structure and cellular maps that preserve that extra
structure. We will show that such morphisms can then be compressed into homology
truncations if the latter are constructed correctly. Every CW-complex can indeed be
endowed with the requisite extra structure so that this does not limit the class of
spaces which the truncation machine can process as an input. (However, there is no
way in general to associate the extra structure canonically with every space, although
this is possible for certain classes of spaces.) Given a cellular map, it is not always
possible to adjust the extra structure on the source and on the target of the map so
that the map preserves the structures. Thus the category theoretic setup automati-
cally, and in a natural way, singles out those continuous maps that can be compressed
into homologically truncated spaces.

Let n be a positive integer.

Definition 1.1.1. A CW-complex K is called n-segmented if it contains a sub-
complex K<n ⊂ K such that

(2) Hr(K<n) = 0 for r ≥ n
and

(3) i∗ : Hr(K<n)
∼=−→ Hr(K) for r < n,

where i is the inclusion of K<n into K.

Not every n-dimensional complex is n-segmented, but we shall see that every
n-dimensional complex K is homotopy equivalent to an n-segmented one, K/n. Let
Kr denote the r-skeleton of a CW-complex K.

Lemma 1.1.2. Let K be an n-dimensional CW-complex. If its group of n-cycles
has a basis of cells, then K is n-segmented.

Proof. Let {zβ} be n-cells of K forming a basis for the cycle group Zn(K). Let
{yα} be the rest of the n-cells, generating a subgroup Y ⊂ Cn(K). Set

K<n = Kn−1 ∪
⋃
α

yα ⊂ K.

The boundary operator Cn(K<n) = Y → Cn−1(K<n) = Cn−1(K) is the restriction of
∂n : Cn(K) = Y ⊕ Zn(K)→ Cn−1(K) to Y , hence injective. Therefore, Hn(K<n) =
0. Since the inclusion K<n ⊂ K induces the identity Zn−1(K<n) = Zn−1(K) and
im ∂n|Y = im ∂n, the inclusion induces

Hn−1(K<n) =
Zn−1(K)

im(∂n|Y )
=
Zn−1(K)

im ∂n
= Hn−1(K).

Clearly, Hr(K<n) = Hr(K) for r ≤ n− 2 and Hr(K<n) = 0 for r > n. �

If K is any n-dimensional, n-segmented space, then it does not follow automati-
cally that its group of n-cycles Zn(K) possesses a basis of cells. Nor is the subcomplex
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K<n unique. As an example, consider the 3-sphere K = S3 with the CW-structure
S3 = S2 ∪1 e

3
1 ∪1 e

3
2. This complex is clearly 3-segmented; we may for instance take

K<3 = S2 ∪1 e
3
1 = D3. Neither e3

1 nor e3
2 lie in the kernel of the boundary operator,

only their difference does. Thus Z3(K), though nonempty, does not have a basis of
cells. The truncation K<3 is not unique because the subcomplex S2∪1 e

3
2 would work

just as well.

Proposition 1.1.3. Let K be an n-dimensional, n-segmented CW-complex and
suppose K<n ⊂ K is a subcomplex with properties (2) and (3) and such that (K<n)n−1 =
Kn−1. If the group of n-cycles of K has a basis of cells, then K<n is unique, namely

K<n = Kn−1 ∪
⋃
α

yα,

where {yα} is the set of n-cells of K that are not cycles.

Proof. Let {zβ} be n-cells of K forming a basis for the cycle group Zn(K). Let
{yα} be the rest of the n-cells of K. Let {enγ} be the n-cells of K<n. Thus we have

Kn−1 ∪
⋃
γ

enγ = K<n ⊂ K = Kn−1 ∪
⋃
α

yα ∪
⋃
β

zβ .

The assertion follows once we have established that 1) none of the zβ occur among
the enγ , and 2) every yα appears among the enγ . Suppose 1) were false so that there
existed a γ with enγ = zβ for some β. Since K<n is n-dimensional and Hn(K<n) = 0,
the cellular boundary operator ∂<n : Cn(K<n) → Cn−1(K<n) is injective. With
i : Cn(K<n) ↪→ Cn(K) the inclusion, we have a commutative diagram

Cn(K<n) ⊂
i - Cn(K)

Cn−1(Kn−1)
�

∂n

⊂

∂ <
n

-

Thus for the above cycle-cell zβ :

0 = ∂n(zβ) = ∂ni(zβ) = ∂<n (zβ) 6= 0,

a contradiction. Therefore, {enγ} must be a subset of {yα}.
To establish 2), we observe first that im ∂<n = im ∂n: The identity ∂n ◦ i =

∂<n shows that im ∂<n ⊂ im ∂n. The inclusion K<n ⊂ K induces an isomorphism

Hn−1(K<n)
∼=−→ Hn−1(K). But the inclusion restricted to (n− 1)-skeleta is the iden-

tity map, whence the identity map induces an isomorphism

Zn−1(K)

im ∂<n

∼=−→ Zn−1(K)

im ∂n
.

Now if G is an abelian group and A ⊂ B ⊂ G subgroups such that the identity map

induces an isomorphism G/A
∼=−→ G/B, then the injectivity implies B ⊂ A, so that

A = B. In particular, we conclude for our situation im ∂<n = im ∂n. Let Y ⊂ Cn(K)
be the subgroup generated by the cells {yα}, giving rise to a decomposition Cn(K) =
Y ⊕ Zn(K). The restriction ∂n| : Y → Cn−1(Kn−1) is injective and has the same
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image as ∂n. Since by 1), {enγ} ⊂ {yα}, we have im(i) ⊂ Y . Consequently, there is a
restricted diagram

Cn(K<n) ⊂
i| - Y

im ∂<n = im ∂n
�

∼=
∂n
|

∼=
∂ <
n

-

which shows that i| : Cn(K<n)
∼=−→ Y is an isomorphism. In particular, every cell

yα ∈ Y has a preimage in Cn(K<n) and that preimage is some n-cell enγ of K<n. �

1.1.2. An Example. The example below, due to Peter Hilton, already illus-
trates all the relevant points and necessary techniques for spatial homology truncation
on the object level. Let K be the simply connected complex

K = S2 ∪4 e
3
1 ∪6 e

3
2.

Its homology is

H2(K) = Z/2, H3(K) = Z.
We claim that K is not 3-segmented. If it were 3-segmented, then there would exist
a subcomplex K<3 such that

H2(K<3) = Z/2 and H3(K<3) = 0.

The following table shows that no matter which subcomplex we try, each time either
the second or third homology is wrong.

K<3 H2(K<3) H3(K<3)
∗ 0 0
S2 Z 0

S2 ∪4 e
3
1 Z/4 0

S2 ∪6 e
3
2 Z/6 0

K Z/2 Z

We shall now describe a method to produce a 3-segmented space K/3 which is still
homotopy equivalent to K. The method is essentially an algebraic change of basis in
the third cellular chain group of K. The change of basis is then realized topologically
by 3-cell reattachment to yield the desired homotopy equivalence. Let C∗(K) denote
the cellular chain complex of K. We equip C3(K) with the basis {e3

1, e
3
2}. The short

exact sequence

0→ ker ∂ −→ C3(K)
∂−→ im ∂ → 0

splits since im ∂ = 2Z ⊂ Ze2 = C2(K) is free abelian. In fact,

s : im ∂ −→ C3(K)
2n 7→ (−n, n)

is an explicit splitting. Set

Y3(K) = im s = Z(−1, 1)

and

Z3(K) = ker ∂ = {(n,m) : 2n = −3m} = Z(3,−2),
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so that

C3(K) = Z3(K)⊕ Y3(K).

This is the change of basis we referred to earlier. The Hurewicz map identifies C3(K)
with π3(K3,K2). Under this identification, the element (3,−2) ∈ C3(K) corresponds
to an element ζ ∈ π3(K3,K2). Similarly, (−1, 1) corresponds to an η ∈ π3(K3,K2).
The connecting homomorphism

d : π3(K3,K2) −→ π2(K2) = π2(S2)
deg∼= Z

maps a 3-cell e3, thought of as an element [χ(e3)] in π3(K3,K2) via its characteristic
map χ(e3), to the degree of its attaching map. Thus

d[χ(e3
1)] = 4, d[χ(e3

2)] = 6,

and

dζ = d(3[χ(e3
1)]− 2[χ(e3

2)]) = 3d[χ(e3
1)]− 2d[χ(e3

2)] = 3 · 4− 2 · 6 = 0,

which, of course, confirms that (3,−2) ∈ Z3(K) = ker ∂. For the second new basis
element we obtain

dη = d(−[χ(e3
1)] + [χ(e3

2)]) = −d[χ(e3
1)] + d[χ(e3

2)] = −4 + 6 = 2.

To form K/3, take two new 3-cells z and y and attach them to K2 = S2, using
representatives of dζ and dη, respectively, as attaching maps:

K/3 := S2 ∪dζ=0 z ∪dη=2 y.

Note that the 2-skeleton remains unchanged, (K/3)2 = K2. Let us describe a rather
explicit homotopy equivalence h′ (the letter h will be reserved for its homotopy in-
verse) from K to K/3, which realizes the change of basis geometrically. Algebraically,
the change of basis on the third cellular chain group is given by the map

θ : π3(K3,K2) −→ π3(K/3,K2)
ζ 7→ [χ(z)]
η 7→ [χ(y)].

We observe that the diagram

π3(K3,K2)
θ- π3(K/3,K2)

π2(K2)

d

?
===== π2((K/3)2)

d

?

commutes, for

dθ(ζ) = d[χ(z)] = 0 = dζ, dθ(η) = d[χ(y)] = 2 = dη.

The images of the old basis elements are

(4) θ[χ(e3
1)] = θ(ζ + 2η) = [χ(z)] + 2[χ(y)], θ[χ(e3

2)] = θ(ζ + 3η) = [χ(z)] + 3[χ(y)].
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On the other hand, the θ[χ(e3
i )] are represented by commutative diagrams

∂D3 f ′i |- K2 = S2

D3
?

∩

f ′i

- K/3
?

∩

Let g1 = χ(e3
1)|∂e31 be the attaching map for e3

1 in K (a map of degree 4), and let

g2 = χ(e3
2)|∂e32 be the attaching map for e3

2 in K (a map of degree 6). Since dθ = d,

the attaching map gi is homotopic to f ′i |. This is confirmed by the degree calculation

deg(f ′1|∂D3) = 0 · 1 + 2 · 2 = 4 = deg(g1),

and

deg(f ′2|∂D3) = 0 · 1 + 2 · 3 = 6 = deg(g2),

using (4) and the degrees of the attaching maps for z and y. By the homotopy
extension property , there exists, for i = 1, 2, a representative fi : D3 → K/3 for
θ[χ(e3

i )] that extends gi. Defining

h′ : K −→ K/3

by

h′(x) = x, for x ∈ K2,
h′(χ(e3

1)(x)) = f1(x), for x ∈ e3
1,

h′(χ(e3
2)(x)) = f2(x), for x ∈ e3

2.

yields a homotopy equivalence, since h′ induces a chain-isomorphism. (It induces θ
on the third chain group.)

Let us verify that K/3 is 3-segmented. Defining K<3 to be the subcomplex

K<3 = S2 ∪2 y ⊂ K/3,

we obtain for the homology:

H1(K<3) = 0, H2(K<3) = Z/2, H3(K<3) = 0.

The desired homological truncation has thus been correctly implemented. In fact,
K/3 is 3-dimensional and its group of 3-cycles has a basis of cells (namely the cell z),
so we could have concluded from Lemma 1.1.2 that K/3 is 3-segmented. Moreover,
Proposition 1.1.3 tells us that K<3 is unique.

1.1.3. General Spatial Homology Truncation on the Object Level. Func-
torial spatial homology truncation in the low dimensions n = 1, 2 is discussed in
Section 1.1.5. In dimensions n ≥ 3, we shall employ the concept of a homological
n-truncation structure. Let n ≥ 3 be an integer.

Definition 1.1.4. A (homological) n-truncation structure is a quadruple (K,K/n,
h,K<n), where

(1) K is a simply connected CW-complex,
(2) K/n is an n-dimensional CW-complex with (K/n)n−1 = Kn−1 and such

that the group of n-cycles of K/n has a basis of cells,
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(3) h : K/n→ Kn is the identity on Kn−1 and a cellular homotopy equivalence
rel Kn−1, and

(4) K<n ⊂ K/n is a subcomplex with properties (2) and (3) with respect to
K/n and such that (K<n)n−1 = Kn−1.

The first component space K of an n-truncation structure is required to be simply
connected because the theory employs the Hurewicz theorem for n ≥ 3. Since the
(n−1)-skeleton of the n-segmentation K/n of K agrees with the (n−1)-skeleton of K
and π1(Kn−1) = π1(K) as n− 1 ≥ 2, it follows that K/n is simply connected as well.
The same observation applies to the truncation K<n. Note that by Lemma 1.1.2, K/n
is n-segmented, so that K<n does, in fact, exist. Since by Proposition 1.1.3, K<n is
uniquely determined by K/n, it is technically not necessary to include it explicitly
as the fourth component into an n-truncation structure. Nevertheless, we find it
convenient to do so, as this will automatically fix notation for the n-truncation space.
It will also be advantageous when we work with morphisms between n-truncation
structures later on. If (K,K/n, h,K<n) is an n-truncation structure and r < n, then

Hr(K<n) ∼=
i∗
Hr(K/n) ∼=

h∗
Hr(K

n) ∼=
j∗
Hr(K),

where i : K<n ⊂ K/n and j : Kn ⊂ K are the inclusions (while Hr(K<n) = 0 for
r ≥ n, of course). Let us recall the following consequence of the homotopy extension
property:

Proposition 1.1.5. Suppose (X,A) and (Y,A) satisfy the homotopy extension
property and f ′ : X → Y is a homotopy equivalence with f ′|A = 1A. Then f ′ is a
homotopy equivalence rel A, that is, there exists a homotopy inverse f for f ′ such
that f |A = 1A, ff ′ ' 1 rel A and f ′f ' 1 rel A.

For a proof see [Hat02, Proposition 0.19], page 16.

Proposition 1.1.6. Given any integer n ≥ 3, every simply connected CW-
complex K can be completed to an n-truncation structure (K,K/n, h,K<n).

Proof. The proof is based on methods due to Hilton [Hil65], and is suggested
by the example in Section 1.1.2. Let {enγ} be the n-cells of K so that

Kn = Kn−1 ∪
⋃
γ

enγ .

As suggested in the example, we shall carry out a “homotopy-element-to-cell” con-
version procedure initiated by an algebraic change of basis in the n-th cellular chain
group of K. The change of basis is then realized topologically to yield the desired
homotopy equivalence. Let C∗(K) denote the cellular chain complex of K. We equip
Cn(K) with the basis {enγ}. The short exact sequence

0→ ker ∂n −→ Cn(K)
∂n−→ im ∂n → 0

splits since im ∂n ⊂ Cn−1(K) is free abelian. Let s : im ∂n → Cn(K) be a splitting.
Set Y = im s and let Zn(K) = ker ∂n be the cycle group so that

Cn(K) = Zn(K)⊕ Y.

Since n ≥ 3, the simple connectivity of K implies the simple connectivity of Kn−1.
Thus the Hurewicz map identifies Cn(K) with πn(Kn,Kn−1). Choose elements
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ζβ , ηα ∈ πn(Kn,Kn−1) such that {ζβ} is a basis of Zn(K) and {ηα} is a basis of
Y . The connecting homomorphism

d : πn(Kn,Kn−1) −→ πn−1(Kn−1)

maps an n-cell en, thought of as an element [χ(en)] in πn(Kn,Kn−1) (that is, thought
of as the homotopy class of its characteristic map), to the class of its attaching map.
Let

bβ : Sn−1 −→ Kn−1

be choices of representatives for the homotopy classes dζβ and let

aα : Sn−1 −→ Kn−1

be choices of representatives for the homotopy classes dηα.

To form K/n, take new n-cells zβ and yα and attach them to Kn−1, using the
attaching maps aα for the yα and the bβ for the zβ :

K/n := Kn−1 ∪
⋃
aα

yα ∪
⋃
bβ

zβ .

Let us construct a homotopy equivalence h′ from Kn to K/n, which realizes the
change of basis geometrically. Algebraically, the change of basis on the n-th cellular
chain group is given by the isomorphism

θ : πn(Kn,Kn−1) −→ πn(K/n,Kn−1)
ζβ 7→ [χ(zβ)]
ηα 7→ [χ(yα)].

We observe that the diagram

πn(Kn,Kn−1)
θ- πn(K/n,Kn−1)

πn−1(Kn−1)

d

?
===== πn−1(Kn−1)

d

?

commutes, for

dθ(ζβ) = d[χ(zβ)] = [bβ ] = dζβ , dθ(ηα) = d[χ(yα)] = [aα] = dηα.

The images θ[χ(enγ )] of the old basis elements are represented by commutative dia-
grams

∂Dn
f ′γ |- Kn−1

Dn
?

∩

f ′γ

- K/n
?

∩

Let gγ = χ(enγ )| : ∂enγ → Kn−1 be the attaching maps for enγ in K. The map gγ is
homotopic to f ′γ | because

[gγ ] = d[χ(enγ )] = dθ[χ(enγ )] = d[f ′γ ] = [f ′γ |].
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By the homotopy extension property, there exists, for every γ, a representative fγ :
Dn → K/n for θ[χ(enγ )] that extends gγ . Defining

h′ : Kn −→ K/n

by

h′(x) = x, for x ∈ Kn−1,
h′(χ(enγ )(x)) = fγ(x), for x ∈ enγ ,

yields a map, since χ(enγ )|∂enγ = gγ = fγ |∂enγ . It is a homotopy equivalence, since it

induces a chain-isomorphism. (It induces θ on the n-th chain group.) Note that K/n
is simply connected since its (n − 1)-skeleton is Kn−1 and π1(Kn−1) → π1(K/n) as
well as π1(Kn−1)→ π1(K) are isomorphisms as n− 1 ≥ 2.

Let us verify that the cycle group Zn(K/n) possesses a basis of cells. The com-
mutativity of the diagram

Cn(K)
θ - Cn(K/n)

Cn−1(Kn−1)
�

∂
/
n

n

∂
n

-

can be established in various ways. It follows, for instance, from the commutativity
of the diagram

Cn(K) �
hn
∼=

πn(Kn,Kn−1)
θ

∼=
- πn(K/n,Kn−1)

h/nn
∼=
- Cn(K/n)

πn−1(Kn−1)
�

d
/nd

-

πn−1(Kn−1,Kn−2)

incl∗

?

Cn−1(Kn−1)

∂n

?
================== Cn−1(Kn−1)

hn−1

?
==================== Cn−1(Kn−1)

∂/nn

?

Here hn, h
/n
n and hn−1 are Hurewicz homomorphisms. Since n ≥ 3, hn and h

/n
n

are isomorphisms, and if n ≥ 4, then hn−1 is an isomorphism as well. If n = 3,
then C2(K2) cannot in general be identified with π2(K2,K1). For example, if π1(K1)
contains two noncommuting elements then π2(K2,K1) will not be abelian because
the homomorphism π2(K2,K1) → π1(K1) is surjective as K2 is simply connected.
Alternatively, one can argue that θ is part of a chain map induced by the continuous

map h′, and that map is the identity onKn−1. If ζ ∈ Zn(K), then ∂
/n
n θζ = ∂nζ = 0, so
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θζ ∈ Zn(K/n) and θZn(K) ⊂ Zn(K/n). Conversely, for z ∈ Zn(K/n), let ζ = θ−1(z).
Then

∂nζ = ∂/nn θζ = ∂/nn (z) = 0

so that ζ ∈ Zn(K) and z = θζ ∈ θZn(K). Therefore, θZn(K) = Zn(K/n) and there is

a restriction θ| : Zn(K)
∼=−→ Zn(K/n). This restriction sends the basis {ζβ} of Zn(K)

to {θ(ζβ)}, which must thus be a basis of Zn(K/n). Now θ(ζβ) = zβ and the zβ are
n-cells of K/n. Hence, Zn(K/n) has a basis of cells.

As noted before, Lemma 1.1.2 implies that K/n is n-segmented and by Proposi-
tion 1.1.3, the required subcomplex K<n of K/n is uniquely determined. Explicitly,

K<n = Kn−1 ∪
⋃
aα

yα.

Finally, being CW pairs, (Kn,Kn−1) and (K/n,Kn−1) satisfy the homotopy
extension property. Applying Proposition 1.1.5 to h′ : (Kn,Kn−1) → (K/n,Kn−1),
which is indeed the identity on Kn−1, we get a homotopy inverse h : K/n→ Kn such
that hh′ and h′h are homotopic to the respective identity maps rel Kn−1. �

Remark 1.1.7. Since K is simply connected, one may up to homotopy equiva-
lence assume that its 1-skeleton is a 0-cell. It follows then that for n = 3, we may
always assume that in the 3-segmentation of a space, the cycle-cells zβ are wedged
on, that is, K/3 has the form

K/3 = K2 ∪
⋃
yα ∨

∨
zβ .

Indeed, in this situation K2 is a wedge of 2-spheres and π2(K2,K1) ∼= π2(K2) ∼=
H2(K2) ∼= C2(K), so the factorization

C3(K) === π3(K3,K2)

π2(K2)

d

?

C2(K)

∂3

?
=== π2(K2,K1)

∼= incl∗

?

shows that already dζβ = 0. Thus for the representatives bβ we could take constant
maps. This remark applies to higher n as well if K is such that

im(d : πn(Kn,Kn−1)→ πn−1(Kn−1))∩ker(πn−1(Kn−1)→ πn−1(Kn−1,Kn−2)) = 0.

Example 1.1.8. Suppose K is such that the boundary map on the n-th cellular
chain group of K vanishes. Then Cn(K) = Zn(K) and Y = 0. Thus in this situation,
the complementary space Y is unique and no choice has to be made. We have

K/n = Kn−1 ∪
⋃
β

zβ ,
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since there are no cells yα. It follows, as expected, that

K<n = Kn−1,

the (n − 1)-skeleton of K. If K in fact has only even-dimensional cells, then all
boundary maps in the cellular chain complex vanish and hence K<n = Kn−1 for any
n. We shall return to this scenario in Section 1.9 on the interleaf category.

1.1.4. Virtual Cell Groups and Eigenclasses. In order to obtain functori-
ality for spatial homology truncation on suitable cellular maps f : K → L, one must
deal successfully with roughly two major issues: First, the map f must be compress-
ible into a truncated map f<n : K<n → L<n. Second, if g : L → P is another
compressible map with truncation g<n : L<n → P<n, then gf ought to be compress-
ible with (gf)<n homotopic to g<n ◦ f<n. The second issue is harder and involves
certain homotopy groups V Cn(Λ) associated to a homological n-truncation structure
Λ.

Example 1.1.9. Let us exhibit an example of a map f : K → L, where K and L
are simply connected 4-segmented CW-complexes (K = K/4, L = L/4) with unique
4-truncation subcomplexes K<4 ⊂ K, L<4 ⊂ L, such that there are two nonhomotopic
maps f<4, f

′
<4 : K<4 → L<4 with

(5) K

f

��

K<4
? _

iKoo

f ′<4

��
f<4

��
L L<4

? _

iL
oo

homotopy commutative. The example thus demonstrates that in general, contrary to
Postnikov truncation, the diagram (5) may not uniquely determine the homological
compression of a map f . Let K = S3 and let L be the suspension of 3-dimensional
real projective space RP 3. Clearly, K<4 = S3 = K is the unique subcomplex that
truncates the homology of K above degree 3. The space L has the cell structure

L = S2 ∪2 e
3 ∪b e4

and its homology is

H0(L) ∼= Z, H1(L) = 0, H2(L) ∼= Z/2, H3(L) = 0, H4(L) ∼= Z.

The cycle group Z4(L) = C4(L) = Ze4 has a basis of cells. Hence L is 4-segmented
by Lemma 1.1.2. Necessarily, Y4(L) = 0. The 4-truncation is L<4 = L3 = S2 ∪2 e

3,
unique by Proposition 1.1.3. The interesting feature is that while the attaching map
b : S3 = ∂e4 → L<4 is sufficiently trivial to produce a trivial cellular chain boundary
map C4(L)→ C3(L), one can show that nevertheless [b] 6= 0 ∈ π3(L<4) ∼= Z/4. Since
the 4-cell in L is attached by b, we have

iL∗[b] = 0, iL∗ : π3(L<4)→ π3(L).

Set

f<4 = b : K<4 = S3 −→ L<4,

let f ′<4 be the constant map K<4 → L<4, and let f : K → L be the composition

K = S3 b−→ L<4
iL
↪→ L.
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By definition,

K

f

��

K<4
iK

f<4

��
L L<4

? _

iL
oo

commutes. The square

K

f

��

K<4
iK

f ′<4

��
L L<4

? _

iL
oo

homotopy commutes because

f = iLb ' const = iLf
′
<4.

Lastly, f<4 and f ′<4 are not homotopic, for [f<4] = [b] 6= 0 = [f ′<4] in π3(L<4). This
finishes the construction of the example. Since the maps f<4 and f ′<4 do not agree on
the 3-skeleton, this example is not rel 3-skeleton. A much deeper example is Example
1.1.35, which shows that even when one requires the homological n-truncation of a
map f to agree with f on the nose on the (n−1)-skeleton, and requires all homotopies
to be rel (n− 1)-skeleton, the truncation may not be unique.

Definition 1.1.10. Let n ≥ 3 be an integer. The n-th virtual cell group V Cn(Λ)
of an n-truncation structure Λ = (L,L/n, h, L<n) is the homotopy group

V Cn(Λ) = πn+1(L/n× I, L<n × ∂I ∪ Ln−1 × I).

If an n-truncation structure Λ has been fixed for a space L then we shall also write
V Cn(L).

The choice of terminology arises from the fact that V Cn(L) naturally sits between
two actual cellular chain groups: The inclusion of pairs

(L<n × I, L<n × ∂I ∪ Ln−1 × I) ⊂ (L/n× I, L<n × ∂I ∪ Ln−1 × I)

induces a map φ,

Cn+1(L<n × I) ∼= πn+1(L<n × I, L<n × ∂I ∪ Ln−1 × I) −→ V Cn(L),

where the first isomorphism derives from the fact that L<n×∂I∪Ln−1×I is precisely
the n-skeleton of L<n × I: Since L is simply connected, L and L<n have the same
(n − 1)-skeleton, and n − 1 ≥ 2, we have L<n simply connected. Thus the cylinder
L<n × I and its n-skeleton are simply connected, again using n ≥ 3. Therefore, the
Hurewicz map is an isomorphism. Similar remarks apply to the cylinder L/n × I.
The inclusion of the pairs

(L/n× I, L<n × ∂I ∪ Ln−1 × I) ⊂ (L/n× I, L/n× ∂I ∪ Ln−1 × I)

induces a map ψ,

V Cn(L) −→ πn+1(L/n× I, L/n× ∂I ∪ Ln−1 × I) ∼= Cn+1(L/n× I).

The virtual cell group of L comes equipped with an important endomorphism EL ∈
End(V Cn(L)). To construct it, we observe first that

ψφ : Cn+1(L<n × I) −→ Cn+1(L/n× I)
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is the canonical inclusion⊕
α

Z[χ(yα × I)] ↪→
⊕
α

Z[χ(yα × I)]⊕
⊕
β

Z[χ(zβ × I)],

where the yα are the n-cells of L<n and the zβ are the rest of the n-cells in L/n,
constituting a basis of the cycle group Zn(L/n). (Note that thus φ is injective.) Let

p : Cn+1(L/n× I) −→ Cn+1(L<n × I)

be the projection

p(
∑
α

λα[χ(yα × I)] +
∑
β

µβ [χ(zβ × I)]) =
∑
α

λα[χ(yα × I)],

and set

EL = φ ◦ p ◦ ψ : V Cn(L) −→ V Cn(L).

Definition 1.1.11. An element x ∈ V Cn(L) is called an eigenclass if x ∈
ker(EL − 1).

In other words, x is an eigenclass iff x =
∑
α λαφ[χ(yα× I)], where ψ(x) dictates

the coefficients λα.

Lemma 1.1.12. If x ∈ V Cn(L) is an eigenclass, then x is not torsion.

Proof. Suppose kx = 0, k ∈ Z, k > 1. From x = φpψ(x), it follows that
φ(k · pψ(x)) = kx = 0. By the injectivity of φ, k · pψ(x) = 0, so that pψ(x) ∈
Cn+1(L<n×I) is torsion if not zero. But Cn+1(L<n×I) is free abelian, so pψ(x) = 0.
This implies x = φpψ(x) = φ(0) = 0. �

Example 1.1.13. Let us work out the case L = CP 2, complex projective space
with the usual CW-structure, and n = 4. This space is already 4-segmented, so
that L/4 = CP 2. The single 4-cell is a cycle. Therefore, there are no cells yα and
L<4 = L3 = L2 = S2. The virtual cell group V C4(CP 2) is nontrivial, in fact, contains
an infinite cyclic subgroup. To see this, we note that

V C4(CP 2) = π5(CP 2 × I, S2 × I) ∼= π5(CP 2, S2)

and consider the exact homotopy group sequence of the pair (CP 2, S2):

π5(S2) −→ π5(CP 2) −→ π5(CP 2, S2).

Using the fiber bundle S1 → S5 → CP 2, we find π5(CP 2) ∼= π5(S5) ∼= Z. Since
π5(S2) ∼= Z/2, the left map is the zero map. Consequently, the right-hand map
injects an infinite cyclic subgroup into π5(CP 2, S2).

As for the maps φ and ψ, we have

0 = C5(S2 × I)
φ=0−→ V C4(CP 2)

ψ−→ C5(CP 2 × I) ∼= Z.

It follows that the endomorphism ECP 2 is zero and none of the nontrivial elements of
V C4(CP 2) are eigenclasses.

Example 1.1.14. We work out L = S3 ∪2 e
4, that is, the Moore space obtained

by attaching a 4-cell to the 3-sphere by a map of degree 2, again for n = 4. Here the
4-cell is not a cycle. Thus there are no cells zβ , e

4 is a cell yα and there are no other
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yα. We conclude that L<4 = L/4 = L. To analyze V C4(L) and the action of EL, we
consider the diagram

C5(L<4 × I) ⊂
φ- V C4(L)

ψ- C5(L/4× I)

Z[χ(e4 × I)]

wwwwwwwww
ψφ=id - Z[χ(e4 × I)]

wwwwwwwww
Let A = L/n × ∂I ∪ Ln−1 × I and B = L<n × ∂I ∪ Ln−1 × I. The map ψ fits into
the exact homotopy sequence of the triple (L/n× I, A,B):

πn+1(A,B) −→ V Cn(L)
ψ−→ Cn+1(L/n× I) −→ πn(A,B).

In the present situation, A = B, so π5(A,B) = π4(A,B) = 0 and thus ψ is an
isomorphism. In particular, V C4(L) ∼= Z. If φψ(1) = m, then

ψ(1) = ψφψ(1) = ψ(m).

Therefore, m = 1 and so φψ is the identity. The projection p is the identity as well.
Thus the endomorphism EL = φpψ = φψ = 1 is the identity. It follows that every
element of V C4(L) is an eigenclass.

The concept of eigenclasses leads to the concept of an eigenhomotopy. If H :
K × I → L is a homotopy, then we may regard it as a map H ′ : K × I → L × I
by setting H ′(k, t) = (H(k, t), t). (Caution: If H is cellular, then H ′ need not be
cellular.) For any cell e in a CW-complex, χ(e) denotes its characteristic map.

Definition 1.1.15. Let K be a simply connected n-dimensional CW-complex
and Λ = (L,L/n, h, L<n) an n-truncation structure. Let H : K × I → L/n be a
cellular homotopy rel Kn−1 such that H(K × ∂I) ⊂ L<n ⊂ L/n. The homotopy H
is called an eigenhomotopy if H ′∗[χ(y× I)] is an eigenclass in V Cn(Λ) for every n-cell
y of K. Here H ′∗ is the induced map on homotopy groups,

H ′∗ : Cn+1(K × I) ∼= πn+1(K × I,K × ∂I ∪Kn−1 × I) −→ V Cn(Λ).

Note that H ′ does in fact map K × ∂I ∪Kn−1 × I into the subcomplex L<n × ∂I ∪
Ln−1 × I because H ′(K × ∂I) ⊂ L<n × ∂I and for k ∈ Kn−1 and t ∈ I we have
H(k, t) = H(k, 0) as H is rel Kn−1 and

H(k, 0) ∈ H(Kn−1 × ∂I) ⊂ H((K × I)n−1) ⊂ Ln−1

(since H is cellular), whence

H ′(k, t) = (H(k, 0), t) ∈ Ln−1 × I.

Eigenhomotopies will be used later on (Definition 1.1.33) in defining compression
rigid maps.

Example 1.1.16. Suppose K is a space whose cellular boundary operator in
degree 4 vanishes. For instance, K might not have any 3-cells. In this situation, every
homotopy H : K<4 × I → CP 2/4 = CP 2 with H(K<4 × ∂I) ⊂ CP 2

<4 = S2 is an
eigenhomotopy, even though V C4(CP 2) has no nontrivial eigenclasses according to
Example 1.1.13. The reason is that by Example 1.1.8, K<4 = K3 and thus C5(K<4×
I) = C5(K3 × I) = 0. Therefore, H ′∗ is the zero map.
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Example 1.1.17. Every cellular homotopy H : K× I → S3 ∪2 e
4 which is rel K3

is an eigenhomotopy for n = 4, as follows from Example 1.1.14.

Proposition 1.1.18. Let n ≥ 3 be an integer and Λ = (L,L/n, h, L<n) an n-
truncation structure such that L/n has finitely many n-cells. Let G be the abelian
group

G = Zc−b ⊕ (Z/2)b,

where b = bn(Ln) is the n-th Betti number of Ln and c is the number of n-cells of
L/n. Then
1) V Cn(Λ) maps onto G, and
2) If H2(Ln−1) = 0, then V Cn(Λ) ∼= G.
The free abelian part Zc−b in G corresponds to the cells of type yα in L/n, the torsion
part (Z/2)b in G corresponds to the cells of type zβ in L/n.

Proof. Since L/n has finitely many n-cells, we can write

L/n = Ln−1 ∪ y1 ∪ · · · ∪ yc−a ∪ z1 ∪ · · · ∪ za,

where {z1, . . . , za} is a basis for Zn(L/n) and y1, . . . , yc−a are the n-cells of L<n ⊂
L/n. As L/n is n-dimensional, we have Hn(L/n) = Zn(L/n). The homotopy equiva-
lence h induces an isomorphism Hn(L/n) ∼= Hn(Ln). It follows that a = b. We shall
use the following consequence of the homotopy excision theorem; see [Hat02], page
364, Proposition 4.28: If a CW-pair (X,A) is r-connected and A is s-connected, with
r, s ≥ 0, then the map πi(X,A)→ πi(X/A) induced by the quotient map X → X/A
is an isomorphism for i ≤ r+s and a surjection for i = r+s+1. A CW-pair (X,A) is
r-connected if all the cells in X −A have dimension greater than r. The complement
(L/n × I) − (L<n × ∂I ∪ Ln−1 × I) contains cells of dimension n + 1, namely the
yj × (0, 1) and the zi× (0, 1), as well as cells of dimension n, namely the zi×{0} and
zi×{1}. Thus the CW-pair (L/n× I, L<n× ∂I ∪Ln−1× I) is r = (n− 1)-connected.
The subspace P = L<n × ∂I ∪ Ln−1 × I is s = 1-connected, being the n-skeleton of
the simply connected space L<n × I (n ≥ 3). Thus, as n+ 1 ≤ r + s+ 1 = n+ 1,

V Cn(Λ) = πn+1(L/n× I, P ) −→ πn+1((L/n× I)/P )

is surjective. We shall show that πn+1((L/n × I)/P ) ∼= G. Let us investigate the
homotopy type of the quotient space

L/n× I
P

=
Ln−1 × I ∪

⋃c−b
j=1 yj × I ∪

⋃b
i=1 zi × I

Ln−1 × I ∪
⋃c−b
j=1 yj × ∂I

.

The boundary of an (n + 1)-cell yj × I is attached to Ln−1 × I ∪ yj × ∂I, which is

being collapsed to a point. Thus every yj × I becomes an (n+ 1)-sphere Sn+1
j in the

quotient. The boundary of an n-cell zi × {t}, t ∈ {0, 1}, is attached to Ln−1 × {t},
which is being collapsed to a point. Thus every zi×{t} becomes an n-sphere Sni ×{t}
in the quotient. The boundary of an (n+1)-cell zi×I is attached to Ln−1×I∪zi×∂I,
but, as we have seen, zi × ∂I is not collapsed to a point, rather to spheres Sni × ∂I.
Consequently, every zi × I becomes (Sni × I)/(∗ × I) in the quotient, where ∗ is the
base point in the sphere. The space (Sni × I)/(∗ × I) is homotopy equivalent to Sni ,
since ∗ × I is contractible, so (Sni × I)/(∗ × I) ' Sni × I ' Sni . Therefore,

L/n× I
P

'
c−b∨
j=1

Sn+1
j ∨

b∨
i=1

Sni ,
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and we need to show that

πn+1(
∨
Sn+1
j ∨

∨
Sni ) ∼= G.

In order to do so, we use the natural decomposition

πn+1(X ∨ Y ) ∼= πn+1(X)⊕ πn+1(Y )⊕ πn+2(X × Y,X ∨ Y )

together with the fact that for a p-connected X and a q-connected Y , πn+2(X×Y,X∨
Y ) vanishes when n+ 2 ≤ p+ q+ 1. Let X =

∨
j S

n+1
j , a p = n-connected space, and

Y =
∨
i S

n
i a q = (n− 1)-connected space. As n+ 2 ≤ p+ q + 1 = 2n (recall n ≥ 3),

we have πn+2(X × Y,X ∨ Y ) = 0 and

πn+1(
∨
Sn+1
j ∨

∨
Sni ) ∼= πn+1(

∨
Sn+1
j )⊕ πn+1(

∨
Sni ).

By the Hurewicz theorem,

πn+1(
∨
Sn+1
j ) ∼= Hn+1(

c−b∨
j=1

Sn+1
j ) ∼= Zc−b.

For the n-spheres, we have the formula

πn+1(
∨
Sni ) =

b⊕
i=1

πn+1(Sni ),

since πn+2(Sn1 × (Sn2 ∨ · · · ∨ Snb ),
∨
i S

n
i ) = 0, as follows from the (n− 1)-connectivity

of Sn1 and Sn2 ∨ · · · ∨ Snb , observing that n + 2 ≤ 2(n − 1) + 1 (again using n ≥ 3),
together with an induction on b. As n ≥ 3, we have

πn+1(Sni ) = Z/2.

This establishes statement 1). To prove statement 2), we assume H2(Ln−1) = 0. The
homeomorphism

P

Ln−1 × I
∼=

c−b∨
j=1

(Snj × {0} ∨ Snj × {1})

implies

H2(P,Ln−1 × I) ∼= H2(P/(Ln−1 × I)) = 0.

From the exact sequence

0 = H2(Ln−1) ∼= H2(Ln−1 × I) −→ H2(P ) −→ H2(P,Ln−1 × I) = 0

of the pair (P,Ln−1 × I) we conclude that H2(P ) = 0. Since P is simply connected,
it follows from the Hurewicz theorem that P is s = 2-connected. Thus, as n + 1 ≤
r + s = (n− 1) + 2,

V Cn(Λ) = πn+1(L/n× I, P ) −→ πn+1((L/n× I)/P )

is an isomorphism. �

If H2(Ln−1) is not zero in Proposition 1.1.18 then V Cn(Λ) need not be isomorphic
to G. Consider as an example the space L = CP 2 with its standard 4-truncation
structure Λ = (CP 2,CP 2, id, S2). Note that H2(Ln−1) = H2(S2) ∼= Z 6= 0. The
fourth Betti number b = b4(CP 2) = 1 and the number of 4-cells of L/4 = CP 2 is
c = 1. Thus G = Z/2, and Proposition 1.1.18 asserts that V C4(CP 2) maps onto Z/2.
However, according to Example 1.1.13, V C4(CP 2) contains Z. Thus V C4(CP 2) 6∼= G.
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Example 1.1.19. In Example 1.1.14, we have seen that V C4(Λ) ∼= Z for the
4-truncation structure Λ = (S3 ∪2 e

4, S3 ∪2 e
4, id, S3 ∪2 e

4). This is confirmed by
Proposition 1.1.18: As b = b4(S3 ∪2 e

4) = 0 and c = 1, we have G = Z. Since
H2(Ln−1) = H2(L3) = H2(S3) = 0, the proposition implies V C4(Λ) ∼= G = Z.

1.1.5. Functoriality in Low Dimensions. Let CW be the category of CW-
complexes and cellular maps, let CW0 be the full subcategory of path connected CW-
complexes and let CW1 be the full subcategory of simply connected CW-complexes.
Let HoCW denote the category of CW-complexes and homotopy classes of cellular
maps. Let HoCWn denote the category of CW-complexes and rel n-skeleton homo-
topy classes of cellular maps.

Dimension n = 1: It is straightforward to define a covariant truncation functor

t<n = t<1 : CW0 −→ HoCW

together with a natural transformation

emb1 : t<1 −→ t<∞,

where t<∞ : CW0 → HoCW is the natural “inclusion-followed-by-quotient” functor
given by t<∞(K) = K for objects K and t<∞(f) = [f ] for morphisms f , such that for
all objects K, emb1∗ : H0(t<1K)→ H0(t<∞K) is an isomorphism and Hr(t<1K) = 0
for r ≥ 1. The details are as follows: For a path connected CW-complex K, set
t<1(K) = k0, where k0 is a 0-cell of K. Let emb1(K) : t<1(K) = k0 → t<∞(K) = K
be the inclusion of k0 in K. Then emb1∗ is an isomorphism on H0 as K is path
connected. Clearly Hr(t<1K) = 0 for r ≥ 1. Let f : K → L be a cellular map
between objects of CW0. The morphism t<1(f) : t<1(K) = k0 → l0 = t<1(L)
is the homotopy class of the unique map from a point to a point. In particular,
t<1(idK) = [idk0 ] and for a cellular map g : L→ P we have t<1(gf) = t<1(g)◦ t<1(f),
so that t<1 is indeed a functor. To show that emb1 is a natural transformation, we
need to see that

t<1(K)
emb1(K)- t<∞(K)

t<1(L)

t<1(f)

?
emb1(L)- t<∞(L),

t<∞(f)

?

that is

k0 ⊂ - K

l0
?
⊂ - L,

[f ]

?

commutes in HoCW. This is where we need the functor t<1 to have values only in
HoCW, not in CW, because the square need certainly not commute in CW. (The
points k0 and l0 do not know anything about f , so l0 need not be the image of k0

under f .) Since L is path connected, there is a path ω : I → L from l0 = ω(0) to
f(k0) = ω(1). Then H : {k0} × I → L, H(k0, t) = ω(t), defines a homotopy from
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k0 → l0 ↪→ L to k0 ↪→ K
f−→ L.

Dimension n = 2: We will define a covariant truncation functor

t<n = t<2 : CW1 −→ HoCW

together with a natural transformation

emb2 : t<2 −→ t<∞,

where t<∞ : CW1 → HoCW is as above (only restricted to simply connected spaces),
such that for all objects K, emb2∗ : Hr(t<2K) → Hr(t<∞K) is an isomorphism for
r = 0, 1, and Hr(t<2K) = 0 for r ≥ 2. For a simply connected CW-complex K, set
t<2(K) = k0, where k0 is a 0-cell of K. Let emb2(K) : t<2(K) = k0 → t<∞(K) = K
be the inclusion as in the case n = 1. It follows that emb2∗ is an isomorphism both
on H0 as K is path connected and on H1 as H1(k0) = 0 = H1(K), while trivially
Hr(t<2K) = 0 for r ≥ 2. On a cellular map f, t<2(f) is defined as in the case n = 1.
As in the case n = 1, this yields a functor and emb2 is a natural transformation.

1.1.6. Functoriality in Dimensions n ≥ 3. Let n ≥ 3 be an integer.

Definition 1.1.20. A morphism

(K,K/n, hK ,K<n) −→ (L,L/n, hL, L<n)

of homological n-truncation structures is a commutative diagram

K �
jK

⊃ Kn � hK
K/n �

iK
⊃ K<n

L

f

?
� jL

⊃ Ln

f |

?
� hL

L/n

f/n

?
� iL

⊃ L<n

f<n

?

in CW. The composition of two morphisms of n-truncation structures is defined in the
obvious way. Let CW⊃<n denote the resulting category of n-truncation structures.

Commutativity on the nose is rarely achieved in practice. More important is thus
the associated rel (n − 1)-skeleton homotopy category HoCW⊃<n whose objects
are n-truncation structures as before, but whose morphisms are now commutative
diagrams

K �
[jK ]

Kn �[hK ]
K/n �

[iK ]
K<n

L
?
� [jL]

Ln
?
� [hL]

L/n
?
� [iL]

L<n
?

in HoCWn−1, where [−] denotes the rel (n−1)-skeleton homotopy class of a cellular
map. Thus a morphism F : (K,K/n, hK ,K<n) → (L,L/n, hL, L<n) in HoCW⊃<n
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is a quadruple F = ([f ], [fn], [f/n], [f<n]) represented by a diagram

K �
jK

⊃ Kn � hK
K/n �

iK
⊃ K<n

L

f

?
� jL

⊃ Ln

fn

?
� hL

L/n

f/n

?
� iL

⊃ L<n

f<n

?

with fjK ' jLf
n rel Kn−1, hL(f/n) ' fnhK rel Kn−1, and (f/n)iK ' iLf<n

rel Kn−1. (The map fn is not required to be the restriction of f to Kn.) Two
morphisms ([f ], [fn], [f/n], [f<n]) and ([g], [gn], [g/n], [g<n]) are equal iff f ' g rel
Kn−1, fn ' gn rel Kn−1, f/n ' g/n rel Kn−1, and f<n ' g<n rel Kn−1. Note that
it is necessary to record the four components of the quadruple ([f ], [fn], [f/n], [f<n]),
since not even [fn], for example, is determined by [f ]: Consider the n-truncation
structures (K,K/n, hK ,K<n) = (Sn = e0 ∪ en, Sn, idSn , e0) and (L,L/n, hL, L<n) =

(e0 ∪ en ∪2 e
n+1, Sn, idSn , e

0). Let f : K → L be the map Sn
2−→ Sn ↪→ L and

let g : K → L be the constant map to e0. Then f ' g rel Kn−1 = e0, but fn =

f |Kn : Kn = Sn
2−→ Sn = Ln is not homotopic to gn = g|Ln = conste0 : Kn → Ln.

However, [f/n] is determined uniquely by [fn]: Let h′L : Ln → L/n be a rel Ln−1

homotopy inverse for hL. Then the requirement [hL] ◦ [f/n] = [fn] ◦ [hK ] implies the
formula

[f/n] = [h′L] ◦ [fn] ◦ [hK ].

This formula determines [f/n], since if h′′L : Ln → L/n is another rel Ln−1 homotopy
inverse for hL, then [h′L] = [h′L] ◦ [hL] ◦ [h′′L] = [h′′L].

Lemma 1.1.21. A morphism F = ([f ], [fn], [f/n], [f<n]) : (K,K/n, hK ,K<n) →
(L,L/n, hL, L<n) in HoCW⊃<n is an isomorphism if, and only if, f, fn, f/n and
f<n are homotopy equivalences rel Kn−1.

Proof. Suppose there exists a morphismG : (L,L/n, hL, L<n)→ (K,K/n, hK ,K<n)
such that G◦F = id and F ◦G = id in HoCW⊃<n. With G = ([g], [gn], [g/n], [g<n]),

([idK ], [idKn ], [idK/n], [idK<n ]) = id = G◦F = ([g◦f ], [gn◦fn], [(g/n)◦(f/n)], [g<n◦f<n])

implies g ◦ f ' idK rel Kn−1, gn ◦ fn ' idKn rel Kn−1, g/n ◦ f/n ' idK/n rel Kn−1,

and g<n ◦ f<n ' idK<n rel Kn−1. Similarly, homotopies f ◦ g ' idL rel Ln−1, etc.
are obtained from F ◦G = id .

Conversely, assume that f, fn, f/n and f<n are homotopy equivalences rel Kn−1.
Let g, gn, g/n and g<n be homotopy inverses rel (n − 1)-skeleta for f, fn, f/n and
f<n, respectively, and set G = ([g], [gn], [g/n], [g<n]). Then G is indeed a morphism
in HoCW⊃<n, for in the diagram

L �
jL

⊃ Ln �
hL

L/n �
iL

⊃ L<n

K

g

?
� jK

⊃ Kn

gn

?
� hK

K/n

g/n

?
� iK

⊃ K<n

g<n

?

we have homotopy commutativity, rel Ln−1, in all three squares: Since jLf
n ' fjK

rel Kn−1, we have gjLf
ngn ' gfjKg

n rel Ln−1 and so gjL ' jKg
n rel Ln−1. Since
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fnhK ' hL(f/n) rel Kn−1, we have gnfnhK(g/n) ' gnhL(f/n)(g/n) rel Ln−1 and
so hK(g/n) ' gnhL rel Ln−1. Finally, since (f/n)iK ' iLf<n rel Kn−1, we have
(g/n)(f/n)iKg<n ' (g/n)iLf<ng<n rel Ln−1 and so iKg<n ' (g/n)iL rel Ln−1.
Clearly, G is an inverse for F in HoCW⊃<n �

Definition 1.1.22. The category CWn⊃∂ of n-boundary-split CW-complexes
consists of the following objects and morphisms: Objects are pairs (K,Y ), where
K is a simply connected CW-complex and Y ⊂ Cn(K) is a subgroup of the n-th
cellular chain group of K that arises as the image Y = s(im ∂) of some splitting s :
im ∂ → Cn(K) of the boundary map ∂ : Cn(K)→ im ∂(⊂ Cn−1(K)). (Given K, such
a splitting always exists, since im ∂ is free abelian.) A morphism (K,YK) → (L, YL)
is a cellular map f : K → L such that f∗(YK) ⊂ YL. The composition of morphisms
is defined, since for a second morphism (L, YL) → (P, YP ), given by a cellular map
g : L→ P with g∗(YL) ⊂ YP , we have (g ◦ f)∗(YK) = g∗(f∗(YK)) ⊂ g∗(YL) ⊂ YP .

Example 1.1.23. This example expands on the theme of Example 1.1.8. Suppose
K is homotopy equivalent to a space L whose n-th cellular boundary map is zero. Let
f : K → L be a homotopy equivalence with homotopy inverse g : L → K. Further,
choose a homotopy H from gf to the identity. Then H induces a canonical choice
YK so that (K,YK) ∈ CWn⊃∂ : We have an induced diagram

Cn+1(K)

Cn(K)
gnfn-

id
-

sn

-

Cn(K)

∂Kn+1

?

Cn−1(K)

∂Kn

?
sn
−

1

-

where gn, fn are the chain maps induced by g, f, respectively, and {sn} is the chain
homotopy induced by H. Applying ∂Kn to the equation

∂Kn+1sn + sn−1∂
K
n = id−gnfn,

we obtain
∂Kn sn−1∂

K
n = ∂Kn

because ∂Kn ∂
K
n+1 = 0 and ∂Kn gn = gn−1∂

L
n = 0. Thus

s = sn−1| : im ∂Kn −→ Cn(K)

is a splitting for ∂Kn on its image, giving YK = sn−1|(im ∂Kn ).

We shall construct a covariant assignment

τ<n : CWn⊃∂ −→ HoCW⊃<n

of objects and morphisms. We will see later that the assignment is a functor on
subcategories of CWn⊃∂ whose morphisms have n-compression rigid image under
τ<n (see Definition 1.1.33). Let (K,YK) be an object of CWn⊃∂ . By Proposition
1.1.6, (K,YK) can be completed to an n-truncation structure (K,K/n, hK ,K<n) in
CW⊃<n such that hK∗iK∗Cn(K<n) = YK , where iK∗ : Cn(K<n)→ Cn(K/n) is the
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monomorphism induced by the inclusion iK : K<n ↪→ K/n. Choose such a completion
and set

τ<n(K,YK) = (K,K/n, hK ,K<n).

We will see in Scholium 1.1.26 below that the rel (n− 1)-skeleton homotopy type of
K<n does not depend on the choice of n-truncation structure completion of (K,YK).
If the n-skeleton of K already has a cell-basis for its n-cycle group (which implies that
it is n-segmented, Lemma 1.1.2) and YK is the canonical subgroup, that is, generated
by those n-cells that are not cycles, then we will assume that we have chosen

τ<n(K,YK) = (K,Kn, idKn ,K<n),

i.e. K/n = Kn and hK = idKn . In this case K<n is uniquely determined by K,
Proposition 1.1.3. However, even if Kn has a cell-basis for its n-cycle group, the
subspace YK is not unique: The complex K3 = (S2 ∪2 e

3) ∨ S3 is 3-segmented,
C3(K3) = Ze3 ⊕ ZS3, Z3(K3) = ZS3, im ∂3 = 2ZS2. Any m ∈ Z defines a splitting
s : im ∂3 → C3(K3) by s(2S2) = e3 + mS3. Thus the possible choices for YK are
parametrized by m, YK(m) = Z(e3 +mS3) ⊂ C3(K3).

Remark 1.1.24. Knowing that hK is a homotopy equivalence which restricts
to the identity on the (n − 1)-skeleton implies that the chain map hK∗ induced by
hK on the cellular chain complexes is in fact a chain isomorphism, not just a chain
equivalence. This can be seen as follows: Let Kn−1 be an (n − 1)-dimensional CW-
complex and let {ξnα}, {ηnα} be two collections of n-cells indexed by the same set {α}.
Let Xn = Kn−1 ∪

⋃
ξnα and Y n = Kn−1 ∪

⋃
ηnα be n-dimensional CW-complexes

obtained from Kn−1 by attaching the cells ξnα and ηnα, respectively. Suppose f :
X → Y is a cellular homotopy equivalence which is the identity on Kn−1. Then
f∗ : Cr(X)→ Cr(Y ) is the identity for r < n and the zero map between zero groups
for r > n. So in order to show that f∗ is a chain isomorphism, it remains to show this
in degree r = n. The map of pairs f : (X,Kn−1)→ (Y,Kn−1) induces a commutative
ladder on homology exact sequences,

Hn(Kn−1) - Hn(X) - Hn(X,Kn−1) - Hn−1(Kn−1) - Hn−1(X)

Hn(Kn−1)

f∗=id

?
- Hn(Y )

∼= f∗

?
- Hn(Y,Kn−1)

f∗

?
- Hn−1(Kn−1)

f∗=id

?
- Hn−1(Y )

∼= f∗

?

By the 5-Lemma,

Cn(X) = Hn(X,Kn−1)
f∗−→ Hn(Y,Kn−1) = Cn(Y )

is an isomorphism.

Given a fixed space K, let us proceed to investigate the homotopy theoretic de-
pendence of the truncated space K<n, where τ<n(K,Y ) = (K,K/n, hK ,K<n), on
different choices of Y .

Proposition 1.1.25. Let (K,Y ), (K,Y ) be two completions of a simply con-
nected CW-complex K to objects in CWn⊃∂ . Let (K,K/n, hK ,K<n) = τ<n(K,Y )
and (K,K/n, hK ,K<n) = τ<n(K,Y ). Then K<n and K<n are cellularly homotopy
equivalent rel (n− 1)-skeleton if and only if d(Y ) = d(Y ), where d : πn(Kn,Kn−1)→
πn−1(Kn−1) is the boundary homomorphism.



1.1. THE SPATIAL HOMOLOGY TRUNCATION MACHINE 25

Proof. Let f : K<n → K<n be a cellular homotopy equivalence rel Kn−1. The
induced chain map f∗ : Cn(K<n) → Cn(K<n) in degree n is an isomorphism by
Remark 1.1.24. In particular

(6) f∗Cn(K<n) = Cn(K<n).

By the naturality of both the Hurewicz isomorphism and the homotopy boundary
homomorphism, the square

Cn(K<n)
f∗
∼=
- Cn(K<n)

πn(K<n,K
n−1)

wwwwwwwww
πn(K<n,K

n−1)

wwwwwwwww

πn−1(Kn−1)

d<n

?
f∗=id- πn−1(Kn−1)

d<n

?

commutes, so that

(7) d<nf∗ = d<n.

By the construction of τ<n, we have

(8) hK∗i∗Cn(K<n) = Y

and

(9) hK∗ı∗Cn(K<n) = Y ,

where i : K<n ↪→ K/n and ı : K<n ↪→ K/n are the subspace inclusions. The
commutative diagram

Cn(K<n)
i∗ - Cn(K/n)

hK∗ - Cn(Kn)

πn(K<n,K
n−1)

wwwwwwwww
πn(K/n,Kn−1)

wwwwwwwww
πn(Kn,Kn−1)

wwwwwwwww

πn−1(Kn−1)

d<n

?
i∗=id- πn−1(Kn−1)

d/n

?
hK∗=id- πn−1(Kn−1)

d

?

shows that

(10) d ◦ hK∗ ◦ i∗ = d<n.

Similarly,

(11) d ◦ hK∗ ◦ ı∗ = d<n,
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where d<n : πn(K<n,K
n−1)→ πn−1(Kn−1). We conclude

d(Y ) = dhK∗i∗(CnK<n) by (8)
= d<n(CnK<n) by (10)

= d<nf∗(CnK<n) by (7)

= d<n(CnK<n) by (6)

= dhK∗ı∗(CnK<n) by (11)
= d(Y ) by (9).

Conversely, assume d(Y ) = d(Y ). In the first step, we will construct an isomor-
phism θ : Cn(K<n)→ Cn(K<n) such that

Cn(K<n)
θ - Cn(K<n)

πn−1(Kn−1)
�

d<
n

d
<
n

-

commutes. In the second step, we will realize θ by a continuous map. We claim that
d<n and d<n are injective. Indeed, the chain boundary

∂n : Cn(K<n) −→ Cn−1(K<n)

is injective since
ker ∂n = Hn(K<n) = 0,

and factors as

Cn(K<n)
d<n- πn−1(Kn−1)

Cn−1(K<n)

∂n

?

∩

�Hur
πn−1(Kn−1,Kn−2),

incl∗

?

which implies that d<n is injective. The same argument applied to the chain boundary
operator of K<n yields the injectivity of d<n. Equations (8) – (11) above still hold
in the present context (as they do not involve the homotopy equivalence f). Thus

d<n(CnK<n) = d(Y ) = d(Y ) = d<n(CnK<n).

Since d<n is an isomorphism onto its image, there is an inverse

d
−1

<n : d<n(CnK<n)
∼=−→ CnK<n.

We define θ to be the composition

Cn(K<n)
d<n
∼=
- d<n(CnK<n) = d<n(CnK<n)

Cn(K<n).

∼= d
−1
<n

?

θ

-

In order to realize θ topologically, we proceed as in the proof of Proposition 1.1.6.
Let {yα} be the n-cells of K<n and let χ(yα) : yα → K<n be their characteristic
maps. Let aα = χ(yα)| : ∂yα → Kn−1 be the corresponding attaching maps. The
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homotopy classes {[χ(yα)]} form a basis for πn(K<n,K
n−1) = Cn(K<n). Choose

representatives

∂yα
f ′α|- Kn−1

yα
?

∩

f ′α

- K<n

?

∩

for the images θ[χ(yα)] ∈ πn(K<n,K
n−1). The attaching map aα is homotopic to f ′α|

because

[aα] = d<n[χ(yα)] = d<nθ[χ(yα)] = d<n[f ′α] = [f ′α|].

By the homotopy extension property, there exists, for every α, a representative fα :
yα → K<n for θ[χ(yα)] that extends aα, fα|∂yα = aα. Defining

f : K<n −→ K<n

by

f(x) = x, for x ∈ Kn−1,
f(χ(yα)(x)) = fα(x), for x ∈ yα,

yields a map, since χ(yα)|∂yα = aα = fα|∂yα . It is a homotopy equivalence, since it
induces a chain-isomorphism. (It induces θ on the n-th chain group.) It is moreover
a homotopy equivalence rel Kn−1 by Proposition 1.1.5. �

Taking Y = Y in the preceding proof, we obtain in particular:

Scholium 1.1.26. If (K,K/n, h,K<n) and (K,K/n, h,K<n) are two n-truncation
structure completions of an object (K,Y ) in CWn⊃∂ such that

h∗iK∗Cn(K<n) = Y = h∗iK∗Cn(K<n)

then K<n and K<n are homotopy equivalent rel Kn−1.

Thus, up to rel (n−1)-skeleton homotopy equivalence, the definition of τ<n(K,YK)
given above is independent of choices. Some applications of Proposition 1.1.25 follow.

Proposition 1.1.27. In the following statement, assume K1 = pt when n = 3.
If the skeletal inclusion Kn−2 ⊂ Kn−1 induces the zero map

πn−1(Kn−2)
0−→ πn−1(Kn−1)

then the rel (n− 1)-skeleton homotopy type of K<n is independent of the choice of Y ,
where (K,K/n, hK ,K<n) = τ<n(K,Y ).

Proof. The exact sequence

πn−1(Kn−2)
0−→ πn−1(Kn−1)

incl∗−→ πn−1(Kn−1,Kn−2) = Cn−1(K)

shows that incl∗ is injective so that the restriction

incl∗ : πn−1(Kn−1)
∼=−→ im incl∗
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is an isomorphism. We have thus the following factorization of the homotopy bound-
ary homomorphism d:

Cn(K)
d - πn−1(Kn−1)

im ∂n = im(incl∗ ◦d)

∂n

??
⊂ - im incl∗

∼= incl−1
∗

6

If (K,Y ), (K,Y ) ∈ ObCWn⊃∂ , then ∂n by definition maps both Y and Y onto im ∂n.
Hence,

d(Y ) = incl−1
∗ ∂n(Y ) = incl−1

∗ im ∂n = incl−1
∗ ∂n(Y ) = d(Y ).

By Proposition 1.1.25, K<n ' K<n relKn−1, where (K,K/n, hK ,K<n) = τ<n(K,Y ).
�

Examples 1.1.28. Let p be an odd prime and q a positive integer.

1. Suppose the (n − 2)-skeleton of K has the form Kn−2 = Sn−3 ∪ en−2, where
en−2 is attached to Sn−3 by a map of degree pq. Then the assumption of Proposition
1.1.27 is satisfied as πn−1(Sn−3 ∪ en−2) = 0, see [Hil53].

2. Suppose the (n − 1)-skeleton of K has the form Kn−1 = Sn−2 ∪ en−1, where
en−1 is attached to Sn−2 by a map of degree pq. Then the assumption of Proposition
1.1.27 is satisfied as πn−1(Kn−1) = 0.

3. (n ≥ 6.) Suppose the (n − 1)-skeleton of K has the form Kn−1 = Sn−3 ∪
en−1, where en−1 is attached to Sn−3 by an essential map. Then πn−1(Kn−2) =
πn−1(Sn−3) = Z/2 (since n− 3 ≥ 3) and πn−1(Kn−1) = Z, [Hil53]. Thus the map

πn−1(Kn−2) = Z/2 −→ Z = πn−1(Kn−1)

is trivial.

Let us recall the definition of a Jm-complex due to J. H. C. Whitehead, [Whi49].

Definition 1.1.29. A CW-complex K is a Jm-complex, if the skeletal inclusions
induce zero maps πr(K

r−1)→ πr(K
r) for all r = 2, . . . ,m.

The space S3 ∪3 e
4, for example, is a J5-complex. If K is a simply connected Jm-

complex, then the Hurewicz map πr(K)→ Hr(K) is an isomorphism for r ≤ m (and
a surjection in degree r = m + 1). We obtain the following corollary to Proposition
1.1.27:

Corollary 1.1.30. If K is a Jn−1-complex, then the rel (n − 1)-skeleton ho-
motopy type of K<n is independent of the choice of Y , where (K,K/n, hK ,K<n) =
τ<n(K,Y ).

For the value n = 3, the proposition implies:

Corollary 1.1.31. For n = 3 and K1 = pt, the rel 2-skeleton homotopy type of
K<3 is independent of the choice of Y , where (K,K/3, hK ,K<3) = τ<3(K,Y ).

Proof. For n = 3, Kn−2 is a point and so π2(K1) = 0. The conclusion follows
from Proposition 1.1.27. �
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In order to define τ<n on morphisms, we prove the existence of morphism com-
pletions:

Theorem 1.1.32. (Compression Theorem.) Any morphism f : (K,YK) →
(L, YL) in CWn⊃∂ can be completed to a morphism τ<n(K,YK) → τ<n(L, YL) in
HoCW⊃<n.

Proof. The map f : K → L is cellular and f∗(YK) ⊂ YL. With

τ<n(K,YK) = (K,K/n, hK ,K<n), τ<n(L, YL) = (L,L/n, hL, L<n),

our task is to complete the diagram

K � ⊃ Kn � hK

'
K/n �

iK
⊃ K<n

L

f

?
� ⊃ Ln

?
� hL

'
L/n
?
� iL

⊃ L<n
?

by filling in the three dotted arrows in such a way that all three squares commute up
to homotopy rel Kn−1. Since f is cellular, it restricts to a map between the n-skeleta.
This defines fn = f | : Kn → Ln. Choose a cellular homotopy inverse h′L : Ln → L/n
for hL such that h′L is the identity on Ln−1 and hLh

′
L ' id rel Ln−1, h′LhL ' id rel

Ln−1. Set

f/n = h′L ◦ f | ◦ hK : K/n −→ L/n.

Then the middle square commutes up to homotopy rel Kn−1. It remains to be shown
that the map (f/n)iK : K<n → L/n can be deformed into the subcomplex L<n rel
Kn−1. By definition,

K/n = Kn−1 ∪
⋃
α

yα ∪
⋃
β

zβ , K<n = Kn−1 ∪
⋃
α

yα,

L/n = Ln−1 ∪
⋃
γ

y′γ ∪
⋃
δ

z′δ, L<n = Ln−1 ∪
⋃
γ

y′γ ,

where the zβ are n-cells constituting a basis for the cycle group Zn(K/n), the yα
are the remaining n-cells of K/n, the z′δ constitute a basis for Zn(L/n) and the y′γ
are the remaining n-cells of L/n. The various characteristic maps form bases for the
homotopy groups rel (n− 1)-skeleton:

πn(K/n,Kn−1) =
⊕
α

Z[χ(yα)]⊕
⊕
β

Z[χ(zβ)],

πn(L/n,Ln−1) =
⊕
γ

Z[χ(y′γ)]⊕
⊕
δ

Z[χ(z′δ)].

Set

ζβ = hK∗[χ(zβ)], ηα = hK∗[χ(yα)],

ζ ′δ = hL∗[χ(z′δ)], η
′
γ = hL∗[χ(y′γ)].

Since hK∗ and hL∗ are chain maps, the elements ζβ and ζ ′δ are cycles, i.e. ζβ ∈ Zn(K)
and ζ ′δ ∈ Zn(L). By definition of τ<n(K,YK), the ηα lie in YK . The η′γ lie in YL. As
both hK∗ and hL∗ are isomorphisms, {ηα} is a basis for YK , {ζβ} is a basis for Zn(K),
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{η′γ} is a basis for YL and {ζ ′δ} is a basis for Zn(L). The situation is summarized in
the following commutative diagram.

{ηα}
YK ⊕

{ζβ}
Zn(K) �

ζβ ← [χ(zβ)]
ηα ← [χ(yα)] ⊕

α Z[χ(yα)]⊕
⊕

β Z[χ(zβ)] � ⊃
⊕

α Z[χ(yα)]

πn(Kn,Kn−1)

wwwwwwwww
�

∼=
hK∗

πn(K/n,Kn−1)

wwwwwwwww
�

iK∗
πn(K<n,K

n−1)

wwwwwwwww

πn(Ln, Ln−1)

f |∗

?
�

∼=
hL∗

πn(L/n,Ln−1)

(f/n)∗

?
�

iL∗
πn(L<n, L

n−1)

YL
{η′γ}
⊕ Zn(L)
{ζ′δ}

wwwwwwwww
�
ζ ′δ ← [χ(z′δ)]
η′γ ← [χ(y′γ)]

⊕
γ Z[χ(y′γ)]⊕

⊕
δ Z[χ(z′δ)]

wwwwwwwww
� ⊃

⊕
γ Z[χ(y′γ)]

wwwwwwwww

(We have hL∗ ◦ (f/n)∗ = f |∗ ◦ hK∗ because hL ◦ f/n ' hL ◦ h′L ◦ f | ◦ hK ' f | ◦ hK
by a homotopy rel Kn−1.) The commutative square

∂yα
χ(yα)|- Kn−1

yα
?

∩

χ(yα)- K<n

?

∩

represents the element [χ(yα)] ∈ πn(K<n,K
n−1), and

[χ(yα)|∂yα ] = d/n[χ(yα)] = d/nhK∗(ηα) = dηα

holds. Since f∗(YK) ⊂ YL, we can write f |∗(ηα) =
∑
γ λγη

′
γ for some integers λγ .

Thus,

(f/n)∗iK∗[χ(yα)] = h′L∗f |∗hK∗iK∗[χ(yα)] = h′L∗f |∗(ηα)
= h′L∗(

∑
γ λγη

′
γ) =

∑
γ λγh

′
L∗(η

′
γ)

=
∑
γ λγh

′
L∗hL∗[χ(y′γ)] =

∑
γ λγ [χ(y′γ)] =

∑
γ λγiL∗[χ(y′γ)]

= iL∗(
∑
γ λγ [χ(y′γ)]),

whence (f/n)∗iK∗[χ(yα)] is in the image of iL∗. Hence, by exactness of the sequence

πn(L<n, L
n−1)

iL∗−→ πn(L/n,Ln−1)
j∗−→ πn(L/n,L<n)

associated to the triple (L/n,L<n, L
n−1),

j∗(f/n)∗iK∗[χ(yα)] = 0 ∈ πn(L/n,L<n).
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This element is explicitly represented by the composition

∂yα
χ(yα)|- Kn−1 ===== Kn−1 (f/n)|- Ln−1 ⊂

j - L<n

yα
?

∩

χ(yα)- K<n

?

∩

⊂
iK- K/n

?

∩

f/n- L/n
?

∩

====== L/n.

iL

?

∩

This means that the composition

yα
χ(yα)- K<n

⊂
iK- K/n

f/n- L/n

is homotopic, rel ∂yα, to a map into L<n (see [Bre93], Theorem 5.8 in Chapter VII,
p.448). Consequently there exist homotopies

Hα : yα × I −→ L/n

such that

(i) Hα(−, 0) = (f/n) ◦ iK ◦ χ(yα),
(ii) Hα(yα × {1}) ⊂ L<n,
(iii) Hα(x, t) = (f/n ◦ χ(yα)|)(x), for all x ∈ ∂yα, t ∈ I.

In order to assemble these homotopies to a homotopy

H : K<n × I −→ L/n

rel Kn−1 such that

H(−, 0) = (f/n)iK , H(K<n × {1}) ⊂ L<n,
set

H(x, t) = (iLj(f/n)|)(x)

for x ∈ Kn−1 and
H(χ(yα)(x), t) = Hα(x, t)

for x ∈ yα. Then H is indeed a map because for x ∈ ∂yα,

Hα(x, t) = (f/n ◦ χ(yα)|)(x) = (iL ◦ j ◦ f/n ◦ χ(yα)|)(x),

by (iii) above. In other words, H is the unique map determined by the universal
property of the pushout:⊔

α ∂yα × I� _

��

⊔
χ(yα)|∂×idI // Kn−1 × I

�� A

��

⊔
α yα × I

⊔
χ(yα)×idI //

B --

K<n × I
H

%%
L/n,

where A(x, t) = (iLj(f/n)|)(x) for (x, t) ∈ Kn−1 × I and B(x, t) = Hα(x, t) for
x ∈ yα, t ∈ I, observing that for x ∈ ∂yα, t ∈ I,

A(χ(yα)(x), t) = iLj(f/n)χ(yα)(x)
= (f/n)χ(yα)(x)
= Hα(x, t) by (iii)
= B(x, t).
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Defining

f<n = H(−, 1),

we obtain the desired morphism, represented by

K � ⊃ Kn � hK

'
K/n �

iK
⊃ K<n

L

f

?
� ⊃ Ln

f |

?
� hL

'
L/n

f/n

?
� iL

⊃ L<n.

f<n

?

�

At this point, it is instructive to return to the example discussed in the intro-
duction 1.1.1. There we constructed a (homotopy class of a) map f : K → L with
K = S2∪2 e

3 a Moore space M(Z/2, 2) and L = K∨S3 that could not be compressed
to a map f<3 : K<3 → L<3. In light of Theorem 1.1.32, this must mean that f cannot
be promoted to a morphism f : (K,YK) → (L, YL) in CW3⊃∂ , no matter which YK
and YL one takes. Let us prove directly that this is indeed the case, by giving an
explicit geometric description of f . The cofibration sequence

S2 i=2−→ S2 −→ K = cone(i)
ι−→ S3 Σi=2−→ S3,

where ι collapses the 2-skeleton S2 of K to a point, induces an exact sequence

π3(L)
Σi=2−→ π3(L)

ι−→ [K,L]

and the cokernel of Σi is Ext(Z/2, π3L). Let g : S3 ↪→ K ∨ S3 = L be the inclusion
which is the identity onto the second wedge summand. Then the composition

K
ι−→ S3 g−→ L

is homotopic to f . To see this, we only have to verify that E2(Hur)[g] = ξ, where
E2(−) = Ext(Z/2,−), Hur : π3(L) → H3(L) = Z is the Hurewicz map so that
E2(Hur) : E2(π3L) → E2(H3L) = Z/2, and ξ ∈ E2(H3L) is the generator. Let
[S3] ∈ H3(L) denote the preferred generator of H3(L). Then ξ is the residue class of
[S3] modulo 2. The map E2(Hur) sends the residue class of [g] in π3(L)/2π3(L) to
the residue class of g∗[S

3], [S3] ∈ H3(S3) the fundamental class, in H3(L)/2H3(L).
Since g is the identity on the second wedge summand, we have indeed g∗[S

3] = [S3].
Given this geometric description of f , its action on chains is easily obtained: C3(K) =
Ze3

K , where e3
K is the 3-cell of K and C3(L) = Ze3

L ⊕ Z[S3], where e3
L is the 3-cell in

L contained in K ⊂ L, and where we wrote [S3] for the other 3-cell of L, contained
in the 3-sphere in L. Then f∗ : C3(K)→ C3(L) is given by

f∗(e
3
K) = g∗ι∗(e

3
K) = g∗[S

3] = [S3].

The boundary operator ∂K3 : C3(K) → C2(K) = Ze2 is multiplication by 2. Thus
Z3(K) = ker ∂K3 = 0 and YK = C3(K) is uniquely determined. For ∂L3 : C3(L) →
C2(L) we have ∂L3 (e3

L) = 2e2 and ∂L3 [S3] = 0. Hence Z3(L) = ker ∂L3 = Z[S3] and in
the decomposition C3(L) = Z3(L)⊕YL, YL is any subgroup of the form Z(e3

L+m[S3])
with m ∈ Z. We conclude that since

f∗(YK) = f∗C3(K) = Z[S3] = Z3(L),
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there is no admissible YL such that f∗(YK) ⊂ YL and f does not give rise to a mor-
phism in CW3⊃∂ .

Definition 1.1.33. Let (K,K/n, hK ,K<n) and (L,L/n, hL, L<n) be n-truncation
structures. A morphism ([f ], [fn], [f/n], [f<n]) : (K,K/n, hK ,K<n)→ (L,L/n, hL, L<n)
in HoCW⊃<n is called n-compression rigid if for any two cellular maps g1, g2 :
K<n → L<n such that

K/n �
iK

⊃ K<n

L/n

f/n

?
� iL

⊃ L<n

gi

?

homotopy commutes rel Kn−1 for i = 1, 2, the homotopy H : K<n×I → L/n between
iLg1 and iLg2 can be chosen to be an eigenhomotopy (still rel Kn−1).

The property of n-compression rigidity is indeed a well-defined property of a
morphism in HoCW⊃<n, for it does not depend on the choice of representative:
Suppose that ([f ], [fn], [f/n], [f<n]) = ([g], [gn], [g/n], [g<n]) and this morphism is n-
compression rigid with respect to f/n. Given g1, g2 : K<n → L<n with iLg1 '
(g/n)iK ' iLg2 rel Kn−1, we use f/n ' g/n rel Kn−1, and therefore (f/n)iK '
(g/n)iK rel Kn−1, to obtain homotopies iLg1 ' (f/n)iK ' iLg2 rel Kn−1. By n-
compression rigidity with respect to f/n, the homotopy between iLg1 and iLg2 can
be chosen to be an eigenhomotopy. Hence, the morphism is n-compression rigid with
respect to g/n.

On the other hand, compression rigidity is not expected to be a property of [f ]
alone because [f ] = [g] does not imply [f/n] = [g/n], as noted before.

An obstruction theory for deciding compression rigidity in practice is provided in
Section 1.2.

Morphisms f : (K,YK)→ (L, YL) in CWn⊃∂ are required to satisfy f∗(YK) ⊂ YL.
This ensures that f can be pushed down to a map f<n : K<n → L<n between n-
truncations. If one wants any two such maps K<n → L<n, both truncating f, to be
homotopic, which is necessary to obtain functoriality, then one needs an additional
condition — a higher order analog of the previous condition — to ensure that homo-
topies can be pushed down to the truncated spaces. Unfortunately, it turns out to be
subtler than just requiring “H∗(YK×I) ⊂ YL×I” and then applying Theorem 1.1.32 in
degree n+1 to H instead of f . The difficulty is related to the fact that the n-skeleton
of a cylinder K × I, where K is an n-dimensional complex, is not Kn−1 × I, but
Kn−1 × I ∪Kn × ∂I. Rather, the eigenhomotopy property is precisely the condition
needed. The following proposition shows that two truncation versions of a map are
homotopic if, and only if, the map being truncated is compression rigid.

Proposition 1.1.34. Let (K,K/n, hK ,K<n) and (L,L/n, hL, L<n) be n-truncation
structures and F = ([f ], [fn], [f/n], [f<n]) : (K,K/n, hK ,K<n) → (L,L/n, hL, L<n)
a morphism in HoCW⊃<n. Then any two cellular maps g1, g2 : K<n → L<n such
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that

K/n �
iK

⊃ K<n

L/n

f/n

?
� iL

⊃ L<n

gi

?

homotopy commutes rel Kn−1 for i = 1, 2 are homotopic rel Kn−1 if, and only if, F
is n-compression rigid.

Proof. Assume that F is n-compression rigid. We have iLg1 ' (f/n)iK ' iLg2

rel Kn−1. By n-compression rigidity, the homotopy H : K<n × I → L/n between
iLg1 and iLg2 can be taken to be an eigenhomotopy rel Kn−1. Define H ′ : K<n×I →
L/n × I by H ′(k, t) = (H(k, t), t). By cellularity, g1 sends Kn−1 to Ln−1. Thus H ′

restricts to a map

H ′|Kn−1×I = g1|Kn−1 × idI = g2|Kn−1 × idI : Kn−1 × I −→ Ln−1 × I.

Furthermore, H ′(K<n × ∂I) ⊂ L<n × ∂I via g1 ∪ g2. Hence, setting

A = K<n × I, A0 = K<n × ∂I ∪Kn−1 × I,
B′ = L/n× I, B = L<n × I, B0 = L<n × ∂I ∪ Ln−1 × I,

we have a map of pairs

H ′ : (A,A0) −→ (B′, B0).

Let y = ynα be an n-cell of K<n with characteristic map χ(y) : y → K<n and attaching
map χ(y)|∂y : ∂y → Kn−1. The characteristic map χ(y × I) of the (n+ 1)-cell y × I
of K<n × I is then

y × I χ(y×I)=χ(y)×idI - K<n × I

∂(y × I) = (∂y)× I ∪ y × ∂I
∪

6

χ(y)|×idI ∪χ(y)×id∂I
- Kn−1 × I ∪K<n × ∂I

∪

6

and represents an element [χ(y × I)] ∈ πn+1(A,A0). Applying the induced map
H ′∗ : πn+1(A,A0) → πn+1(B′, B0), we obtain an eigenclass xα = H ′∗[χ(y × I)] ∈
πn+1(B′, B0) = V Cn(L). Thus

xα = EL(xα) = φpψ(xα).

The long exact homotopy sequence of the triple (B′, B,B0) yields the exact sequence

Cn+1(L<n × I)
φ−→ V Cn(L)

ε−→ πn+1(B′, B).

Since xα is in the image of φ, we have ε(xα) = 0. This means that the composition

y × I χ(y×I)−→ K<n × I
H′−→ L/n× I

is homotopic, rel ∂(y × I), to a map H<
α into L<n × I. This map H<

α : y × I →
L<n × I is equal to H ′| ◦ (χ(y)| × idI) when restricted to (∂y) × I and is equal to
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(g1 ∪ g2) ◦ (χ(y) × id∂I) when restricted to y × ∂I. Let us assemble these H<
α to a

homotopy H< : K<n × I → L<n. For x ∈ Kn−1, set

H<(x, t) = g1(x) = g2(x).

For x ∈ ynα, set

H<(χ(ynα)(x), t) = π1H
<
α (x, t),

where π1 : L<n × I → L<n is the first-factor projection. Then H< is indeed a map
because for x ∈ ∂yα,

H<(χ(yα)|∂yα(x), t) = π1H
<
α (x, t) = π1 ◦H ′ ◦ χ(yα × I)(x, t)

= π1H
′(χ(yα)(x), t) = H(χ(yα)(x), t)

= g1(χ(yα)(x)).

In other words, H< is the unique map determined by the universal property of the
pushout: ⊔

α ∂yα × I� _

��

⊔
χ(yα)|∂×idI // Kn−1 × I

�� A

��

⊔
α yα × I

⊔
χ(yα)×idI //

B --

K<n × I
H<

%%
L<n,

where A(x, t) = g1(x) for (x, t) ∈ Kn−1 × I and B(x, t) = π1H
<
α (x, t) for x ∈ yα,

t ∈ I, observing that for x ∈ ∂yα, t ∈ I,
A(χ(yα)(x), t) = g1(χ(yα)(x))

= H(χ(yα)(x), t) (since χ(yα)(x) ∈ Kn−1)
= π1H

′(χ(yα)(x), t)
= π1H

<
α (x, t)

= B(x, t).

For t = 0 we have H<(x, 0) = g1(x) when x ∈ Kn−1 and H<(χ(yα)(x), 0) =
π1H

<
α (x, 0) = g1(χ(yα)(x)) when x ∈ yα. Thus H<(−, 0) = g1, and similarly

H<(−, 1) = g2. The map H< is the desired homotopy rel Kn−1 between g1 and
g2.

Let us now prove the converse direction. We assume that whenever g1 and g2 are
cellular maps such that iLg1 ' (f/n)iK ' iLg2 relKn−1 then in fact g1 ' g2 relKn−1.
We have to show that F is n-compression rigid. Let g1, g2 be maps as above and let
H : K<n×I → L<n be a homotopy rel Kn−1 between g1 and g2. The associated map
H ′ : K<n × I → L<n × I is a map of pairs H ′ : (A,A0)→ (B,B0) which induces on
homotopy groups a homomorphismH ′# : Cn+1(K<n×I)→ Cn+1(L<n×I). Regarding

H ′ as a map (A,A0)→ (B′, B0), it induces a homomorphism H ′∗ : Cn+1(K<n× I)→
V Cn(L) such that H ′∗ = φH ′#. Let

j :
⊕
α

Z[χ(yα × I)] ↪→
⊕
α

Z[χ(yα × I)]⊕
⊕
β

Z[χ(zβ × I)]

be the canonical inclusion so that pj = id and ψφ = j. We will show that x =
H ′∗[χ(yα × I)] is an eigenclass. Let us calculate the action of the endomorphism EL
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on x:

EL(x) = φpψ(x)
= φpψφH ′#[χ(yα × I)]

= φpjH ′#[χ(yα × I)]

= φH ′#[χ(yα × I)]

= H ′∗[χ(yα × I)]
= x.

Hence x is an eigenclass as claimed. �

Example 1.1.35. We exhibit an example of a map f : K → L, where K and L are
simply connected 5-segmented CW-complexes (K = K/5, L = L/5) with unique 5-
truncation subcomplexes K<5 ⊂ K, L<5 ⊂ L, such that there are two nonhomotopic
maps g1, g2 : K<5 → L<5, which are equal on the 4-skeleton K4 of K and such that

K

f

��

K<5
? _

iKoo

gi

��
L L<5

? _

iL
oo

homotopy commutes rel K4, i = 1, 2. This, then, furnishes an example of a map that
is not compression rigid. Let

K = S4 ∪4 e
5, L = S3 ∪2 e

4 ∪ e5,

where the 5-cell in L is attached to S3 by an essential map ∂e5 → S3. The complex
K is a Moore space M(Z/4, 4) and the 4-skeleton S3 ∪2 e

4 of L is a Moore space
M(Z/2, 3). The cycle group Z5(K) is zero and Y5(K) = C5(K) = Ze5 is unique. The
space K is 5-segmented with 5-truncation K<5 = K, unique by Proposition 1.1.3.
The cycle group Z5(L) = C5(L) = Ze5 has a basis of cells. Hence L is 5-segmented
by Lemma 1.1.2. Necessarily, Y5(L) = 0. The 5-truncation is L<5 = L4 = S3 ∪2 e

4,
unique by Proposition 1.1.3. By classical homotopy theoretic arguments,

π5(S3 ∪2 e
4) ∼= Z/4

and

π5(S3 ∪2 e
4 ∪ e5) ∼= Z/2 ⊕ Z.

Since L is 2-connected, we may apply Proposition 1.2.8 to obtain π6(L,L<5) ∼= Z/2,
using H5(L) ∼= Z. The exact sequence of the pair,

π6(L,L<5) −→ π5(L<5)
iL∗−→ π5(L),

then shows that the kernel of iL∗ is either zero or isomorphic to Z/2. Since every
homomorphism Z/4 → Z/2 ⊕ Z has a nontrivial kernel, ker iL∗ is isomorphic to Z/2.
Write Z/4 = {0, 1, 2, 3}. The only subgroup of Z/4 isomorphic to Z/2 is {0, 2}. We
deduce that ker iL∗ = {0, 2} ⊂ π5(L<5). Let h : S5 → L<5 be a map representing
2 = [h]. Let coll : K = S4 ∪4 e

5 → S5 be the map that collapses S4 to a point, which
then becomes the basepoint s0 of S5. The Puppe cofibration sequence

S4 4−→ S4 −→ cone(4) = K
coll−→ S5 = S(S4)

4−→ S5 = S(S4)
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induces the exact rows of the commutative diagram

π5(L<5)
4=0 //

iL∗

��

π5(L<5) � � coll∗ //

iL∗

��

[K,L<5]

iL∗

��
π5(L)

4 // π5(L)
coll∗ // [K,L].

Since the element 2 = [h] ∈ π5(L<5) is not divisible by 4 (none of the nontrivial
elements of π5(L<5) are), it is by exactness not in the kernel of coll∗. Thus

[h ◦ coll] = coll∗[h] 6= 0 ∈ [K,L<5].

As iL∗[h] = 0 ∈ π5(L), there exists a base point preserving homotopy H : S5× I → L
from H0 = iLh to the constant map H1, which sends every point to the base point l0
of L<5 ⊂ L. Thus H(s0, t) = l0 for all t ∈ I. Define a homotopy G : K<5 × I → L by

G(x, t) = H(coll(x), t), x ∈ K<5, t ∈ I.
It is a homotopy from

G(x, 0) = H(coll(x), 0) = iLh coll(x)

to the constant map
G(x, 1) = H(coll(x), 1) = l0.

It is rel K4, as for x ∈ K4 = S4,

G(x, t) = H(coll(x), t) = H(s0, t) = l0

for all t ∈ I. Let g1 : K<5 → L<5 be the composition

K<5 = K
coll−→ S5 h−→ L<5

and let f : K → L be the composition

K = K<5
g1−→ L<5

iL
↪→ L.

By construction,

K

f

��

K<5
iK

g1

��
L L<5

? _

iL
oo

commutes. Taking g2 : K<5 → L<5 to be the constant map to l0, the square

K

f

��

K<5
iK

g2

��
L L<5

? _

iL
oo

homotopy commutes rel K4, as via the rel K4 homotopy G,

f = iLh coll '
G

constl0 = iLg2.

Thus g1 and g2 are both valid homological 5-truncations of f , agreeing with f on the
4-skeleton. However, g1 and g2 are not homotopic, since

[g1] = [h ◦ coll] 6= 0 = [g2] ∈ [K<5, L<5].
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Proposition 1.1.36. (Homotopy Invariance of Compression Rigidity.) Let

(K,K/n, hK ,K<n)
∼=
U
- (K ′,K ′/n, hK′ ,K

′
<n)

(L,L/n, hL, L<n)

F

? ∼=
V
- (L′, L′/n, hL′ , L

′
<n)

F ′

?

be a commutative square in HoCW⊃<n, with U, V isomorphisms. If F is n-compression
rigid, then F ′ is n-compression rigid.

Proof. The morphism F has the form F = ([f ], [fn], [f/n], [f<n]), and F ′ has
the form F ′ = ([f ′], [f ′n], [f ′/n], [f ′<n]). Suppose g′i : K ′<n → L′<n, i = 1, 2, are two
cellular maps such that the squares

(12)

K ′/n �
iK′

⊃ K ′<n

L′/n

f ′/n

?
� iL′

⊃ L′<n

g′i

?

commute up to homotopy rel (K ′)n−1. We have to show that g′1 ' g′2 rel (K ′)n−1. The
morphism U has components U = ([u], [un], [u/n], [u<n]), and V has components V =
([v], [vn], [v/n], [v<n]). The cellular maps u, un, u/n, u<n are all homotopy equivalences
rel Kn−1 and the cellular maps v, vn, v/n, v<n are all homotopy equivalences rel Ln−1,
see Lemma 1.1.21. Let u′<n, v

′
<n, v

′/n be rel (n − 1)-skeleta homotopy inverses for
u<n, v<n, v/n, respectively. Set

gi = v′<ng
′
iu<n : K<n −→ L<n, i = 1, 2.

Since V is a morphism and [v′/n], [v′<n] are the third and fourth component of the
inverse V −1 (see Lemma 1.1.21), the diagram

(13)

L′/n �
iL′

⊃ L′<n

L/n

v′/n '

?
� iL

⊃ L<n

' v′<n

?

homotopy commutes rel (L′)n−1. Since U is a morphism, the diagram

(14)

K/n �
iK

⊃ K<n

K ′/n

u/n '

?
�iK′

⊃ K ′<n

' u<n

?
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homotopy commutes rel Kn−1. From F ′U = V F, we get a rel Kn−1 homotopy
commutative diagram

K/n
'
u/n
- K ′/n

L/n

f/n

?
'
v/n
- L′/n

f ′/n

?

which implies

(15) (v′/n)(f ′/n)(u/n) ' (v′/n)(v/n)(f/n) ' f/n
rel Kn−1. Therefore,

iLgi = iLv
′
<ng

′
iu<n

' (v′/n)iL′g
′
iu<n (by (13))

' (v′/n)(f ′/n)iK′u<n (by (12))
' (v′/n)(f ′/n)(u/n)iK (by (14))
' (f/n)iK (by (15)),

i = 1, 2, rel Kn−1. Since F is n-compression rigid, Proposition 1.1.34 implies g1 ' g2

rel Kn−1, i.e. v′<ng
′
1u<n ' v′<ng′2u<n rel Kn−1. Hence,

g′1 ' v<nv′<ng′1u<nu′<n ' v<nv′<ng′2u<nu′<n ' g′2
rel (K ′)n−1, whence F ′ is n-compression rigid by Proposition 1.1.34. �

Corollary 1.1.37. (Inversion Invariance of Compression Rigidity.) Let F :
(K,K/n, hK ,K<n) → (L,L/n, hL, L<n) be an isomorphism in HoCW⊃<n. If F is
n-compression rigid, then F−1 is n-compression rigid as well.

Proof. In Proposition 1.1.36, take U = F, V = F−1 and F ′ = F−1. �

Let f : (K,YK)→ (L, YL) be a morphism in CWn⊃∂ . If f is the identity, set

τ<n(f) = idτ<n(K,YK) = ([idK ], [idKn ], [idK/n], [idK<n ]),

where τ<n(K,YK) = (K,K/n, hK ,K<n). If not, proceed as follows: By Theorem
1.1.32, f can be completed to a morphism

([f ], [fn], [f/n], [f<n]) : τ<n(K,YK) −→ τ<n(L, YL)

in HoCW⊃<n such that

(1) fn = f |Kn and

(2) f/n = h′L ◦ fn ◦ hK , where h′L : Ln → L/n is a homotopy inverse rel Ln−1

for hL.

Choose such a completion and set

τ<n(f) = ([f ], [fn], [f/n], [f<n]).

The truncation τ<n is now defined on objects and morphisms. For a morphism
F = ([f ], [fn], [f/n], [f<n]) in HoCW⊃<n, we shall also write Fn for the second
component [fn] of F , F/n for the third component [f/n] of F , and F<n for the
fourth component [f<n] of F .
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Lemma 1.1.38. If f : (K,YK)→ (L, YL) and g : (L, YL)→ (P, YP ) are morphisms
in CWn⊃∂ , then

τ<n(g)/n ◦ τ<n(f)/n = τ<n(g ◦ f)/n.

Proof. Let (K,K/n, hK ,K<n) = τ<n(K,YK), (L,L/n, hL, L<n) = τ<n(L, YL),
and (P, P/n, hP , P<n) = τ<n(P, YP ). Let h′L, h

′
P be homotopy inverses rel (n − 1)-

skeleta for hL, hP , respectively. Set h = gf . By definition of τ<n on morphisms, we
have

τ<n(f) = ([f ], [f |Kn ], [h′L ◦ f |Kn ◦ hK ], [f<n]),

τ<n(g) = ([g], [g|Ln ], [h′P ◦ g|Ln ◦ hL], [g<n]),

and

τ<n(h) = ([h], [h|Kn ], [h′′P ◦ h|Kn ◦ hK ], [h<n]),

where h′′P is some homotopy inverse rel Pn−1 for hP . The maps h′P and h′′P need
not be equal, but they are homotopic rel Pn−1, so that [h′P ] = [h′′P ]. The assertion is
established by the following calculation on rel (n− 1)-skeleta homotopy classes:

τ<n(g)/n ◦ τ<n(f)/n = [h′P ◦ g|Ln ◦ hL] ◦ [h′L ◦ f |Kn ◦ hK ]
= [h′P ◦ g|Ln ] ◦ [hL ◦ h′L] ◦ [f |Kn ◦ hK ]
= [h′P ◦ g|Ln ◦ f |Kn ◦ hK ]
= [h′P ] ◦ [(gf)|Kn ◦ hK ]
= [h′′P ] ◦ [h|Kn ◦ hK ]
= τ<n(h)/n.

�

Theorem 1.1.39. Let f : (K,YK) → (L, YL) and g : (L, YL) → (P, YP ) be
morphisms in CWn⊃∂ such that τ<n(g ◦ f) is n-compression rigid. Then

τ<n(g ◦ f) = τ<n(g) ◦ τ<n(f)

in HoCW⊃<n.

Proof. Set h = gf . If

τ<n(f) = ([f ], [fn], [f/n], [f<n]), τ<n(g) = ([g], [gn], [g/n], [g<n])

and

τ<n(h) = ([h], [hn], [h/n], [h<n])

then

τ<n(g) ◦ τ<n(f) = ([g] ◦ [f ], [gn] ◦ [fn], [g/n] ◦ [f/n], [g<n] ◦ [f<n]),

and thus

τ<n(g ◦ f) = τ<n(g) ◦ τ<n(f)

iff
(1) [g] ◦ [f ] = [h], (2) [gn] ◦ [fn] = [hn],
(3) [g/n] ◦ [f/n] = [h/n], (4) [g<n] ◦ [f<n] = [h<n].

Equality holds in (1) by definition, and follows in (2) from

hn = (gf)|Kn = g|Ln ◦ f |Kn = gn ◦ fn.



1.1. THE SPATIAL HOMOLOGY TRUNCATION MACHINE 41

Equality in (3) holds by Lemma 1.1.38. Using the two homotopy commutative dia-
grams

K/n �
iK

⊃ K<n L/n �
iL

⊃ L<n

L/n

f/n

?
� iL

⊃ L<n

f<n

?
P/n

g/n

?
� iP

⊃ P<n

g<n

?

where both homotopies may be assumed to be rel (n− 1)-skeleta, we obtain

(h/n)iK ' (g/n)(f/n)iK ' (g/n)iLf<n ' iP g<nf<n
rel Kn−1, where the first homotopy comes from (3). Also,

K/n �
iK

⊃ K<n

P/n

h/n

?
� iP

⊃ P<n

h<n

?

commutes up to homotopy rel Kn−1, whence

iPh<n ' (h/n)iK ' iP g<nf<n
relKn−1. By Proposition 1.1.34, h<n ' g<nf<n relKn−1, since ([h], [hn], [h/n], [h<n])
is n-compression rigid. This establishes equality (4). �

Let us call a subcategory C ⊂ CWn⊃∂ (n-)compression rigid, if the image under
τ<n of every morphism in C is n-compression rigid. We have seen in Proposition
1.1.34 that the truncation f<n is homotopy-theoretically well-defined precisely for
n-compression rigid morphisms.

Corollary 1.1.40. Let C ⊂ CWn⊃∂ be any compression rigid subcategory.
Then the assignment τ<n is a covariant functor τ<n : C −→ HoCW⊃<n.

Recall that HoCWn−1 denotes the category whose objects are CW-complexes
and whose morphisms are rel (n− 1)-skeleton homotopy classes of cellular maps. Let

P4 : HoCW⊃<n −→ HoCWn−1

be the functor given by projection to the fourth component, that is, for an object
(K,K/n, h,K<n) in HoCW⊃<n, P4(K,K/n, h,K<n) = K<n and for a morphism
([f ], [fn], [f/n], [f<n]) in HoCW⊃<n, P4([f ], [fn], [f/n], [f<n]) = [f<n]. Let

t<∞ : CWn⊃∂ −→ HoCWn−1

be the natural projection functor, that is, t<∞(K,YK) = K for an object (K,YK)
in CWn⊃∂ , and t<∞(f) = [f ] for a morphism f : (K,YK) → (L, YL) in CWn⊃∂ .
Define a covariant assignment of objects and morphisms

t<n = P4 ◦ τ<n : CWn⊃∂ −→ HoCWn−1 .

By Corollary 1.1.40, t<n is a functor on all n-compression rigid subcategories of
CWn⊃∂ . The assignment t<n comes with a natural transformation

embn : t<n −→ t<∞,
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which we shall now describe. Let (K,Y ) be an object of CWn⊃∂ . Applying τ<n, we
obtain an n-truncation structure τ<n(K,Y ) = (K,K/n, h,K<n). Let

embn(K,Y ) : t<n(K,Y ) = K<n −→ K = t<∞(K,Y )

be the rel Kn−1 homotopy class of the composition

K<n ↪→ K/n
h−→ Kn ↪→ K.

This is a natural transformation: Given a morphism f : (K,YK) → (L, YL) in
CWn⊃∂ , we apply τ<n to obtain τ<n(f) = ([f ], [fn], [f/n], [f<n]) so that t<n(f) =
[f<n]. Then the required commutativity in HoCWn−1 of the square

t<n(K,YK)
embn(K,YK)- t<∞(K,YK)

t<n(L, YL)

t<n(f)

?
embn(L,YL)- t<∞(L, YL)

t<∞(f)

?

follows from the commutativity in HoCWn−1 of the diagram

K<n
[iK ] - K/n

[hK ]- Kn [jK ] - K

L<n

t<n(f)=[f<n]

?
[iL] - L/n

[f/n]

?
[hL]- Ln

[fn]

?
[jL] - L

[f ]=t<∞(f)

?

where τ<n(K,YK) = (K,K/n, hK ,K<n) and τ<n(L, YL) = (L,L/n, hL, L<n). We
have proved:

Theorem 1.1.41. Let n ≥ 3 be an integer. There is a covariant assignment
t<n : CWn⊃∂ −→ HoCWn−1 of objects and morphisms together with a natural
transformation embn : t<n → t<∞ such that for an object (K,Y ) of CWn⊃∂ , one
has Hr(t<n(K,Y )) = 0 for r ≥ n, and

embn(K,Y )∗ : Hr(t<n(K,Y ))
∼=−→ Hr(K)

is an isomorphism for r < n. The assignment t<n is a functor on all n-compression
rigid subcategories of CWn⊃∂ .

For the degrees n < 3, the functor t<n has been constructed in Section 1.1.5.

Remark 1.1.42. (Effect on Cohomology.) If r > n, then

Hr(t<n(K,Y )) ∼= Hom(Hr(t<n(K,Y )),Z)⊕ Ext(Hr−1(t<n(K,Y )),Z) = 0.

For the borderline case r = n,

Hn(t<n(K,Y )) ∼= Hom(Hn(t<n(K,Y )),Z)⊕ Ext(Hn−1(t<n(K,Y )),Z)

∼= Ext(Hn−1(K),Z)

(this is the torsion subgroup of Hn−1(K) if Hn−1(K) is finitely generated), while for
r < n,

Hr(t<n(K,Y )) ∼= Hom(Hr(t<n(K,Y )),Z)⊕ Ext(Hr−1(t<n(K,Y )),Z)
∼= Hom(Hr(K),Z)⊕ Ext(Hr−1(K),Z)
∼= Hr(K).



1.2. COMPRESSION RIGIDITY OBSTRUCTION THEORY 43

Thus, t<n(K,Y ) is only up to degree-(n−1)-torsion a spatial cohomology truncation.
In particular, over the rationals, t<n(K,Y ) is a valid spatial cohomology truncation.

1.2. Compression Rigidity Obstruction Theory

The Compression Theorem 1.1.32 asserts that every cellular map f that preserves
chosen direct sum complements of the n-cycle groups, that is, every morphism in
the category CWn⊃∂ of n-boundary-split CW-complexes, possesses a homological
truncation t<n(f). We have also seen that f does not in general determine the
homotopy class t<n(f) uniquely, not even when the domain and codomain of f are n-
segmented with unique n-truncating subcomplexes. We called f n-compression rigid
if it determines a unique homotopy class t<n(f). Compression rigidity was defined
in terms of eigenhomotopies in Definition 1.1.33, and then characterized as being
equivalent to the above uniqueness property in Proposition 1.1.34. On compression
rigid categories, spatial homology truncation is a functor (Theorem 1.1.41). It is
in practice not always easy to decide directly from Definition 1.1.33 or Proposition
1.1.34, whether a given map is compression rigid. The present section addresses this
by systematically identifying obstruction cocycles. A characterization of the notion
of compression rigidity in terms of obstruction cocycles is provided by Theorem 1.2.2.
Regarding the question as to when a given homotopy H can be compressed into an n-
truncation, we shall see in Proposition 1.2.6 that for a homotopy H : K<n×I → L/n,
the obstruction cocycle lies in Cn+1(K<n× I;πn+1(L/n,L<n)). The homotopy group
πn+1(L/n,L<n) thus plays a key role and is studied in Proposition 1.2.8. Some simple
sufficient conditions for compression rigidity are deduced from the general obstruction
theory.

1.2.1. Existence of Compressed Homotopies. In order to fix notation, let
us begin by recalling some basic obstruction theory.

Lemma 1.2.1. Let X and Y be CW-complexes with X of dimension n and Y
n-simple (i.e. π1(Y ) acts trivially on πn(Y ), for example Y simply connected). Let
g1, g2 : X → Y be two maps such that g1|Xn−1 = g2|Xn−1 . Then g1 and g2 are
homotopic rel Xn−1 if, and only if, a single obstruction cocycle

ω(g1, g2) ∈ Cn+1(X × I;πn(Y ))

vanishes. The obstruction cocycle is natural, that is, if f : Y → Y ′ is a map into an
n-simple CW-complex Y ′, then

f∗ω(g1, g2) = ω(fg1, fg2) ∈ Cn+1(X × I;πn(Y ′)),

where
f∗ : Cn+1(X × I;πn(Y )) −→ Cn+1(X × I;πn(Y ′))

composes a cochain with the induced map f∗ : πn(Y )→ πn(Y ′).

Proof. The n-skeleton of Z = X × I is given by Zn = X × ∂I ∪Xn−1 × I ⊂ Z.
Set

g = (g1 × {0} ∪ g2 × {1}) ∪ (g1|Xn−1 × idI) : Zn −→ Y.

Let en+1 be an (n+ 1)-cell in Z with attaching map

χ(en+1)| : Sn = ∂en+1 −→ Zn.

Composing with g defines a map

Sn
χ(en+1)|−→ Zn

g−→ Y.
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Define
ω(g1, g2)(en+1) = [g ◦ χ(en+1)|] ∈ πn(Y ).

(Since Y is n-simple, any map of an oriented n-sphere into Y represents a well-defined
element of πn(Y ).) Then the core theorem of obstruction theory asserts that g extends
to a map Z = Zn+1 → Y if, and only if, ω(g1, g2) = 0.

For a map f : Y → Y ′, we have

f∗ω(g1, g2)(en+1) = f∗[g ◦ χ(en+1)|]
= [f ◦ g ◦ χ(en+1)|]
= ω(fg1, fg2)(en+1) ∈ πn(Y ′)

because
fg = ((fg1)× {0} ∪ (fg2)× {1}) ∪ ((fg1)|Xn−1 × idI).

�

Theorem 1.2.2. Let (K,YK) and (L, YL) be objects of CWn⊃∂ with τ<n(K,YK) =
(K,K/n, hK ,K<n) and τ<n(L, YL) = (L,L/n, hL, L<n). Let iL : L<n ↪→ L/n denote
the subcomplex inclusion. A morphism ([f ], [fn], [f/n], [f<n]) : (K,K/n, hK ,K<n)→
(L,L/n, hL, L<n) in HoCW⊃<n is n-compression rigid if, and only if, the following
statement holds: For every f ′<n : K<n → L<n such that

iL∗ω(f<n, f
′
<n) = 0 ∈ Cn+1(K<n × I;πn(L/n))

one actually has

ω(f<n, f
′
<n) = 0 ∈ Cn+1(K<n × I;πn(L<n)).

Proof. In order to prove the only if-direction, suppose that ([f ], [fn], [f/n], [f<n])
is n-compression rigid. Let f ′<n : K<n → L<n be a map such that

iL∗ω(f<n, f
′
<n) = 0 ∈ Cn+1(K<n × I;πn(L/n)).

By Lemma 1.2.1,
iL∗ω(f<n, f

′
<n) = ω(iLf<n, iLf

′
<n),

and the latter cocycle is the obstruction for finding a homotopy rel Kn−1 between
iLf<n and iLf

′
<n. As this cocycle vanishes, there is a homotopy iLf<n ' iLf

′
<n rel

Kn−1. Since

K/n �
iK

⊃ K<n

L/n

f/n

?
� iL

⊃ L<n

f<n

?

homotopy commutes rel Kn−1, we also have a homotopy commutative diagram

K/n �
iK

⊃ K<n

L/n

f/n

?
� iL

⊃ L<n

f ′<n

?

rel Kn−1. Thus, by Proposition 1.1.34, f<n ' f ′<n rel Kn−1. Hence the obstruction
ω(f<n, f

′
<n) vanishes.
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To prove the if-direction, assume that iL∗ω(f<n, f
′
<n) = 0 implies ω(f<n, f

′
<n) = 0

for all f ′<n. By Proposition 1.1.34, n-compression rigidity of ([f ], [fn], [f/n], [f<n])
follows once we have shown that whenever f ′<n, f

′′
<n are such that iLf

′
<n ' (f/n)iK

rel Kn−1 and iLf
′′
<n ' (f/n)iK rel Kn−1, one can conclude f ′<n ' f ′′<n rel Kn−1.

If iLf
′
<n ' (f/n)iK ' iLf

′′
<n rel Kn−1 then (f/n)iK ' iLf<n rel Kn−1 implies

ω(iLf<n, iLf
′
<n) = 0 and ω(iLf<n, iLf

′′
<n) = 0. Thus iL∗ω(f<n, f

′
<n) = 0 and

iL∗ω(f<n, f
′′
<n) = 0, which implies ω(f<n, f

′
<n) = 0 and ω(f<n, f

′′
<n) = 0. Conse-

quently, there exist homotopies f ′<n ' f<n ' f ′′<n rel Kn−1. �

Corollary 1.2.3. A morphism ([f ], [fn], [f/n], [f<n]) : (K,K/n, hK ,K<n) →
(L,L/n, hL, L<n) in HoCW⊃<n is n-compression rigid if iL∗ : πn(L<n)→ πn(L/n)
is injective.

Proof. If iL∗ : πn(L<n)→ πn(L/n) is injective then

Hom(Cn+1(K<n × I), iL∗) : Cn+1(K<n × I;πn(L<n)) −→ Cn+1(K<n × I;πn(L/n))

is injective as well. �

1.2.2. Compression of a given Homotopy. Let n ≥ 3 be an integer. In
investigating the n-compression rigidity of a morphism

([f ], [fn], [f/n], [f<n]) : (K,K/n, hK ,K<n)→ (L,L/n, hL, L<n)

it may sometimes be useful to know whether a particular homotopy can be compressed
into the truncated spaces. We will here determine the obstructions to deforming, rel
K<n × ∂I ∪Kn−1 × I, a given rel Kn−1 homotopy H : K<n × I → L/n from iLg1

to iLg2 to a homotopy K<n × I → L<n. The resulting homotopy would then be rel
Kn−1 and from g1 to g2.

We begin by turning the inclusion L<n ↪→ L/n into a fibration, that is, we choose

a homotopy equivalence λ : L<n
'−→ L<n and a fibration p : L<n → L/n such that

L<n
λ - L<n

L/n
�

p

⊂

-

commutes. We may take λ to be an inclusion such that L<n deformation retracts
onto L<n. In particular, there is a homotopy inverse λ′ for λ such that λ′λ = idL<n ,
see [Whi78], Theorem I.7.30. Let F denote the fiber of p and let

g0 = (g1 × {0} ∪ g2 × {1}) ∪ (g1|Kn−1p1) : K<n × ∂I ∪Kn−1 × I −→ L<n,

where p1 : Kn−1 × I → Kn−1 is the first factor projection. We need to solve the
relative lifting problem

K<n × ∂I ∪Kn−1 × I λg0- L<n

K<n × I
?

∩

H
-

H

-

L/n

p

?
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For if a solution H exists, then H<n = λ′ ◦H satisfies

H<n(k, 0) = g1(k), H<n(k, 1) = g2(k) for k ∈ K<n

because

H<n(k, 0) = λ′H(k, 0) = λ′λg0(k, 0) = g0(k, 0) = g1(k)

(similarly for t = 1) and H<n(k, t) = g1(k) for k ∈ Kn−1 and all t ∈ I, since for
k ∈ Kn−1,

H<n(k, t) = λ′λg0(k, t) = g0(k, t) = g1(k)

for all t. Thus H<n is the sought compression of H.

Lemma 1.2.4. The homotopy fiber F of i : L<n ↪→ L/n is (n − 2)-connected. It
is not (n− 1)-connected unless i is the identity.

Proof. The CW pair (L/n,L<n) is (n− 1)-connected and the subcomplex L<n
is 1-connected. Thus the quotient map induces an isomorphism

πj(L/n,L<n) ∼= πj((L/n)/L<n) ∼= πj(
∨
β

Snβ )

for j ≤ (n− 1) + 1 = n. For 0 < j < n, πj(
∨
β S

n
β ) ∼= Hj(

∨
β S

n
β ) = 0 by the Hurewicz

theorem. Therefore,

πk(F ) ∼= πk+1(L/n,L<n) = 0

when k ≤ n− 2. For k = n− 1,

πn−1(F ) ∼= πn(L/n,L<n) ∼= πn(
∨
β

Snβ ) ∼= Hn(
∨
β

Snβ ) 6= 0

unless there are no cells zβ , in which case i is the identity. �

Lemma 1.2.5. The group G = Hk+1(K<n×I,K<n×∂I∪Kn−1×I;πkF ) vanishes
unless k = n. For k = n, G ∼= Cn+1(K<n × I;πnF ).

Proof. The complex A = K<n× ∂I ∪Kn−1× I is the n-skeleton (K<n× I)n of
K<n × I = (K<n × I)n+1. By the universal coefficient theorem,

G ∼= Hom(Hk+1(K<n × I, A), πkF )⊕ Ext(Hk(K<n × I,A), πkF ).

The group Hj(K<n × I, A) is zero for j 6= n+ 1 and isomorphic to the cellular chain
group Cn+1(K<n × I) for j = n + 1. Thus G = 0 for k 6∈ {n, n + 1}. For k = n + 1,
G ∼= Ext(Cn+1(K<n×I), πn+1F ) = 0, since Cn+1(K<n×I) is free abelian. For k = n,
G ∼= Hom(Cn+1(K<n × I), πnF ) = Cn+1(K<n × I;πnF ). �
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To solve the relative lifting problem, we consider the Moore-Postnikov tower of
principal fibrations of the map p:

...

Zn+1

?
- K(πn+1F, n+ 2)

K<n × ∂I ∪Kn−1 × I λg0- L<n -

-

Zn
?

- K(πnF, n+ 1)

K<n × I
?

∩

H - L/n = Zn−1

?
-

p

-

K(πn−1F, n)

By Lemma 1.2.4, the Moore-Postnikov factorization begins with Zn−1. The compo-
sition across the bottom of the diagram gives a primary obstruction

ωn−1 ∈ Hn(K<n × I,K<n × ∂I ∪Kn−1 × I;πn−1F ).

According to Lemma 1.2.5, this group is zero and the primary obstruction vanishes,
so that a lift of H to Zn exists. The obstruction to lifting further to Zn+1 is a class

ωn ∈ Hn+1(K<n × I,K<n × ∂I ∪Kn−1 × I;πnF ).

This cohomology group is nonzero by Lemma 1.2.5 and Proposition 1.2.8 below, unless
L<n ↪→ L/n is the identity or K<n has no n-cells, i.e. Kn−1 ↪→ K<n is the identity.
If ωn = 0, then the rest of the obstructions are classes

ωk ∈ Hk+1(K<n × I,K<n × ∂I ∪Kn−1 × I;πkF ),

k > n. But these all vanish by Lemma 1.2.5. Observing that πn(F ) ∼= πn+1(L/n,L<n),
we have shown:

Proposition 1.2.6. The homotopy H : K<n × I → L/n can be compressed into
L<n rel Kn−1 if, and only if, a single obstruction

ωn(H) ∈ Cn+1(K<n × I;πn+1(L/n,L<n))

vanishes.

Corollary 1.2.7. A morphism F : (K,K/n, hK ,K<n) → (L,L/n, hL, L<n) in
HoCW⊃<n is n-compression rigid, if

(1) ∂n = 0 : Cn(K) −→ Cn−1(K),

or

(2) ∂n : Cn(L) −→ Cn−1(L) is injective.
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Proof. (1): Since ∂n = 0, we have Cn(K) = Zn(K) and YK = 0. Thus K/n
has no cells yα and K<n = Kn−1. Consequently, K<n × I has no (n + 1)-cells,
Cn+1(K<n × I) = 0 and ωn(H) = 0 for every H. By Proposition 1.2.6, f is n-
compression rigid.

(2): If ∂n : Cn(L) −→ Cn−1(L) is injective, then Zn(L) = 0 and Cn(L) = YL.
Thus L/n has no cells zβ and

L/n = Ln−1 ∪
⋃
α

yα = L<n.

We conclude that πn+1(L/n,L<n) = 0 and ωn(H) = 0 for every H also in this
situation. �

The coefficient homotopy group πn+1(L/n,L<n) in the obstruction group can
only be zero if L<n ↪→ L/n is the identity. In fact:

Proposition 1.2.8. Let (L,L/n, h, L<n) be an n-truncation structure, n ≥ 3,
such that Hn(Ln) has finite rank b. Then πn+1(L/n,L<n) maps onto (Z/2)b, and if
H2(L) = 0, then

πn+1(L/n,L<n) ∼= (Z/2)b.

Proof. The n-segmentation L/n has the form

L/n = Ln−1 ∪
⋃
α

yα ∪ z1 ∪ · · · ∪ zb,

where {z1, . . . , zb} is a basis of n-cells for Zn(L/n) = Hn(L/n) ∼= Hn(Ln). The
CW pair (L/n,L<n) is r = (n − 1)-connected, since all cells in L/n − L<n have
dimension n > r. The complex L<n is s = 1-connected as n ≥ 3. Thus, as n + 1 ≤
r + s + 1 = (n − 1) + 2, the quotient map L/n → (L/n)/L<n induces a surjection
πn+1(L/n,L<n)� πn+1((L/n)/L<n). As L<n = Ln−1∪

⋃
α yα, we have (L/n)/L<n ∼=

Sn1 ∨· · ·∨Snb , where the sphere Snj corresponds to the cell zj , j = 1, . . . , b. Thus, from
the proof of Proposition 1.1.18 (concerning virtual cell groups),

πn+1((L/n)/L<n) ∼= πn+1(Sn1 ∨ · · · ∨ Snb ) ∼= (Z/2)b.

If H2(L) = 0, then H2(L<n) ∼= H2(L) = 0 and since L<n is simply connected, it
follows from the Hurewicz theorem that L<n is s = 2-connected. Therefore, as now
n+1 ≤ r+s = (n−1)+2, the quotient map induces an isomorphism πn+1(L/n,L<n) ∼=
πn+1((L/n)/L<n). �

1.3. Case Studies of Compression Rigid Categories

Proposition 1.3.1. A morphism

F = ([f ], [fn], [f/n], [f<n]) : (K,K/n, hK ,K<n)→ (L,L/n, hL, L<n)

in HoCW⊃<n is n-compression rigid if either n = 3 and L1 = pt, or n ≥ 4 and

im(πn(Ln, Ln−1)→ πn−1(Ln−1)) ∩ ker(πn−1(Ln−1)→ πn−1(Ln−1, Ln−2)) = 0.

(The latter condition is in particular satisfied when πn−1(Ln−2) = 0.)
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Proof. Let g1, g2 : K<n → L<n be two cellular maps such that the square

K/n �
iK

⊃ K<n

L/n

f/n

?
� iL

⊃ L<n

gi

?

commutes up to homotopy rel Kn−1 for i = 1, 2. By Remark 1.1.7, the n-segmented
space L/n can be written as a wedge sum

L/n = L<n ∨
∨
β

Snβ .

The essential ingredient that facilitates the proof is the canonical retraction

r : L/n −→ L<n, riL = 1,

which maps the spheres Snβ to a point. Then

iLg1 ' (f/n)iK ' iLg2

rel Kn−1 and thus
g1 = riLg1 ' riLg2 = g2

rel Kn−1. By Proposition 1.1.34, F is n-compression rigid. �

Proposition 1.3.2. Let K be a simply connected CW-complex having precisely
one n-cell. Then any morphism F : (K,K/n, hK ,K<n) → (K,K/n, hK ,K<n) in
HoCW⊃<n is n-compression rigid.

Proof. Any homomorphism Z→ G, where G is a torsion-free abelian group, is
either zero or injective. Thus the boundary operator ∂n : Cn(K) = Zen → Cn−1(K)
is either zero or injective. By Corollary 1.2.7, F is n-compression rigid. �

Proposition 1.3.3. If M is a closed, simply connected n-manifold with one n-
cell, then any morphism F : (M,M/n, hM ,M<n)→ (L,L/n, hL, L<n) in HoCW⊃<n
is n-compression rigid.

Proof. Since M is simply connected, it is orientable and thus Hn(M) ∼= Z. On
the other hand Hn(M) = Zn(M). The boundary operator ∂n : Cn(M) = Zen →
Cn−1(M) is either zero or injective. If it were injective, we would reach the contra-
diction 0 = Zn(M) = Hn(M) ∼= Z. Thus ∂n = 0 and F is n-compression rigid by
Corollary 1.2.7. �

Proposition 1.3.4. If M and N are closed, simply connected 4-manifolds, each
having one 4-cell, then for any n ≥ 3, any morphism F : (M,M/n, hM ,M<n) →
(N,N/n, hN , N<n) in HoCW⊃<n is n-compression rigid.

Proof. For n ≥ 5, there is of course nothing to show since then M = M<n,
N = N<n. For n = 4 the assertion follows from Proposition 1.3.3. Let n = 3. Since
N is orientable, Poincaré duality implies H3(N) = 0. Consequently, the sequence

C4(N)
∂4−→ C3(N)

∂3−→ C2(N)

is exact. By the proof of Proposition 1.3.3, ∂4 = 0. By exactness, ∂3 is injective. By
Corollary 1.2.7 (2), F is 3-compression rigid. �
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Let CWn
∂=0 be the full subcategory of CWn⊃∂ whose objects are those pairs

(K,Y ) for which the cellular boundary map ∂n : Cn(K) → Cn−1(K) vanishes. By
Corollary 1.2.7 (1), CWn

∂=0 is an n-compression rigid category. For objects in this
category, the cellular subgroup Y is uniquely determined, namely Y = 0. Many spaces
that arise in the intended fields of application for the truncation machine are objects
of CWn

∂=0:

Proposition 1.3.5. Let X be a complex algebraic 3-fold. Then the link of an
isolated node in X is an object of CWn

∂=0 for all n.

Proof. Such a link is homeomorphic to S2 × S3. �

1.4. Truncation of Homotopy Equivalences

The following proposition asserts that the truncation of a homotopy equivalence
is again a homotopy equivalence without requiring any compression rigidity assump-
tions.

Proposition 1.4.1. Let f : (K,YK) → (L, YL) be a morphism in CWn⊃∂ with
f : K → L a homotopy equivalence. Then

t<n(f) : t<n(K,YK) −→ t<n(L, YL)

is an isomorphism in HoCW, that is, represented by a homotopy equivalence.

Proof. We will use the natural transformation embn : t<n → t<∞ from The-
orem 1.1.41. The induced maps embn(K,YK)∗ : Hr(t<n(K,YK)) → Hr(K) and
embn(L, YL)∗ : Hr(t<n(L, YL))→ Hr(L) are isomorphisms for r < n. The commuta-
tive diagram

t<n(K,YK)
embn(K,YK)- K = t<∞(K,YK)

t<n(L, YL)

t<n(f)

?
embn(L,YL)- L = t<∞(L, YL)

t<∞(f)=[f ]

?

induces a commutative diagram on homology:

Hr(t<n(K,YK))
embn(K,YK)∗- Hr(K)

Hr(t<n(L, YL))

t<n(f)∗

?
embn(L,YL)∗- Hr(L)

∼= f∗

?

If r < n, then embn(K,YK)∗ and embn(L, YL)∗ are isomorphisms, whence t<n(f)∗ is
an isomorphism. If r ≥ n, then both Hr(t<n(K,YK)) and Hr(t<n(L, YL)) are zero
so that t<n(f)∗ is an isomorphism in this range as well. Thus t<n(f) is represented
by a map between simply connected CW-complexes which is an H∗-isomorphism and
hence a homotopy equivalence by Whitehead’s theorem. �

Caveat: In the situation of Proposition 1.4.1, one may not infer that τ<n(f) =
([f ], [fn], [f/n], [f<n]) is an isomorphism in HoCW⊃<n. For one thing, f was only
assumed to be a homotopy equivalence, not a homotopy equivalence rel Kn−1. Even
if we made the assumption that f be a homotopy equivalence rel Kn−1, it does not
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in general follow that fn is an equivalence. For example, let f : Dn+1 → Dn+1 be
the map obtained by radially extending a map of degree 2 from ∂Dn+1 to ∂Dn+1.
(Here, Dn+1 has the CW-structure Dn+1 = e0 ∪ en ∪1 e

n+1.) The (n− 1)-skeleton of
Dn+1 is a point and f is a homotopy equivalence rel this point. However, fn = f | :
∂Dn+1 → ∂Dn+1 is not an equivalence, since it has degree 2. Thus it is interesting to
observe that, while the intermediary components fn and f/n of a morphism do not
preserve the property of being an equivalence, this property is preserved by the final
component f<n.

1.5. Truncation of Inclusions

In view of the fact that, up to homotopy equivalence, every map is an inclusion,
it is worthwhile to investigate when an inclusion can be compressed into the spatial
homology truncations of its domain and codomain. Here, we are starting with a
“naked” inclusion map, not a morphism in CWn⊃∂ whose underlying map is an
inclusion. The goal is to state conditions under which an inclusion can be promoted
to a morphism in CWn⊃∂ . The desired compression is then obtained by applying
t<n to the morphism.

Proposition 1.5.1. Let K be a simply connected CW-complex and L ⊂ K a sim-
ply connected subcomplex. If Hn−1(L) is free abelian, then the subcomplex-inclusion
f : L ↪→ K is compressible into spatial homology n-truncations of L and K.

Proof. Let Br−1(L) = im ∂Lr and Br−1(K) = im ∂Kr be the (r− 1)-dimensional
boundaries in L and K, respectively. Let s : Bn−1 → Cn(L) be a splitting of
∂Ln | : Cn(L) � Bn−1(L), ∂Ln s = id . Let u : Bn−2 → Cn−1(L) be a splitting of
∂Ln−1| : Cn−1(L)� Bn−2(L). The image of u determines a decomposition Cn−1(L) =
Zn−1(L)⊕Yn−1 with Yn−1 = im(u). If Hn−1(L) is free then the short exact sequence

0→ Bn−1(L) −→ Zn−1(L) −→ Hn−1(L)→ 0

splits and Zn−1(L) = Bn−1(L) ⊕H, H ∼= Hn−1(L). Thus Cn−1(L) = Bn−1(L) ⊕ P
with P = H⊕Yn−1. Let R ⊂ Cn−1(K) be the subgroup generated by all (n−1)-cells
of K − L. It follows that

Cn−1(K) = Cn−1(L)⊕R = Bn−1(L)⊕ P ⊕R.
If A⊕B and A′ are subgroups of some abelian group and A ⊂ A′, then the formula

(A⊕B) ∩A′ = A⊕ (B ∩A′)
is available. It implies that

Bn−1(K) = Bn−1(L)⊕ (P +R) ∩Bn−1(K)
= Bn−1(L)⊕Q,

since Bn−1(L) ⊂ Bn−1(K), and where Q = (P + R) ∩ Bn−1(K). Since Q is free
abelian as a subgroup of the free abelian group Cn−1(K), we can choose a basis {qα}
for Q. Since Q ⊂ Bn−1(K), every qα is a boundary, qα = ∂Kn (kα), kα ∈ Cn(K).
Define a map t : Q→ Cn(K) by

t(
∑
i

λαiqαi) =
∑
i

λαikαi .

Let σ : Bn−1(K)→ Cn(K) be the map given by

σ(l + q) = s(l) + t(q), l ∈ Bn−1(L), q ∈ Q.
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Then σ splits ∂Kn | : Cn(K)� Bn−1(K) because

∂Kn σ(l +
∑
i λαiqαi) = ∂Kn s(l) + ∂Kn t(

∑
i λαiqαi)

= ∂Ln s(l) + ∂Kn
∑
i λαikαi

= l +
∑
i λαi∂

K
n (kαi)

= l +
∑
i λαiqαi .

Set YL = im(s) and YK = im(σ) so that Cn(L) = Zn(L)⊕YL, Cn(K) = Zn(K)⊕YK .
If y ∈ YL, say y = s(l), l ∈ Bn−1(L), then σ(l) = s(l) = y so that y ∈ YK . Hence,
the chain map f∗ : Cn(L) ↪→ Cn(K) induced by the inclusion f : L ↪→ K maps
f∗(YL) ⊂ YK . This means that with these choices of YL and YK , f can be regarded
as a morphism f : (L, YL)→ (K,YK) in CWn⊃∂ . Thus t<n(f) is defined and yields
the desired truncation t<n(f) : t<n(L, YL)→ t<n(K,YK). �

1.6. Iterated Truncation

When you follow a truncation by a truncation in a lower degree, the resulting
space is homotopy equivalent (rel relevant skeleton) to the result of truncating right
away only in the lower degree.

Proposition 1.6.1. Let n > m ≥ 3 be integers, K a simply connected CW-
complex and (K,Yn) ∈ ObCWn⊃∂ , (K,Ym) ∈ ObCWm⊃∂ . Then

t<m(t<n(K,Yn), Ym) ∼= t<m(K,Ym)

in HoCWm−1.

Proof. In the pair (K,Yn), the second component Yn is a subgroup Yn ⊂ Cn(K),
and in the pair (K,Ym), Ym ⊂ Cm(K). Carrying out the inner truncation, we obtain a
space t<n(K,Yn) = K<n, where τ<n(K,Yn) = (K,K/n, hn,K<n), hn∗in∗Cn(K<n) =

Yn, hn : K/n
'−→ Kn rel Kn−1, in : K<n ↪→ K/n. Since

Cm(K<n) = Cm((K<n)n−1) = Cm(Kn−1) = Cm(K)

as m < n, the pair (K<n, Ym) is indeed an object of CWm⊃∂ . Thus the outer trun-
cation t<m(K<n, Ym) is defined and yields a space t<m(K<n, Ym) = (K<n)<m, where
τ<m(K<n, Ym) = (K<n,K<n/m, hnm, (K<n)<m), hnm∗inm∗Cm((K<n)<m) = Ym,

hnm : K<n/m
'−→ (K<n)m = Km rel Km−1, inm : (K<n)<m ↪→ K<n/m.

The right-hand side truncation yields t<m(K,Ym) = K<m, where τ<m(K,Ym) =

(K,K/m, hm,K<m), hm∗im∗Cm(K<m) = Ym, hm : K/m
'−→ Km rel Km−1, im :

K<m ↪→ K/m. Since (K<n)m = Km, we may regard hm as a homotopy equivalence

hm : K/m
'−→ (K<n)m rel Km−1. Thus the quadruple (K<n,K/m, hm,K<m) is an

m-truncation structure completion of the pair (K<n, Ym). So both

(K<n,K<n/m, hnm, (K<n)<m) and (K<n,K/m, hm,K<m)

are m-truncation structure completions of (K<n, Ym) ∈ ObCWm⊃∂ satisfying

hnm∗inm∗Cm((K<n)<m) = Ym = hm∗im∗Cm(K<m).

By Scholium 1.1.26, (K<n)<m and K<m are homotopy equivalent rel Km−1. Conse-
quently,

t<m(t<n(K,Yn), Ym) = t<m(K<n, Ym) = (K<n)<m ' K<m = t<m(K,Ym)

rel Km−1. �
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1.7. Localization at Odd Primes

Recall that CW1 denotes the category of simply connected CW-complexes and
cellular maps. Let G(odd) = G⊗Z[ 1

2 ] denote the localization of an abelian group G at

odd primes. Let (−)(odd) : CW1 → CW1 be the (Bousfield-Kan) localization functor
at odd primes and let loc : id→ (−)(odd) be the localization natural transformation.
The functor assigns to a simply connected CW-complex X a simply connected CW-
complex X(odd) and to a map f : X → Y a map f(odd) : X(odd) → Y(odd) such
that

X
loc- X(odd)

Y

f

?
loc- Y(odd)

f(odd)

?

commutes. The localization map induces natural isomorphisms

π∗(X)(odd)
∼= π∗(X(odd)), H∗(X;Z[ 1

2 ]) ∼= H∗(X)(odd)
∼= H∗(X(odd)).

This localization preserves homotopy fibrations and cofibrations.

Lemma 1.7.1. A homotopy between two maps f, g : X → Y induces a homotopy
between the localized maps f(odd), g(odd) : X(odd) → Y(odd).

Proof. Let H : X × I → Y be a homotopy between f = H0 and g = H1. The
map f(odd) is an extension of loc ◦f : X → Y(odd) to X(odd) and g(odd) is an extension
of loc ◦g : X → Y(odd) to X(odd):

X
loc ◦f- Y(odd),

X(odd)

loc

?
f (

o
d
d
)

-

X
loc ◦g- Y(odd).

X(odd)

loc

?
g (

o
d
d
)

-

By [FHT01, Theorem 9.7.(ii), p. 109], the homotopy loc ◦H : X×I → Y(odd) extends
to a homotopy X(odd) × I → Y(odd) from f(odd) to g(odd). �

Thus, (−)(odd) : CW1 → CW1 induces a functor on the corresponding homotopy

categories, (−)(odd) : HoCW1 → HoCW1: If [f ] : X → Y is a homotopy class
represented by a cellular map f : X → Y , then [f ](odd) := [f(odd)] is well-defined. We
define the odd-primary spatial homology truncation

t
(odd)
<n : CWn⊃∂ −→ HoCW1

to be the composition

t
(odd)
<n = (−)(odd) ◦ t<n.

Explicitly, t
(odd)
<n assigns to an object (K,YK) in CWn⊃∂ the localization

t
(odd)
<n (K,YK) = (t<n(K,YK))(odd) = (K<n)(odd),
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where τ<n(K,YK) = (K,K/n, hK ,K<n), and to a morphism f : (K,YK) → (L, YL)
the homotopy class

t
(odd)
<n (f) = (t<nf)(odd) = [f<n](odd) = [f<n(odd)],

where τ<n(f) = ([f ], [fn], [f/n], [f<n]). (Thus, this definition forgets that the original
homotopy classes were rel (n− 1)-skeleta.)

Proposition 1.7.2. Let f : (K,YK) → (L, YL) and g : (L, YL) → (P, YP ) be
morphisms in CWn⊃∂ . If H2(P ) = 0 and Hn(Pn) has finite rank, then

t
(odd)
<n (g ◦ f) = t

(odd)
<n (g) ◦ t(odd)

<n (f)

in HoCW.

Proof. Set h = gf . If

τ<n(f) = ([f ], [fn], [f/n], [f<n]), τ<n(g) = ([g], [gn], [g/n], [g<n])

and

τ<n(h) = ([h], [hn], [h/n], [h<n])

then g/n ◦ f/n ' h/n rel Kn−1 by Lemma 1.1.38. As in the proof of Theorem 1.1.39,
we obtain homotopies

iPh<n ' (h/n)iK ' iP g<nf<n
rel Kn−1. Let H : K<n × I → P/n be a homotopy rel Kn−1 between iPh<n and
iP g<nf<n. Composition with the localization loc : P/n→ P/n(odd) yields a homotopy

loc ◦H : K<n×I → P/n(odd) rel Kn−1 between loc ◦iPh<n and loc ◦iP g<nf<n. Using
the commutative diagram

P<n
loc- P<n(odd)

P/n

iP

?
loc- P/n(odd),

iP (odd)

?

loc ◦H is a homotopy rel Kn−1 between iP (odd) ◦ loch<n and iP (odd) ◦ loc g<nf<n. By
the obstruction theory Lemma 1.2.1,

iP (odd)∗ω(loch<n, loc g<nf<n) = ω(iP (odd) ◦ loch<n, iP (odd) ◦ loc g<nf<n) =

0 ∈ Cn+1(K<n × I;πn(P/n(odd))).

By Proposition 1.2.8, πn+1(P/n, P<n) is all 2-torsion, whence its odd-primary localiza-
tion vanishes. Since (−)(odd) preserves homotopy fibrations, πn+1(P/n(odd), P<n(odd)) =
πn+1(P/n, P<n)(odd) = 0. Thus the exactness of

πn+1(P/n(odd), P<n(odd)) −→ πn(P<n(odd))
iP (odd)∗−→ πn(P/n(odd))

implies that iP (odd)∗ is injective and hence

ω(loch<n, loc g<nf<n) = 0 ∈ Cn+1(K<n × I;πn(P<n(odd))).
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By Lemma 1.2.1, there exists a homotopy G : K<n× I → P<n(odd) rel Kn−1 between
loch<n and loc g<nf<n. Consider the commutative diagrams

K<n
h<n - P<n

K<n(odd)

loc

?
h<n(odd)- P<n(odd)

loc

?

and

K<n
g<nf<n - P<n

K<n(odd)

loc

?
g<n(odd)f<n(odd)- P<n(odd).

loc

?

By [FHT01, Theorem 9.7.(ii), p. 109], G extends to a homotopy between h<n(odd)

and g<n(odd)f<n(odd). Thus

t
(odd)
<n (gf) = t

(odd)
<n (h) = [h<n(odd)] = [g<n(odd)] ◦ [f<n(odd)] = t

(odd)
<n (g) ◦ t(odd)

<n (f).

�

Let

t
(odd)
<∞ : CWn⊃∂ −→ HoCW1

be the natural localization-followed-by-projection functor, that is, t
(odd)
<∞ (K,YK) =

K(odd) for an object (K,YK) in CWn⊃∂ , and t
(odd)
<∞ (f) = [f(odd)] for a morphism

f : (K,YK) → (L, YL) in CWn⊃∂ . (Here, [f(odd)] denotes the absolute homotopy

class of f(odd), not the homotopy class rel some subspace.) Let CW2
n⊃∂ be the full

subcategory of CWn⊃∂ having as objects all those pairs (K,Y ) where K has vanishing
second homology, i.e. is 2-connected, and Hn(Kn) has finite rank.

Theorem 1.7.3. Let n ≥ 3 be an integer. There is an odd-primary spatial ho-

mology truncation functor t
(odd)
<n : CW2

n⊃∂ −→ HoCW1 together with a natural

transformation emb(odd)
n : t

(odd)
<n → t

(odd)
<∞ such that for an object (K,Y ) of CW2

n⊃∂ ,

one has Hr(t
(odd)
<n (K,Y )) = 0 for r ≥ n, and

emb(odd)
n∗ : Hr(t

(odd)
<n (K,Y ))

∼=−→ Hr(K;Z[ 1
2 ])

is an isomorphism for r < n.

Proof. The assignment t
(odd)
<n is a functor by Proposition 1.7.2. The natural

transformation

emb(odd)
n : t

(odd)
<n −→ t

(odd)
<∞

is defined by localizing embn:

emb(odd)
n (K,YK) = (embn(K,YK))(odd) : t

(odd)
<n (K,YK) −→ t

(odd)
<∞ (K,YK),
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where embn(K,YK) : t<n(K,YK)→ K. Given a morphism f : (K,YK)→ (L, YL) in
CW2

n⊃∂ , the square

t<n(K,YK)
embn(K,YK)- K = t<∞(K,YK)

t<n(L, YL)

t<n(f)

?
embn(L,YL)- L = t<∞(L, YL)

[f ]=t<∞(f)

?

commutes in HoCWn−1, hence in HoCW1. So its localization

(t<n(K,YK))(odd)

(embn(K,YK))(odd)- K(odd)

(t<n(L, YL))(odd)

(t<n(f))(odd)

?
(embn(L,YL))(odd)- L(odd)

[f(odd)]

?

commutes in HoCW1. Consequently, emb(odd)
n is a natural transformation. Given

an object (K,Y ) in CW2
n⊃∂ , let (K,K/n, h,K<n) = τ<n(K,Y ). By definition of

embn(K,Y ), the diagram

t<n(K,Y ) = K<n
embn(K,Y )- K = t<∞(K,Y )

K/n

[iK ]

?
[h] - Kn

[jK ]

6

commutes in HoCWn−1, hence in HoCW1. Thus its localization

K<n(odd)
emb(odd)

n (K,Y )- K(odd)

K/n(odd)

[iK(odd)]

?
[h(odd)] - Kn

(odd)

[jK(odd)]

6

commutes in HoCW1 and the induced map on homology,

emb(odd)
n∗ (K,Y ) : Hr(t

(odd)
<n (K,Y ))→ Hr(K(odd)),

factors as

Hr(K<n(odd))
iK(odd)∗−→ Hr(K/n(odd))

h(odd)∗−→ Hr(K
n
(odd))

jK(odd)∗−→ Hr(K(odd)).

For r < n, this is an isomorphism, since then each of the three maps

Hr(K<n)
iK∗−→ Hr(K/n)

h∗−→ Hr(K
n)

jK∗−→ Hr(K)

is an isomorphism, whence each of the three maps

Hr(K<n)(odd)

iK∗⊗id(odd)−→ Hr(K/n)(odd)

h∗⊗id(odd)−→ Hr(K
n)(odd)

jK∗⊗id(odd)−→ Hr(K)(odd)
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is an isomorphism and the localization diagram

Hr(K<n(odd))
iK(odd)∗- Hr(K/n(odd))

h(odd)∗- Hr(K
n
(odd))

jK(odd)∗- Hr(K(odd))

Hr(K<n)(odd)

∼=

6

iK∗⊗id(odd)

∼=
- Hr(K/n)(odd)

∼=

6

h∗⊗id(odd)

∼=
- Hr(K

n)(odd)

∼=

6

jK∗⊗id(odd)

∼=
- Hr(K)(odd)

∼=

6

commutes. For r ≥ n,

Hr(t
(odd)
<n (K,Y )) = Hr(K<n)(odd) = 0(odd) = 0.

�

1.8. Summary

Let us summarize spatial homology truncation as developed in the previous sec-
tions by displaying all assignments and functors constructed, together with all relevant
categories, in one picture:

CW2 � � // CW1 � � // CW0 � � // CW

quot

��

CW2
n⊃∂

forget

OO

� � //

t
(odd)
<n

��

CWn⊃∂

forget

OO

τ<n ''
t<n

��

HoCW⊃<n
P4

wwooooooooo
Rigid

τ<n|
oo

mm

t<n|

qq
HoCW1

n−1
� � //

forget
��

HoCW0
n−1

� � //

forget
��

HoCWn−1

forget

��
HoCW2 � � // HoCW1 � � // HoCW0 � � // HoCW

Arrows of the form ↪→ signify “full subcategory”. The forgetful functor CWn⊃∂ →
CW1 sends an object (K,Y ) to the simply connected space K and forgets the ad-
ditional structure Y . This functor is surjective on objects and faithful, but not full.
Dashed arrows mean assignments of objects and morphisms that need not be func-
tors, whereas all fully drawn arrows are functors. The functor CW→ HoCWn−1 is
the natural quotient functor that is the identity on objects and sends a cellular map
to its rel (n− 1)-skeleton homotopy class. The category Rigid is any n-compression
rigid subcategory of CWn⊃∂ , which need not be full. The arrow Rigid → CWn⊃∂
is the inclusion functor. The forgetful functor HoCWn−1 → HoCW is the identity
on objects and sends a homotopy class rel (n − 1)-skeleton to the absolute homo-
topy class of a representative map and thus forgets that the original class was rel
(n−1)-skeleton. This functor is full but not faithful. The same holds for the functors

HoCWj
n−1 → HoCWj , j = 0, 1, 2, . . ..
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1.9. The Interleaf Category

Many important spaces in topology and algebraic geometry have no odd-dimensional
homology, see Examples 1.9.4 below. For such spaces, functorial spatial homology
truncation simplifies considerably. On the theory side, the simplification arises as fol-
lows: To define general spatial homology truncation, we used intermediate auxiliary
structures, the n-truncation structures. For spaces that lack odd-dimensional homol-
ogy, these structures can be replaced by a much simpler structure (see Definition
1.9.6). Again every such space can be embedded in such a structure, see Proposition
1.9.7, which is the analogon of Proposition 1.1.6 for the general theory. On the ap-
plication side, the crucial simplification is that the truncation functor t<n will not
require that in truncating a given continuous map, the map preserve additional struc-
ture on the domain and codomain of the map. Recall that in general, t<n is defined
on the category CWn⊃∂ , meaning that a map must preserve chosen subgroups “Y ”.
We have seen that such a condition is generally necessary on maps, for otherwise no
truncation exists. So what we will see in this section is that arbitrary continuous maps
between spaces with trivial odd-dimensional homology can be functorially truncated.
In particular the compression rigidity obstructions arising in the general theory will
not arise for maps between such spaces.

Definition 1.9.1. Let ICW be the full subcategory of CW whose objects are
simply connected CW-complexes K with finitely generated even-dimensional homol-
ogy and vanishing odd-dimensional homology for any coefficient group. We call ICW
the interleaf category.

Example 1.9.2. The space K = S2 ∪2 e
3 is simply connected and has vanishing

integral homology in odd dimensions. However, H3(K;Z/2) = Z/2 6= 0.

Lemma 1.9.3. Let X be a space whose odd-dimensional homology vanishes for any
coefficient group. Then the even-dimensional integral homology of X is torsion-free.

Proof. Taking the coefficient group Q/Z, we have

Tor(H2k(X),Q/Z) = H2k+1(X)⊗Q/Z⊕ Tor(H2k(X),Q/Z) = H2k+1(X;Q/Z) = 0.

Thus H2k(X) is torsion-free, since the group Tor(H2k(X),Q/Z) is isomorphic to the
torsion subgroup of H2k(X). �

Examples 1.9.4.
(1) Any simply connected closed 4-manifold is in ICW. Indeed, such a manifold is
homotopy equivalent to a CW-complex of the form

k∨
i=1

S2
i ∪f e4,

where the homotopy class of the attaching map f : S3 →
∨k
i=1 S

2
i may be viewed as

a symmetric k × k matrix with integer entries, as π3(
∨k
i=1 S

2
i ) ∼= M(k), with M(k)

the additive group of such matrices.

(2) Any simply connected closed 6-manifold with vanishing integral middle homology
group is in ICW. If G is any coefficient group, then H1(M ;G) ∼= H1(M) ⊗ G ⊕
Tor(H0M,G) = 0, since H0(M) = Z. By Poincaré duality,

0 = H3(M) ∼= H3(M) ∼= Hom(H3M,Z)⊕ Ext(H2M,Z),
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so that H2(M) is free. This implies that Tor(H2M,G) = 0 and hence H3(M ;G) ∼=
H3(M)⊗G⊕ Tor(H2M,G) = 0. Finally, by G-coefficient Poincaré duality,

H5(M ;G) ∼= H1(M ;G) ∼= Hom(H1M,G)⊕ Ext(H0M,G) = Ext(Z, G) = 0.

(3) Complex projective spaces are in ICW. This class will be vastly generalized in
example (5).

(4) Any smooth, compact toric variety X is in ICW: Danilov’s Theorem 10.8. in
[Dan78] implies that H∗(X;Z) is torsion-free and the map A∗(X) → H∗(X;Z)
given by composing the canonical map from Chow groups to homology, Ak(X) =
An−k(X) → H2n−2k(X;Z), where n is the complex dimension of X, with Poincaré
duality H2n−2k(X;Z) ∼= H2k(X;Z), is an isomorphism. Since the odd-dimensional
cohomology of X is not in the image of this map, this asserts in particular that
Hodd(X;Z) = 0. By Poincaré duality, Heven(X;Z) is free and Hodd(X;Z) = 0.
These two statements allow us to deduce from the universal coefficient theorem
that Hodd(X;G) = 0 for any coefficient group G. If we only wanted to establish
Hodd(X;Z) = 0, then it would of course have been enough to know that the canon-
ical, degree-doubling map A∗(X) → H∗(X;Z) is onto. One may then immediately
reduce to the case of projective toric varieties because every complete fan ∆ has a pro-
jective subdivision ∆′, the corresponding proper birational morphism X(∆′)→ X(∆)
induces a surjection H∗(X(∆′);Z)→ H∗(X(∆);Z) (use the Umkehrmap) and the di-
agram

A∗(X(∆′)) - H∗(X(∆′);Z)

A∗(X(∆))
?

- H∗(X(∆);Z)
?

commutes, see [Dan78].

(5) Let G be a complex, simply connected, semisimple Lie group and P ⊂ G a
connected parabolic subgroup. Then the homogeneous space G/P is in ICW. It is
simply connected, since the fibration P → G→ G/P induces an exact sequence

1 = π1(G)→ π1(G/P )→ π0(P )→ π0(G) = 0,

which shows that π1(G/P ) → π0(P ) is a bijection. According to [BGG73], there
exist elements sw(P ) ∈ H2l(w)(G/P ;Z) (“Schubert classes,” given geometrically by
Schubert cells), indexed by w ranging over a certain subset of the Weyl group of G,
that form a basis for H∗(G/P ;Z). (For w in the Weyl group, l(w) denotes the length of
w when written as a reduced word in certain specified generators of the Weyl group.)
In particular Heven(G/P ;Z) is free and Hodd(G/P ;Z) = 0. Thus Hodd(G/P ;G) = 0
for any coefficient group G.

The linear groups SL(n,C), n ≥ 2, and the subgroups Sp(2n,C) ⊂ SL(2n,C) of
transformations preserving the alternating bilinear form

x1yn+1 + · · ·+ xny2n − xn+1y1 − · · · − x2nyn
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on C2n × C2n are examples of complex, simply connected, semisimple Lie groups. A
parabolic subgroup is a closed subgroup that contains a Borel group B. For G =
SL(n,C), B is the group of all upper-triangular matrices in SL(n,C). In this case,
G/B is the complete flag manifold

G/B = {0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn}
of flags of subspaces Vi with dimVi = i. For G = Sp(2n,C), the Borel subgroups B
are the subgroups preserving a half-flag of isotropic subspaces and the quotient G/B
is the variety of all such flags. Any parabolic subgroup P may be described as the
subgroup that preserves some partial flag. Thus (partial) flag manifolds are in ICW.
A special case is that of a maximal parabolic subgroup, preserving a single subspace V .
The corresponding quotient SL(n,C)/P is a Grassmannian G(k, n) of k-dimensional
subspaces of Cn. For G = Sp(2n,C), one obtains Lagrangian Grassmannians of
isotropic k-dimensional subspaces, 1 ≤ k ≤ n. So Grassmannians are objects in
ICW.

The interleaf category is closed under forming fibrations.

Proposition 1.9.5. Let F,E,B be CW-complexes that fit into a fibration F →
E → B with base B, total space E and fiber F . If B and F are objects in the interleaf
category ICW, then so is E.

Proof. Assume B,F ∈ ObICW. Since B and F are in particular simply con-
nected, the exactness of

π1(F )→ π1(E)→ π1(B)

implies that E is simply connected as well. With G any coefficient group, we will
first show that Hodd(E;G) = 0. In degree 1, we have H1(E;G) = H1(E) ⊗ G ⊕
Tor(H0(E), G) = 0 since E is simply connected. In higher degrees, the claim follows
from the spectral sequence of the fibration: Since the base is simply connected,

E2
p,q
∼= Hp(B;Hq(F ;G))

and the latter term vanishes when p is odd (as B is in ICW) or q is odd (as F is in
ICW). Since the differential d2 has bidegree (−2, 1), either its domain E2

p,q is zero

or else p and q are both even and its codomain E2
p−2,q+1 is zero because q+ 1 is odd.

Thus d2 = 0 and E2 ∼= E3. It follows by induction that all differentials dr are zero,
r ≥ 2, using that dr has bidegree (−r, r − 1) and one of these two numbers must be
odd. Thus

E2
p,q
∼= E3

p,q
∼= · · · ∼= E∞p,q.

On the other hand, E∞ is isomorphic to the bigraded module GH∗(E;G) associated
to the filtration FpH∗(E;G) = im(H∗(Ep;G) → H∗(E;G)), where Ep ⊂ E is the
preimage of the p-skeleton of B under the fibration. We conclude that

Hp(B;Hq(F ;G)) ∼=
im(Hp+q(Ep;G)→ Hp+q(E;G))

im(Hp+q(Ep−1;G)→ Hp+q(E;G))
.

Let n ≥ 3 be odd. The restricted fibration F → En → Bn induces an exact sequence
π1(F ) → π1(En) → π1(Bn), which shows that En is simply connected since n ≥ 3
implies π1(Bn) ∼= π1(B) = 1. Using the homotopy lifting property, we can deduce
that the pair (E,En) is n-connected from the fact that (B,Bn) is n-connected. Thus
Hi(E,En) = 0 for i ≤ n; in particular, Hn(En;G)→ Hn(E;G) is surjective and

Hn(E;G) = im(Hn(En;G)→ Hn(E;G)).



1.9. THE INTERLEAF CATEGORY 61

Then

0 = Hn(B;H0(F ;G)) ∼=
im(Hn(En;G)→ Hn(E;G))

im(Hn(En−1;G)→ Hn(E;G))
,

whence

im(Hn(En;G)→ Hn(E;G)) = im(Hn(En−1;G)→ Hn(E;G)).

From

0 = Hn−1(B;H1(F ;G)) ∼=
im(Hn(En−1;G)→ Hn(E;G))

im(Hn(En−2;G)→ Hn(E;G))
,

we find

im(Hn(En−1;G)→ Hn(E;G)) = im(Hn(En−2;G)→ Hn(E;G)).

Continuing in this manner, observing that for p + q = n, one of p or q must be odd
and thus Hp(B;Hq(F ;G)) = 0, we arrive at

Hn(E;G) = 0.

To see that the even homology of E is finitely generated, one may for instance
argue as follows. By Lemma 1.9.3, the homology of B and F is torsion-free, hence
free, since H∗(B) and H∗(F ) are finitely generated. Thus all groups E2

p,q
∼= E∞p,q are

free abelian and

Hn(E) ∼=
⊕
p+q=n

E2
p,q
∼=
⊕
p+q=n

Hp(B)⊗Hq(F ).

This formula implies that H∗(E) is finitely generated. �

A multitude of spaces in algebraic geometry arise via fibrations that way. Let us
give but one example. Let X be a smooth Schubert subvariety, “defined by inclusions”
in the sense of [GR02], inside of

G/P = {0 ⊂ Vd1
⊂ Vd2

⊂ · · · ⊂ Vdr ⊂ Cn},
where G = GL(n,C) and P is the subgroup that stabilizes the standard partial flag
with Vdi spanned by the first di standard basis vectors in Cn. Then, according to
[GR02], X is fibered by Grassmannians. Since Grassmannians are in ICW, Propo-
sition 1.9.5 shows that all such smooth Schubert varieties X are in ICW.

Definition 1.9.6. The moduli category M(ICW) of ICW consists of the follow-
ing objects and morphisms: Objects are homotopy classes [hK ] of cellular homotopy
equivalences hK : K → E(K), where K is an object of ICW and E(K) is a CW-
complex that has only even-dimensional cells. Morphisms are commutative diagrams

K
[hK ]

∼=
- E(K)

L
?

[hL]

∼=
- E(L)

e

?

in HoCW . Composition is defined in the obvious way.

Proposition 1.9.7. Any object of the interleaf category can be completed to an
object of the moduli category M(ICW).



62 1. HOMOTOPY THEORY

Proof. Let K be an object of ICW. By Lemma 1.9.3, H2k(K) is torsion-free.
Choose a decomposition of every homology group H2k(K) as a direct sum of infinite
cyclic groups with specified generators g. Then, by minimal cell structure theory
(which is applicable because K is simply connected; see e.g. [Hat02]), there is a
CW-complex E(K) and a cellular homotopy equivalence h′K : E(K) → K such that
each cell of E(K) is a generator 2k-cell e2k

g , which is a cycle in cellular homology
mapped by f to a cellular cycle representing the specified generator g of one of the
cyclic summands of H2k(K). (There are no relator (2k+ 1)-cells since no g has finite
order.) Thus E(K) has only even-dimensional cells. Let [hK ] be the inverse of [h′K ]
in HoCW. �

Remark 1.9.8. Since objects K in ICW have finitely generated homology, the
space E(K) is a finite CW-complex.

With the help of this proposition, we construct a functor

M : ICW −→M(ICW).

Given an objectK in ICW, use Proposition 1.9.7 to choose, once and for all, a cellular
homotopy equivalence hK : K → E(K) representing an object [hK ] in M(ICW). In
addition, choose, once and for all, a cellular homotopy inverse h′K : E(K) → K for
hK . (If K already has only cells of even dimension, then we take hK and h′K to be
the identity maps.) Set

M(K) = [hK ].

Let f : K → L be a cellular map. If f is the identity map, set E(f) = [idE(K)].
Otherwise, set

E(f) = M(L) ◦ [f ] ◦M(K)−1 : E(K) −→ E(L).

Define

M(f) =

K
M(K)

∼=
- E(K)

L

[f ]

?
M(L)

∼=
- E(L)

E(f)

?

This is a morphism in M(ICW) as E(f) ◦M(K) = M(L) ◦ [f ] ◦M(K)−1 ◦M(K) =
M(L) ◦ [f ]. We have M(idK) = idM(K) and for a composition

K
f−→ L

g−→ P

we compute

E(g) ◦ E(f) = M(P )[g]M(L)−1 ◦M(L)[f ]M(K)−1

= M(P )[g] ◦ [f ]M(K)−1

= M(P )[gf ]M(K)−1

= E(gf).

This shows that

M(gf) = M(g)M(f),

so that M is indeed a covariant functor. Next, we shall construct a preliminary
truncation functor

T<n : M(ICW) −→ HoCW
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for any integer n. If n ≤ 0, then we define T<n on objects to be the empty space,
which is the initial object of HoCW. On morphisms, T<n is defined as the unique
morphism from the initial object. We will henceforth assume that n is positive. On
a class of a homotopy equivalence h : K → E(K), we set

T<n[h] = E(K)n−1,

the (n − 1)-skeleton of E(K). If E is any space without odd-dimensional cells, then
Hr(E) = Cr(E), the cellular chain group in degree r, since all cellular boundary maps
are zero. Thus for r < n,

Hr(T<n[h]) = Cr(E(K)n−1) = Cr(E(K)) = Hr(E(K))
h∗∼= Hr(K),

while for r ≥ n,
Hr(T<n[h]) = Cr(E(K)n−1) = 0.

This shows that T<n implements spatial homology truncation on K. Let F : [h1] →
[h2] be a morphism in the moduli category, that is, F is a diagram

K
[h1]

∼=
- E(K)

L
?

[h2]

∼=
- E(L)

eF

?

Choose a cellular representative f0 for the homotopy class eF and put

T<n(F ) = [E(K)n−1 fn−1
0−→ E(L)n−1].

The following lemma shows that this is well-defined.

Lemma 1.9.9. Let f0, f1 : E(K) → E(L) be two cellular maps. If f0 ' f1, then
fn−1

0 ' fn−1
1 .

Proof. Let H : E(K) × I → E(L) be a cellular homotopy with H(−, 0) = f0

and H(−, 1) = f1. We will distinguish two cases according to whether n is even or
odd. Suppose n is even. Since H is cellular, it restricts to a map H| : (E(K) ×
I)n−1 → E(L)n−1 between (n−1)-skeleta. The (n−1)-skeleton of E(K)× I contains
E(K)n−2 × I, so that further restriction yields

H| : E(K)n−2 × I → E(L)n−1.

Since n− 1 is odd, we have E(K)n−1 = E(K)n−2. Thus

H| : E(K)n−1 × I → E(L)n−1

is a homotopy from fn−1
0 to fn−1

1 .

Now assume n is odd. In this case, we restrict H to the n-skeleton to get H| :
(E(K)× I)n → E(L)n, and, by restricting further,

H| : E(K)n−1 × I → E(L)n.

Since n is odd, we have E(L)n = E(L)n−1. Thus

H| : E(K)n−1 × I → E(L)n−1

is a homotopy from fn−1
0 to fn−1

1 . �
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We have T<n(id[h]) = idT<n[h]. Furthermore, if G : [h2] → [h3] is another mor-
phism

L
[h2]

∼=
- E(L)

P
?

[h3]

∼=
- E(P )

eG=[g0]

?

in M(ICW), then

T<n(G) ◦ T<n(F ) = [gn−1
0 ] ◦ [fn−1

0 ] = [(g0f0)n−1] = T<n(G ◦ F ),

since g0f0 is a representative of eGeF . Hence T<n is a functor.

Define the functor

t<n : ICW −→ HoCW

to be the composition

ICW
M- M(ICW)

HoCW .

T<n

?

t
<
n

-

Let t<∞ : ICW −→ HoCW be the natural “inclusion-followed-by-quotient”-functor,
that is, for objects K set t<∞(K) = K and for morphisms f set t<∞(f) = [f ]. There
is an important natural transformation of functors

embn : t<n −→ t<∞,

which we shall describe next. Given an object K of ICW, define embn(K) to be the
composition

t<n(K) = E(K)n−1 [incl]- E(K)

K

∼= M(K)−1

?

emb
n (K

) -

(Note that embn(K) has a canonical representative in CW, namely E(K)n−1 incl
↪→

E(K)
h′K−→ K.) Given a morphism f : K → L in ICW, we have to show that the

square

t<n(K)
embn(K)- t<∞(K)

t<n(L)

t<n(f)

?
embn(L)- t<∞(L)

t<∞(f)

?
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commutes in HoCW. Using the morphism M(f), given by the commutative diagram

K
M(K)

∼=
- E(K)

L

[f ]

?
M(L)

∼=
- E(L),

E(f)=M(L)◦[f ]◦M(K)−1

?

let f0 be a cellular representative of E(f), for example f0 = hL ∼= f ∼= h′K , and
consider the diagram

E(K)n−1 [incl]- E(K)
M(K)−1

- K

E(L)n−1

t<n(f)=[fn−1
0 ]

?
[incl]- E(L)

[f0]=E(f)

?
M(L)−1

- L

[f ]=t<∞(f)

?

The left square commutes in HoCW by construction and the right square commutes
in HoCW since

M(L)−1◦E(f) = M(L)−1◦M(L)◦[f ]◦M(K)−1 = [f ]◦M(K)−1 = t<∞(f)◦M(K)−1.

Thus embn is a natural transformation.

Let us move on to implementing functorial spatial homology cotruncation on the
interleaf category. Given an object K in ICW, we have the homotopy inverse cellular
homotopy equivalences hK : K

-
� E(K) : h′K . If n ≤ 0, then t≥n : ICW→ HoCW

will be the identity on objects and will be defined as t≥n(f) = [f ] for morphisms
f : K → L in ICW. We will henceforth assume that n is positive. Define

t≥n(K) = E(K)/E(K)n−1,

that is, t≥n(K) is the cofiber of the skeletal cofibration E(K)n−1 ↪→ E(K). Given a
morphism f : K → L in ICW, the morphism M(f) is represented by the homotopy
commutative diagram

K
hK

'
- E(K)

L

f

?
hL

'
- E(L),

f0=hL◦f◦h′K

?

[f0] = E(f). The square

E(K)n−1 ⊂ - E(K)

E(L)n−1

fn−1
0

?
⊂ - E(L)

f0

?
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commutes in CW. Thus f0 induces a unique map

f0 : t≥n(K) −→ t≥n(L)

between the cofibers such that

E(K)n−1 ⊂ - E(K) -- t≥n(K)

E(L)n−1

fn−1
0

?
⊂ - E(L)

f0

?
-- t≥n(L)

f0

?

commutes in CW. We define
t≥n(f) = [f0].

(Note that we do not have to prove that this is well-defined, since no choices have
been made: the map f0 is at this point a canonical representative of the homotopy
class E(f).)

Lemma 1.9.10. Let h : X → Y be a continuous map between topological spaces.
Let ∼ be an equivalence relation on X. Then there exists a unique continuous map
h : X/ ∼ → Y such that

X
h - Y

X/ ∼
??

h

-

commutes iff h(x) = h(x′) whenever x ∼ x′.

Lemma 1.9.11. Let E1, E2 be two CW-complexes without odd-dimensional cells.
If g, h : E1 → E2 are two homotopic cellular maps, then g and h are homotopic, where
g, h : E1/E

k
1 → E2/E

k
2 are induced by g and h, respectively.

Proof. Let H : E1 × I → E2 be a cellular homotopy with H(−, 0) = g and
H(−, 1) = h. Since both E1 and E2 have only even-dimensional cells, we have

H(Ek1 × I) ⊂ Ek2 .
(The details of that argument can be found in the proof of Lemma 1.9.9.) We shall
apply Lemma 1.9.10 with X = E1 × I, Y = E2/E

k
2 , and h given by the composition

X
H−→ E2

π
� E2/E

k
2 ,

where π is the natural quotient projection. The equivalence relation ∼ on X is given
as follows: (e, t) ∼ (e′, t′) iff t = t′ and either e, e′ are both in Ek1 , or, if not, e = e′.
It follows that X/ ∼ = (E1/E

k
1 )× I. Suppose (e, t) ∼ (e′, t′). Let us check that then

h(e, t) = h(e′, t′). We have t = t′ and if one of e, e′ does not lie in Ek1 , then e = e′ so
that (e′, t′) = (e, t) and therefore h(e′, t′) = h(e, t). If e, e′ both lie in Ek1 , then both
H(e′, t) and H(e, t) lie in Ek2 . Thus, in this case,

h(e′, t′) = πH(e′, t) = [Ek2 ] = πH(e, t) = h(e, t).

Hence, by Lemma 1.9.10, there exists a unique map

H : (E1/E
k
1 )× I = X/ ∼ −→ Y = E2/E

k
2
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such that

E1 × I
H - E2

(E1/E
k
1 )× I
??

H- E2/E
k
2

π

??

commutes and H(−, 0) = g, H(−, 1) = h. �

Proposition 1.9.12. For an object K in ICW, we have

t≥n(idK) = idt≥n(K)

in HoCW.

Proof. The morphism M(idK) is represented by the homotopy commutative
square

K
hK

'
- E(K)

K

idK

?
hK

'
- E(K).

f0=hK◦h′K

?

Since hK and h′K are homotopy inverses, we have f0 ' idE(K). By Lemma 1.9.11,

f0 ' idE(K) : E(K)/E(K)n−1 → E(K)/E(K)n−1. As E(K)/E(K)n−1 = t≥n(K)

and idE(K) = idt≥n(K), we obtain

t≥n(idK) = [f0] = [idt≥n(K)].

�

Proposition 1.9.13. Given morphisms f : K → L and g : L→ P in ICW, the
functoriality relation

t≥n(g ◦ f) = t≥n(g) ◦ t≥n(f)

holds in HoCW.

Proof. With

f0 = hLfh
′
K , g0 = hP gh

′
L

and

(gf)0 = hP gfh
′
K ,

we must show

[(gf)0] = [g0] ◦ [f0].

The maps (gf)0 and g0f0 are homotopic, as

[g0f0] = [hP gh
′
LhLfh

′
K ] = [hP gfh

′
K ] = [(gf)0].
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By Lemma 1.9.11, (gf)0 ' g0f0. Furthermore, since the square

E(K) -- t≥n(K)

E(P )

g0f0

?
-- t≥n(P )

g0f0

?

g0◦f0

?

commutes if we use g0f0 and if we use g0 ◦ f0, uniqueness implies that

g0f0 = g0 ◦ f0.

We conclude that (gf)0 is homotopic to g0 ◦ f0, as claimed. �

Propositions 1.9.12 and 1.9.13 show that

t≥n : ICW −→ HoCW

is a covariant functor. Let us describe a natural transformation of functors

pron : t<∞ −→ t≥n.

Given an object K of ICW, define pron(K) to be the composition

t<∞(K) = K
M(K) - E(K)

E(K)/E(K)n−1 = t≥n(K)

[proj]

?

pro
n (K)

-

(Note that pron(K) has a canonical representative in CW, namely

K
hK−→ E(K)

proj−→ E(K)/E(K)n−1.)

Given a morphism f : K → L in ICW, we have to show that the square

t<∞(K)
pron(K)- t≥n(K)

t<∞(L)

t<∞(f)

?
pron(L)- t≥n(L)

t≥n(f)

?

commutes in HoCW. With f0 = hL ◦ f ◦ h′K , we have E(f) = [f0] and

E(K) -- t≥n(K)

E(L)

f0

?
-- t≥n(L)

f0

?
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commutes in CW. Thus both squares of the diagram

t<∞(K) = K
M(K)=[hK ]- E(K) - t≥n(K)

t<∞(L) = L

t<∞(f)=[f ]

?
M(L)=[hL]- E(L)

E(f)=[f0]

?
- t≥n(L)

[f0]=t≥n(f)

?

commute in HoCW. Thus pron is a natural transformation.

Proposition 1.9.14. The functor t≥n implements spatial homology cotruncation,
that is, if K is an object of ICW, then

pron∗ : Hr(K) −→ Hr(t≥n(K))

is an isomorphism for r ≥ n and H̃r(t≥n(K)) = 0 for r < n.

Proof. Since (E(K), E(K)n−1) is a CW pair, the inclusion E(K)n−1 ↪→ E(K)
is a closed cofibration, whence

H̃∗(t≥n(K)) = H̃∗(E(K)/E(K)n−1) ∼= H∗(E(K), E(K)n−1).

For r < n, the exact sequence

Hr(E(K)n−1)
∼=−→ Hr(E(K))

0−→ H̃r(t≥n(K))
∂∗=0−→ Hr−1(E(K)n−1)

∼=−→ Hr−1(E(K))

of the pair (E(K), E(K)n−1) shows that H̃r(t≥n(K)) = 0. For r = n, the commuta-
tive diagram with exact top row

0 = Hr(E(K)n−1) - Hr(E(K))
proj∗
∼=
- H̃r(t≥n(K))

∂∗- Hr−1(E(K)n−1)
∼=- Hr−1(E(K))

Hr(K)

M(K)∗ ∼=

6

pro n
(K

)∗

-

shows that proj∗, and hence pron(K)∗, is an isomorphism. For r > n, the claim
follows from the exactness of the top row and the commutativity in the diagram

0 = Hr(E(K)n−1) - Hr(E(K))
proj∗
∼=
- H̃r(t≥n(K))

∂∗- Hr−1(E(K)n−1) = 0.

Hr(K).

M(K)∗ ∼=

6

pro n
(K

)∗

-

�

1.10. Continuity Properties of Homology Truncation

Continuity of homology truncation refers to the question whether t̃<n(f) is close
to t̃<n(g) when f is close to g in the compact-open topology. Here, t̃<n(f) and
t̃<n(g) denote particular representatives of the homotopy classes t<n(f) and t<n(g),
respectively. Our motivation for studying this question is the intention to apply
the answers obtained in setting up fiberwise homology truncation, see Section 1.11:
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Suppose E → B is a fiber bundle with fiber F , structure group G(F ), and continuous
transition functions gαβ : Uα ∩ Uβ → G(F ), where {Uα} is an open cover of B
over which the bundle trivializes. Let G(t<nF ) be a topological group acting on the
truncation t<nF of the fiber. Continuity of t̃<n would ideally mean the existence of
a continuous homomorphism τn : G(F )→ G(t<nF ) such that

F
g // F

t<nF

OO

τn(g)
// t<nF

OO

commutes for all g ∈ G(F ). Whenever such a τn exists, it can be used to form a fiber
bundle ft<nE → B, the fiberwise truncation of E, with fiber t<nF and structure
group G(t<nF ) by gluing via the transition functions τn ◦ gαβ : Uα ∩Uβ → G(t<nF ).
The fact that τn is a group homomorphism ensures that the cocycle condition is
again satisfied for the system {τn ◦ gαβ}. Techniques in this direction will enable
one to define intersection spaces for classes of pseudomanifolds that have nontrivial,
twisted link bundles. On the other hand, it is to be noted that a fiberwise homology
truncation

F // E // B

t<nF

OO

// ft<nE

e

OO

// B

cannot generally be carried out for any fibration and any n because the morphism
of the associated Serre spectral sequences induced by e, together with Hq(t<nF ) →
Hq(F ) being an isomorphism for q < n and Hq(t<nF ) = 0 for q ≥ n, places re-
strictions on the differentials in the spectral sequence of E → B. Thus, suitable
assumptions on the fibration need to be adopted.

For topological spaces X and Y , let Map(X,Y ) denote the set of all continuous
maps X → Y . We endow this set with the compact-open topology. If X is a lo-
cally compact, locally connected Hausdorff space, then the subspace Homeo(X) ⊂
Map(X,X) consisting of all homeomorphisms X → X is a topological group, see
[Are46]. If X and Y are CW-complexes, let MapCW (X,Y ) ⊂ Map(X,Y ) denote the
subspace of all cellular maps and let HomeoCW (X) ⊂ Homeo(X)∩MapCW (X,X) de-
note the subspace of all homeomorphisms that are cellular with cellular inverse. The
space HomeoCW (X) is a group under composition. Any CW-complex is Hausdorff
and locally path connected, in particular locally connected. It is locally compact if,
and only if, each point has a neighborhood that meets only finitely many cells. Thus
for a finite CW-complex X, Homeo(X) is a topological group. Every subgroup of
a topological group is itself a topological group when given the subspace topology.
Hence HomeoCW (X) is a topological group for a finite CW-complex X. A fiber bun-
dle with fiber F a priori has structure group Homeo(F ). Let us mention but one
example class that allows the structure group to take values in HomeoCW (F ).

Proposition 1.10.1. Suppose F is a smooth, compact manifold and ξ a smooth
fiber bundle with fiber F and finite structure group G. Then the transition functions
of ξ take values in HomeoCW (F ) for a suitable CW-structure on F .
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Proof. The fiber F is a smooth G-space. By [Ill78], F is a G-CW-complex. For
a finite group, a G-CW-complex is the same thing as an ordinary CW-complex with
a cellular G-action. The latter means that G permutes the cells of F ; in particular,
G acts by cellular homeomorphisms that have cellular inverses and the map G →
Homeo(F ) factors through a map G→ HomeoCW (F ). �

Here is one way how bundles with finite structure group arise:

Proposition 1.10.2. Let G be a Lie group and B a smooth path-connected man-
ifold with finite fundamental group. Then any G-bundle over B having a connection
with curvature zero (“flat” bundle) can be reduced to a finite structure group.

Proof. By [Mil58, Lemma 1], the G-bundle ξ is induced from the universal

covering bundle ξ′ with projection B̃ → B (a π = π1(B)-bundle) by a homomorphism
h : π → G. This means that the transition functions gij : Ui ∩ Uj → G of ξ are
gij = hg′ij , where g′ij : Ui ∩ Uj → π are the transition functions of ξ′. Thus the gij
take values in the holonomy group im(h) ⊂ G, which is finite, since π is finite. �

For a topological space X, let G(X) ⊂ Map(X,X) be the subspace of all (un-
based) self homotopy equivalences of X. If X is compact and has the homotopy type
of a finite CW-complex, then G(X) is a grouplike topological monoid under compo-
sition of maps, see [Fuc71]. In other words, G(X) is a strictly associative H-space
with strict unit and a global homotopy inverse, i.e. a map ν : G(X) → G(X) such
that the composition

G(X)
∆−→ G(X)×G(X)

id×ν−→ G(X)×G(X)
µ−→ G(X)

is homotopic to the constant map at idX , where µ is the composition of maps. Let
G[X] = π0G(X) denote the group of homotopy classes of self homotopy equivalences
of X.

Let K be an object of the interleaf category with finitely many cells and n an
integer. To avoid a discussion of trivialities, we assume that n is positive. The functor

t<n : ICW −→ HoCW

assigns to a homeomorphism f ∈ HomeoCW (K) a morphism

t<n(f) : t<nK −→ t<nK,

which is the homotopy class of some cellular map t. This t is a homotopy equivalence
because the functoriality of t<n implies that any representative of t<n(f−1) is a ho-
motopy inverse for t. Thus t ∈ G(t<nK) and t<n(f) = [t] ∈ G[t<nK]. The functor
t<n thus defines a map

t<n : HomeoCW (K) −→ G[t<nK].

By the functoriality of t<n, this map is a group homomorphism. We wish to construct
a continuous lift

G(t<nK)

��
HomeoCW (K)

t<n //

t̃<n
55

G[t<nK]

which will in fact be an H-map, but not in general a monoid homomorphism. (Note
that G(t<nK) is indeed a grouplike topological monoid because E(K)n−1 = t<n(K)
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is a finite CW-complex by Remark 1.9.8.) Recall that we had associated homotopy
inverse homotopy equivalences

hK : K
-
� E(K) : h′K

with K. The CW-complex E(K) has only even-dimensional cells and we have

t<nK = E(K)n−1.

Set

t̃<n : HomeoCW (K) −→ G(t<nK)
f 7→ (hK ◦ f ◦ h′K)n−1.

Since

[(hK ◦ f ◦ h′K)n−1] = t<n(f),

the map t̃<n is indeed a lift of t<n. It is not only continuous, but also respects, up to
homotopy, the monoid multiplication:

Theorem 1.10.3. The map t̃<n is an H-map.

Proof. Let Q : K × I → K be a cellular homotopy from Q(−, 0) = h′K ◦ hK to
Q(−, 1) = idK . By cellularity, Q maps Kn−1 × I ⊂ (K × I)n to Kn. Let us denote
this restriction by Qn : Kn−1 × I → Kn. We will study the maps

H(f, g, t) = hnKg
nQn(−, t)fn−1h′n−1

K : E(K)n−1 → E(K)n

where f, g ∈ HomeoCW (K) and t ∈ I. The following properties will be established
for H:
(1) H(f, g, 0) = t̃<n(g)t̃<n(f),
(2) H(f, g, 1) = t̃<n(gf),
(3) H(f, g, t)(t<nK) ⊂ t<nK,
(4) H(f, g, t) : t<nK → t<nK is a homotopy equivalence.
It follows from (3) and (4) that H is a map

H : HomeoCW (K)×HomeoCW (K)× I −→ G(t<nK),

We will then show that
(5) H is continuous.
Thus H will be an explicit “sputnik homotopy” in the terminology of Stasheff.

(1): We have

Qn(−, 0) = Q|Kn−1×{0} = h′KhK |Kn−1 = h′n−1
K hn−1

K

and

hnKg
nh′n−1

K = hn−1
K gn−1h′n−1

K .

Thus

H(f, g, 0) = hnKg
nQn(−, 0)fn−1h′n−1

K

= hnKg
nh′n−1

K hn−1
K fn−1h′n−1

K

= hn−1
K gn−1h′n−1

K hn−1
K fn−1h′n−1

K

= (hKgh
′
K)n−1(hKfh

′
K)n−1

= t̃<n(g)t̃<n(f).
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(2): Holds since

H(f, g, 1) = hnKg
nQn(−, 1)fn−1h′n−1

K

= hnKg
n idK |Kn−1fn−1h′n−1

K

= hn−1
K gn−1fn−1h′n−1

K

= (hKgfh
′
K)n−1

= t̃<n(gf).

(3): We distinguish two cases according to whether n is even or odd. For n even,
E(K)n−1 = E(K)n−2. Let Qn−1 : Kn−2 × I → Kn−1 be the restriction of Qn. The
commutative diagram

E(F )n−1
h′n−1
K // Kn−1

fn−1

// Kn−1
Qn(−,t) // Kn

gn // Kn
hnK // E(K)n

E(F )n−2
h′n−2
K //

=

OO

Kn−2
fn−2

//?�

OO

Kn−2
Qn−1(−,t) //?�

OO

Kn−1
gn−1

//?�

OO

Kn−1
hn−1
K //?�

OO

E(K)n−1
?�
j

OO

shows that for n even,

H(f, g, t) = j ◦ hn−1
K gn−1Qn−1(−, t)fn−2h′n−2

K

and so has an image that lies in E(K)n−1 = t<nK.

For n odd, the statement follows from H(f, g, t)(E(K)n−1) ⊂ E(K)n = E(K)n−1.

(4): Keeping f and g fixed, H(f, g,−) defines a homotopyH(f, g,−) : t<nK×I →
t<nK. Since H(f, g, 1) = t̃<n(gf) is a homotopy equivalence, every H(f, g, t) is ho-
motopic to a homotopy equivalence, hence itself a homotopy equivalence.

(5): We will throughout avail ourselves of the following three basic properties of
the compact-open topology:
(i) If φ : X ′ → X and ψ : Y → Y ′ are continuous maps, then the map

Map(X,Y ) −→ Map(X ′, Y ′)
f 7→ ψ ◦ f ◦ φ

is continuous. (No point-set topological assumptions on the involved spaces.) In
particular, if A ⊂ X is any subspace of a topological space X then the restriction
map

Map(X,Y ) −→ Map(A, Y )
f 7→ f |A

is continuous.
(ii) If X,Y, Z are topological spaces with Y locally compact Hausdorff, then compo-
sition of maps

Map(X,Y )×Map(Y, Z)
◦−→ Map(X,Z)

is continuous.
(iii) The exponential law (see e.g. [Bre93, Theorem VII.2.5]): If X,Y, Z are Hausdorff
spaces with X,Z locally compact, then there is a homeomorphism

Map(Z ×X,Y ) ∼= Map(Z,Map(X,Y )).

The cartesian product of the continuous inclusion

HomeoCW (K) ↪→ MapCW (K,K)
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with itself defines a continuous map

c1 : HomeoCW (K)×HomeoCW (K) −→ MapCW (K,K)×MapCW (K,K).

The restriction maps

MapCW (K,K) −→ MapCW (Kn−1,Kn−1)

and

MapCW (K,K) −→ MapCW (Kn,Kn)

are continuous, since they are given by the composition

MapCW (K,K) ↪→ Map(K,K)
restr−→ Map(Kn−1 or Kn,K).

Their product is a continuous map

c2 : MapCW (K,K)×MapCW (K,K) −→ MapCW (Kn−1,Kn−1)×MapCW (Kn,Kn).

Composition with h′n−1
K : E(K)n−1 → Kn−1 yields a continuous map

MapCW (Kn−1,Kn−1) −→ MapCW (E(K)n−1,Kn−1),

and composition with hnK : Kn → E(K)n yields a continuous map

MapCW (Kn,Kn) −→ MapCW (Kn, E(K)n).

Their product is a continuous map

c3 : MapCW (Kn−1,Kn−1)×MapCW (Kn,Kn) −→

MapCW (E(K)n−1,Kn−1)×MapCW (Kn, E(K)n).

By [Mun00, Theorem 46.11], the map Qn : Kn−1×I → Kn determines a continuous
map Qn : Kn−1 → Map(I,Kn). Composing with this map in the first factor and
using the canonical inclusion on the second factor, we get a continuous map

c̃4 : MapCW (E(K)n−1,Kn−1)×MapCW (Kn, E(K)n) −→

Map(E(K)n−1,Map(I,Kn))×Map(Kn, E(K)n).

By the exponential law, we have a homeomorphism

Map(E(K)n−1,Map(I,Kn)) ∼= Map(E(K)n−1 × I,Kn),

since E(K)n−1, Kn and I are all Hausdorff (being CW-complexes) and E(K)n−1, I
are locally compact because they have finitely many cells. Composing this homeo-
morphism (crossed with the identity) with c̃4, we obtain a continuous map

c4 : MapCW (E(K)n−1,Kn−1)×MapCW (Kn, E(K)n) −→

Map(E(K)n−1 × I,Kn)×Map(Kn, E(K)n).

Composition is a continuous map

c5 : Map(E(K)n−1 × I,Kn)×Map(Kn, E(K)n) −→

Map(E(K)n−1 × I, E(K)n) ∼= Map(I,Map(E(K)n−1, E(K)n)),

since Kn is locally compact Hausdorff. The composition c5c4c3c2c1 is a continuous
map

HomeoCW (K)×HomeoCW (K) −→ Map(I,Map(E(K)n−1, E(K)n)).

By [Mun00, Theorem 46.11], this determines a continuous map

HomeoCW (K)×HomeoCW (K)× I −→ Map(E(K)n−1, E(K)n),
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since I is locally compact Hausdorff. The value of this map on (f, g, t) ∈ HomeoCW (K)×
HomeoCW (K) × I equals H(f, g, t) (and is in fact contained in G(t<nK)). Thus H
is continuous.

Restricting H to g = idK and t = 1, we obtain the continuous map

H(−, idK , 1) : HomeoCW (K) −→ G(t<nK).

Since H(f, idK , 1) = t̃<n(f), we conclude that t̃<n is continuous. The map H is a
homotopy from t̃<n(−) ◦ t̃<n(−) to t̃<n(− ◦ −). Therefore, the square

HomeoCW (K)×HomeoCW (K)
◦- HomeoCW (K)

G(t<nK)×G(t<nK)

t̃<n×t̃<n

?
◦ - G(t<nK)

t̃<n

?

commutes up to homotopy and t̃<n is an H-map. �

Let us discuss some observations concerning the problem of rectifying our trun-
cation H-map into a strictly multiplicative map. An H-equivalence is a homotopy
equivalence which is an H-map. By way of motivation, let us first mention the fol-
lowing simple fact.

Lemma 1.10.4. Let X and Y be locally compact Hausdorff spaces. A homotopy
equivalence

φ : X -� Y : ψ

induces an H-equivalence

Φ : G(X) -� G(Y ) : Ψ

by setting Φ(f) = φfψ, Ψ(g) = ψgφ.

Proof. The maps Φ,Ψ are continuous: The map

Map(X,X) −→ Map(Y, Y )
f 7→ φfψ

is continuous for the compact-open topology. Thus the composition

G(X) ↪→ Map(X,X) −→ Map(Y, Y )

is continuous. If f : X → X is a homotopy equivalence, then φfψ is a homotopy
equivalence as well, whence the image of the composition lies in G(Y ). It follows that
Φ is continuous. Similarly, or by symmetry, Ψ is continuous.

The maps Φ and Ψ are homotopy inverses of each other: We shall define a ho-
motopy ΨΦ ' idG(X). Let P : X × I → X be a homotopy from P (−, 0) = ψφ to
P (−, 1) = idX . Define

H : G(X)× I −→ G(X)

by

H(f, t)(x) = P (f(P (x, t)), t), f ∈ G(X), t ∈ I, x ∈ X.
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Let us demonstrate that H is continuous. The map

P ∗ : I −→ Map(X,X)
t 7→ P (−, t)

is continuous. Thus the product

c1 = idMap(X,X)×(P ∗, P ∗) : Map(X,X)× I −→ Map(X,X)3

is continuous. Since X is locally compact Hausdorff, the composition map

c2 = (◦, id) : Map(X,X)3 −→ Map(X,X)2,

sending (f, g, h) to (f ◦ g, h), as well as

c3 = ◦ : Map(X,X)2 −→ Map(X,X),

sending (g, h) to h ◦ g, is continuous. Thus the composition

G(X)× I ↪→ Map(X,X)× I c3c2c1−→ Map(X,X)

is continuous. The value of this composition on a pair (f, t), with f : X → X a
homotopy equivalence, is preciselyH(f, t). ThusH is continuous as a mapG(X)×I →
Map(X,X). The image H(f, t) is again a homotopy equivalence, since it is homotopic,
via H, to

H(f, 1) = P (f(P (−, 1)), 1) = f.

Thus we get a continuous map H : G(X) × I → G(X). Evaluating H at the other
end of the cylinder, we obtain

H(f, 0) = P (f(P (x, 0)), 0) = ψφfψφ = ΨΦ(f).

Consequently, H is a homotopy between ΨΦ and idG(X). Similarly, or by symmetry,
one gets a homotopy ΦΨ ' idG(Y ).

It remains to be verified that Φ and Ψ are H-maps. We need to exhibit a sputnik
homotopy

H : G(X)×G(X)× I −→ G(Y )

that establishes the homotopy commutativity of the diagram

G(X)×G(X)
Φ×Φ- G(Y )×G(Y )

G(X)

◦

?
Φ - G(Y ).

◦

?

Define such an H by

H(f, g, t)(y) = φfP (gψ(y), t), f, g ∈ G(X), t ∈ I, y ∈ Y.
The continuity of H follows by the usual arguments already detailed a number of times
in previous proofs, using that X and Y are locally compact Hausdorff. The fact that
the image of H, a priori only known to lie in Map(Y, Y ), really lies in G(Y ), follows
from the fact that H(f, g, t) is homotopic, via H, to H(f, g, 1) = φfP (gψ(−), 1) =
φfgψ, which is a homotopy equivalence. We have

H(f, g, 0)(y) = φfP (gψ(y), 0) = φfψφ(gψ(y)) = (Φ(f)Φ(g))(y)

and
H(f, g, 1)(y) = φfgψ(y) = Φ(fg)(y).
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Similarly, or by symmetry, Ψ is an H-map. �

Let us contrast the above lemma with the analogous problem in the world of
CW-complexes. For a CW-complex K, let GCW (K) = G(K)∩MapCW (K,K) be the
topological monoid of cellular self homotopy equivalences of K. A map r : X → Y
is called a homotopy retraction if there exists a map s : Y → X such that rs ' idY .
If such maps exist, one says that Y is a homotopy retract of X. (Sometimes the
terminology “Y is dominated by X” is used.) If X,Y are H-spaces and s is an
H-map, we say that Y is an H-homotopy retract of X.

Lemma 1.10.5. Let K and E be locally compact CW-complexes (i.e. each point
has a neighborhood that meets only finitely many cells). If E has no odd-dimensional
cells and K ' E, then GCW (E) is an H-homotopy retract of GCW (K).

Proof. Let φ : K → E be a cellular homotopy equivalence with cellular ho-
motopy inverse ψ : E → K. Let P : E × I → E be a cellular homotopy from
P (−, 0) = φψ to P (−, 1) = idE . Let

R : GCW (K) −→ GCW (E)

be the map R(f) = φfψ and let

S : GCW (E) −→ GCW (K)

be the map S(g) = ψgφ.

The maps R,S are continuous: The map

Map(K,K) −→ Map(E,E)
f 7→ φfψ

is continuous, so the composition

GCW (K) ↪→ Map(K,K) −→ Map(E,E)

is continuous. Since its image lies in GCW (E), it follows that R is continuous. Simi-
larly, S is continuous.

Let us define a homotopy RS ' idGCW (E). Define

H : GCW (E)× I −→ Map(E,E)

to be

H(g, t)(x) = P (g(P (x, t)), t), g ∈ GCW (E), t ∈ I, x ∈ E.
The continuity of H is demonstrated as in the proof of Lemma 1.10.4. The image
H(g, t) is again a homotopy equivalence, so we get a continuous map H : GCW (E)×
I → G(E). We claim that H(f, t) : E → E is in fact a cellular map: This follows
from the fact that P restricts to map

P | : Ek × I −→ Ek,

a key observation that has already been used to prove Lemma 1.9.9: If k is even, then
P restricts as

P | : Ek × I ⊂ (E × I)k+1 → Ek+1 = Ek,

while if k is odd, then P restricts as

P | : Ek × I = Ek−1 × I ⊂ (E × I)k → Ek.
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Hence for a point x ∈ Ek, we have P (x, t) ∈ Ek, thus g(P (x, t)) ∈ Ek and so
H(g, t)(x) = P (g(P (x, t)), t) ∈ Ek. Therefore, H is a continuous map H : GCW (E)×
I → GCW (E). Evaluating H at time zero, we obtain

H(g, 0)(x) = P (g(P (x, 0)), 0) = φψgφψ(x) = RS(g)(x).

Evaluation at time one gives

H(g, 1)(x) = P (g(P (x, 1)), 1) = g(x).

We conclude that H is a homotopy between RS and idGCW (E).

It remains to be verified that S is an H-map. We need to exhibit a sputnik
homotopy

H : GCW (E)×GCW (E)× I −→ GCW (K)

that establishes the homotopy commutativity of the diagram

GCW (E)×GCW (E)
S×S- GCW (K)×GCW (K)

GCW (E)

◦

?
S - GCW (K).

◦

?

Define such an H by

H(f, g, t)(y) = ψfP (gφ(y), t), f, g ∈ GCW (E), t ∈ I, y ∈ K.

The continuity of H follows by the usual arguments already detailed a number of
times in previous proofs, using also that K and E are locally compact and Hausdorff,
being CW-complexes. The fact that the image of H, a priori only known to lie
in Map(K,K), really lies in GCW (K), follows on the one hand from the fact that
H(f, g, t) is homotopic, via H, to H(f, g, 1) = ψfP (gφ(−), 1) = ψfgφ, which is a
homotopy equivalence, and on the other hand from the fact that H(f, g, t) : K → K
is cellular because P (Ek × I) ⊂ Ek as pointed out above. We have

H(f, g, 0)(y) = ψfP (gφ(y), 0) = ψfφψgφ(y) = (S(f)S(g))(y)

and

H(f, g, 1)(y) = ψfgφ(y) = S(fg)(y).

�

Remark 1.10.6. The key issue in the proof of the previous lemma is of course
the construction of a homotopy through cellular maps. As we have seen, this works if
the codomain has only even-dimensional cells. If there are cells of odd dimension as
well, then the method of proof breaks down and does not yield an induced homotopy
equivalence GCW (K) ' GCW (E), unless one assumes for instance that the tracks of
a homotopy ψφ ' idK remain in the skeleton which they start out from.

Let us return to our finite CW-complex K, an object of the interleaf category.
We can now improve the truncation H-map t̃<n to a strictly multiplicative map, in
fact a monoid homomorphism, in the following manner.
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Proposition 1.10.7. There exists a topological monoid G, which is an H-homotopy
retract of GCW (K), a homotopy retraction R : GCW (K) → G and a monoid ho-
momorphism t : G → G(t<nK) such that the homology truncation H-map t̃<n :
HomeoCW (K)→ G(t<nK) factors as

HomeoCW (K) ⊂- GCW (K)
R- G

G(t<nK).
�

tt̃
<
n

-

Proof. Consider the homotopy equivalence

hK : K -� E(K) : h′K

The CW-complex E(K) has only even-dimensional cells and is finite, so in partic-
ular locally compact. By Lemma 1.10.5, GCW (E(K)) is an H-homotopy retract of
GCW (K). In fact, a homotopy retraction

R : GCW (K) −→ GCW (E(K))

is given by R(f) = hKfh
′
K and a homotopy section

S : GCW (E(K)) −→ GCW (K)

for R is given by the H-map S(g) = h′KghK . Set G = GCW (E(K)) and define

t : G −→ G(t<nK)

by restricting a cellular homotopy equivalence to the (n− 1)-skeleton, that is, t(f) =
fn−1. Observe that E(K)n−1 = t<nK and t(f) : E(K)n−1 → E(K)n−1 is indeed a
homotopy equivalence by Lemma 1.9.9. The map t is continuous because the restric-
tion map

Map(E(K), E(K)) −→ Map(E(K)n−1, E(K))

is continuous, whence the composition

GCW (E(K)) ↪→ Map(E(K), E(K)) −→ Map(E(K)n−1, E(K))

is continuous. The image of the composition, however, lies in G(E(K)n−1) and its
value on a map is the value of t. Furthermore, t is a monoid homomorphism, since
t(id) = id and t(fg) = (fg)n−1 = fn−1gn−1 = t(f)t(g). Lastly, we have indeed
produced a factorization, as

tR(f) = t(hKfh
′
K) = (hKfh

′
K)n−1 = t̃<n(f)

for f ∈ HomeoCW (K). �

We have so far discussed continuity properties of spatial homology truncation for
spaces that have only even-dimensional cells. Let us now turn to the much harder
problem of continuity for homology truncation of arbitrary (simply connected) com-
plexes. We will not discuss low-dimensional truncation but immediately turn to de-
grees n ≥ 3. (The category CWn⊃∂ and the notion of n-compression rigidity have
only been defined for n ≥ 3 and are irrelevant for n ≤ 2.) Let (K,Y ) be an object of
CWn⊃∂ and let G be a discrete group.
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Definition 1.10.8. A group homomorphism ρ : G → Homeo(K) is called an n-
compression rigid representation (with respect to Y ) if ρ(G) consists of n-compression
rigid morphisms (K,Y )→ (K,Y ) in CWn⊃∂ .

Example 1.10.9. Suppose B is the base space of a flat fiber bundle B̃ ×ρ F
given by a holonomy representation ρ : π1(B) → HomeoCW (F ), where the fiber F
is a simply connected CW-complex whose boundary operator ∂n in its cellular chain
complex is either zero or injective. Then by Corollary 1.2.7, any cellular map F → F
is an n-compression rigid morphism (F, Y )→ (F, Y ) and ρ is an n-compression rigid
representation. When n = 3 and the 1-skeleton of F is a point, then the condition on
the boundary operator of the fiber is not even needed (by Proposition 1.3.1).

An n-compression rigid representation ρ : G → Homeo(K) determines an n-
compression rigid category Cρ with one object (K,Y ) and morphisms given by the
image ρ(G). By Corollary 1.1.40, one has a spatial homology truncation functor
t<n : Cρ → HoCWn−1. Hence, for every g ∈ G, one gets a homotopy class t<nρ(g) :
t<n(K,Y ) → t<n(K,Y ). Set K<n = t<n(K,Y ). If g, h ∈ G are two group elements,
then the functoriality of t<n on Cρ implies

t<n(ρ(gh)) = t<n(ρ(g) ◦ ρ(h)) = t<n(ρ(g)) ◦ t<n(ρ(h)).

In particular, t<nρ(g) is (the class of) a homotopy equivalence with homotopy inverse
t<nρ(g−1). The representation ρ determines thus a group homomorphism

ρ<n = t<nρ : G −→ G[K<n].

(A group homomorphism into a group of homotopy classes of self homotopy equiv-
alences of a space is called a homotopy action.) Using the result of [Coo78], where
an obstruction theory for finding equivalent topological actions for given homotopy
actions has been given, we derive:

Proposition 1.10.10. Let ρ : G → Homeo(K) be an n-compression rigid repre-
sentation. If G has an Eilenberg-MacLane space K(G, 1) of dimension at most 2, for
example if G is free, then there exists a homotopy equivalence K<n ' K ′<n, inducing
an isomorphism G[K<n] ∼= G[K ′<n], and a lift ρ̃<n : G→ Homeo(K ′<n) such that

Homeo(K ′<n) ⊂- G(K ′<n)

G
ρ<n -

ρ̃<
n

-

G[K<n] ======
∼

G[K ′<n]
?

commutes.

Proof. The space K<n is a CW-complex. Thus the Corollary to [Coo78, The-
orem 1.1] applies and asserts that ρ<n is equivalent to a topological action. This
means that there exists a homotopy equivalence h : K<n → K ′<n with homotopy
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inverse h′ : K ′<n → K<n and a topological action ρ̃<n : G→ Homeo(K ′<n) such that

G
ρ<n - G[K<n]

Homeo(K ′<n)

ρ̃<n

?
- G[K ′<n]

ε(h)

?

commutes, where ε(h)[f ] = [hfh′] is conjugation by the homotopy equivalence. The
map ε(h) is a homomorphism as

ε(h)[fg] = [hfgh′] = [hfh′hgh′] = [hfh′] ◦ [hgh′] = ε(h)[f ] ◦ ε(h)[g].

It is an isomorphism with inverse ε(h′) : G[K ′<n]→ G[K<n], ε(h′)[f ] = [h′fh]. �

Examples 1.10.11. Here are some examples of groups G that have a K(G, 1) of
dimension at most 2: Free groups were already mentioned. If G is the fundamental
group of a connected closed surface Σ other than the sphere or the projective plane,
then Σ itself is a 2-dimensional K(G, 1). These surface groups are one-relator groups.
More generally, a theorem of Lyndon asserts that any one-relator group G whose
relator r is not a proper power r = xn, n ≥ 2, has a 2-dimensional K(G, 1).

1.11. Fiberwise Homology Truncation

We will describe fiberwise homology truncation for the following three situations:
(1) Mapping tori, that is, fiber bundles over a circle,
(2) Flat bundles over spaces whose fundamental group G has a K(G, 1) of dimension
at most 2 (for example flat bundles over closed surfaces other than RP 2), and
(3) Fiber bundles over a sphere Sm, m ≥ 2, where the fiber is a finite interleaf
CW-complex.

1.11.1. Mapping Tori. Let F be a topological space and f : F → F a homeo-
morphism. The mapping torus Ef of f is the quotient space

Ef = (F × I)/ ∼,

where (x, 1) ∼ (f(x), 0) are identified. The factor projection F × I → I induces a
map p : Ef → S1 = I/(0 ∼ 1). Let us recall a well-known fact.

Lemma 1.11.1. The map p is a locally trivial fiber bundle projection.

Proof. Let q : I → S1 be the quotient map and t0 = q(0) = q(1) ∈ S1. It suffices
to find a local chart near the point t0. Let U be a small open neighborhood of t0 in S1

so that q−1(U) has two connected components V0 and V1 homeomorphic to half-open
intervals, where V0 is an open neighborhood of 0 in I and V1 is an open neighborhood
of 1 in I. Set Ui = q(Vi), i = 0, 1, so that U = U0 ∪ U1 and U0 ∩ U1 = {t0}. By
definition of the mapping torus, the preimage space p−1(U) sits in a pushout square

{t0} × F
incl×f //

incl× idF

��

U0 × F

j0

��
U1 × F

j1 // p−1(U).
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The product U × F sits in the pushout square

{t0} × F
incl× idF//

incl× idF

��

U0 × F

i0

��
U1 × F

i1 // U × F.

By the universal property of the pushout, the commutative diagram

U0 × F �
incl× idF {t0} × F

incl× idF- U1 × F

U0 × F

id×f

?
�incl×f {t0} × F

idF

?
incl× idF- U1 × F

id× idF

?

induces a unique continuous map α : U × F → p−1(U) which evidently lies over U
such that

U0 × F
i0- U × F �i1 U1 × F

U0 × F

id×f

?
j0- p−1(U)

α

?
�j1 U1 × F

id× idF

?

commutes. The commutative diagram

U0 × F �
incl×f {t0} × F

incl× idF- U1 × F

U0 × F

id×f−1

?
�incl× idF {t0} × F

idF

?
incl× idF- U1 × F

id× idF

?

induces a unique continuous map β : p−1(U)→ U × F which lies over U such that

U0 × F
j0- p−1(U) �

j1
U1 × F

U0 × F

id×f−1

?
i0- U × F

β

?
�i1 U1 × F

id× idF

?

commutes. Since α and β are inverse to each other, β is a homeomorphism and thus
a local chart for p over U . �

Let f : (F, Y )→ (F, Y ) be an isomorphism in CWn⊃∂ . We shall explain how one
can perform fiberwise homological truncation on the fiber bundle p : E = Ef → S1.
The result is a fiber bundle ft<n(p) : ft<n(E)→ S1 whose fiber is homotopy equivalent
to the truncation F<n = t<n(F, Y ). (Note that f is not required to be compression
rigid here.)
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Applying the covariant assignment t<n : CWn⊃∂ → HoCWn−1 to f , we obtain
a homotopy class t<n(f). Choose a representative f<n : F<n → F<n for t<n(f). Then
f<n is a homotopy equivalence by Proposition 1.4.1. (We cannot deduce this from
functoriality, since we did not require f to be n-compression rigid.) A construction
due to Cooke [Coo78] will serve us at this point: Let F ′<n be the infinite mapping
telescope of f<n,

F ′<n = (Z× I × F<n)/(n, 1, x) ∼ (n+ 1, 0, f<n(x)).

A homotopy equivalence h : F<n → F ′<n is given by h(x) = (0, 0, x). The shift

f ′<n : F ′<n −→ F ′<n, f
′
<n(n, t, x) = (n− 1, t, x),

is a homeomorphism and the diagram

F<n
f<n

'
- F<n

F ′<n

h '

?
f ′<n
∼=
- F ′<n

' h

?

homotopy commutes. Set

ft<n(E) = Ef ′<n ,

the mapping torus of f ′<n, and let ft<n(p) : ft<nE → S1 be the mapping torus
projection. By Lemma 1.11.1, ft<n(p) is a locally trivial fiber bundle projection. The
fiber is F ′<n, which is homotopy equivalent to F<n via h.

1.11.2. Flat Bundles. Let B be a connected space. Any flat fiber bundle

p : E → B with fiber F overB has the form E = B̃×ρF, where ρ : π1(B)→ Homeo(F )

is the holonomy representation and B̃ is the universal cover of B. The projection p
is induced by projecting to the first component, followed by the covering projection

B̃ → B. Suppose that π1(B) has an Eilenberg-MacLane space K(π1B, 1) of dimension
at most 2. (For instance, B a closed surface other than RP 2.) Let (F, Y ) be an object
of CWn⊃∂ and ρ : π1(B) → Homeo(F ) an n-compression rigid representation with

respect to Y . We shall explain how to associate to the flat bundle p : E = B̃×ρF → B
a fiberwise truncation ft<n(p) : ft<n(E) → B, which is again a flat fiber bundle and
has a fiber homotopy equivalent to the truncation F<n = t<n(F, Y ).

By Proposition 1.10.10, there exists a homotopy equivalence F<n → F ′<n and a
lift ρ̃<n : π1(B)→ Homeo(F ′<n) such that

Homeo(F ′<n) ⊂- G(F ′<n)

π1(B)
ρ<n-

ρ̃<
n

-

G[F<n] ======
∼

G[F ′<n]
?

commutes. Set

ft<n(E) = B̃ ×ρ̃<n F ′<n
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together with ft<n(p) : ft<n(E) → B induced as describe above, using the covering
projection. Then ft<n(p) is a flat fiber bundle with fiber F ′<n homotopy equivalent
to the truncation F<n.

1.11.3. Remarks on Abstract Fiberwise Homology Truncation. As a
thought experiment, an idealized, but motivational, abstract setup for fiberwise ho-
mology truncation might be formulated as follows. Let G be a topological group
acting on a topological space F . Let t<n(F ) be a spatial homological truncation of
F .

Definition 1.11.2. An abstract continuous homology truncation for (G,F, F<n)
is a morphism τn : G → Gn of topological groups together with an action of Gn on
F<n.

For example, if there existed a morphism of topological groups τn : Homeo(F )→
Homeo(F<n) truncating automorphisms of F in a continuous fashion, then one would
obtain an abstract continuous homology truncation for (Homeo(F ), F, F<n), taking
the obvious action of Homeo(F<n) on F<n.

Let ξF = (E, p,B) be a numerable fiber bundle over B with fiber F and structure
group G. Suppose an abstract continuous homology truncation for (G,F, F<n) is
given. The Milnor construction, among other such constructions, associates to G a
numerable principal G-bundle ωG = (EG, pω, BG), with EG a free G-space weakly
homotopy equivalent to a point. This bundle is universal in the sense that for each
numerable principal G-bundle ξ, there exists a classifying map f : B → BG such
that ξ ∼= f∗(ωG) as principal G-bundles. The morphism τn : G → Gn induces a
map Bτn : BG → BGn. Let ξ be the underlying numerable principal G-bundle of
ξF . It is classified by a map f : B → BG. Composition with Bτn yields a map
fn : Bτn ◦ f : B → BGn. Set ξn = f∗n(ωGn), a numerable principal Gn-bundle. Since
Gn acts on F<n, we obtain an associated fiber bundle ft<n(ξF ) = (ft<nE, ft<n p,B)
with total space ft<nE = E(ξn) ×Gn F<n, fiber F<n and structure group Gn. We
might call ft<n(ξF ) the abstract fiberwise homology truncation of ξF with respect to
the given data.

As we have seen, however, it is in practice more realistic to take Gn to be a
(grouplike) topological monoid. Moreover, the map τn : G → Gn is usually not a
monoid homomorphism, but only an H-map. For example, if a finite CW-complex
F is an object of the interleaf category, then we have constructed an H-map t̃<n :
HomeoCW (F ) −→ G(t<nF ), see Theorem 1.10.3. In certain situations, the above
general framework can be adapted to the monoid/H-map environment. We shall
illustrate this in the case of a sphere as the base space.

1.11.4. Fiberwise Truncation over Spheres. If Gn is the topological monoid
of self homotopy equivalences of a space, then the role of the Milnor construction will
be played by Stasheff’s classifying space BGn. Given a space F , Stasheff [Sta63]
associates to the monoid H = G(F ) a universal H-quasifibration

H −→ EH
pH−→ BH.

The notion of a quasifibration was introduced by Dold and Thom in [DT58]. A
continuous map p : E → B is a quasifibration if, for every point b ∈ B and every k ≥ 0,
the induced map p∗ : πk(E, p−1(b)) → πk(B) is an isomorphism. The idea is that
with respect to homotopy groups, quasifibrations should behave just like Hurewicz
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fibrations. In particular, the homotopy groups of each fiber p−1(b) fit into a long
exact sequence

· · · → πk+1(B) −→ πk(p−1(b)) −→ πk(E)
p∗−→ πk(B) −→ · · · .

The total space EH of the Stasheff quasifibration is aspherical, that is, π∗(EH) = 0.
It follows from the long exact sequence that the homotopy boundary homomorphism
induces an isomorphism

(16) πk+1(BH) ∼= πk(H).

Let ξF = (E, p, Sm), m ≥ 2, be a cellular topological fiber bundle over the m-
sphere with fiber F . Assume that F is an object of the interleaf category and a finite
CW-complex. Let n be a (positive) integer and

φ : Sm−1 −→ HomeoCW (F ) = G

be the clutching function for the bundle ξF . Set Gn = H = G(t<nF ). In Section
1.10, we constructed an H-map

t̃<n : G −→ Gn,

see Theorem 1.10.3. Composition yields a map

ψ = t̃<n ◦ φ : Sm−1 −→ Gn

and an element [ψ] ∈ πm−1(Gn). Under the above isomorphism (16),

πm(BGn) ∼= πm−1(Gn),

[ψ] corresponds to a homotopy class [ξn], where ξn is a map

ξn : Sm −→ BGn.

Let u : UE → BGn be Stasheff’s universal fibration, a Hurewicz fibration that
classifies Hurewicz fibrations with fibers of the homotopy type of t<nF . Since t<nF is
again a finite CW-complex by Remark 1.9.8, Stasheff’s classification theorem applies
and asserts that [−, BGn] and L(t<nF )(−) are naturally equivalent functors from
the category of CW-complexes and homotopy classes of maps to the category of sets
and functions, where L(t<nF )(X) is the set of fiber homotopy equivalence classes of
Hurewicz fibrations with base space X and fibers of the homotopy type of t<nF . The
transformation [−, BGn]→ L(t<nF )(−) is given by sending the homotopy class of a
map f : X → BGn to the pullback f∗(u) of the universal fibration. Let ft<n ξF =
(ft<n(E), ft<n(p), Sm) be the pullback Hurewicz fibration

ft<n(E) - UE

Sm

ft<n(p)

?
ξn - BGn

u

?

with fiber F<n. This is the fiberwise truncation of ξF . Note that while we did start
out with a bundle, we end up only with a fibration. This is to be expected, since Gn
is not a group, only a monoid, and spatial homology truncation of a homeomorphism
yields only a homotopy equivalence in general. However, whenever the base space of
a Hurewicz fibration is a connected, locally finite polyhedron (such as in the present
case), Fadell [Fad60] shows that the fibration can be replaced by a fiber homotopy



86 1. HOMOTOPY THEORY

equivalent fiber bundle. Thus, up to fiber homotopy equivalence, we end up with a
bundle again.

1.12. Remarks on Perverse Links and Basic Sets

Let Xn be an even-dimensional PL stratified pseudomanifold that has no strata
of odd dimension. In [MV86], the notion of a perverse link is introduced in order
to obtain a more direct description of the category of (middle-)perverse sheaves on
X. Let L be the link of a pure stratum S in X. A perverse link is a closed subspace
K ⊂ L such that for every perverse sheaf P• on X − S,

Hk(K; P•) = 0, for k ≥ − 1
2 dimS, and

Hk(L,K; P•) = 0, for k < − 1
2 dimS.

In a PL pseudomanifold such perverse links can always be constructed as certain sim-
plicial subcomplexes. While perverse links thus provide some form of cohomological
truncation, they cannot be used as a substitute for the spatial homology truncation
machine built in Section 1.1, for the following reason: Let us consider the case of
a space X having one isolated singular point c. Set d = n/2. On the complement
X − c of the singular point, the constant sheaf P• = RX−c[d] is a perverse sheaf in
the indexing convention of [MV86]. Thus, the perverse link of the link of c satisfies

Hk(K) = 0, for k ≥ d, and Hk(L,K) = 0 for k < d.

The long exact sequence of the pair (L,K) shows that therefore

Hk(K) ∼= Hk(L) for k ≤ d− 2.

For the missing degree d− 1, the sequence implies only an injection

Hd−1(L) ↪→ Hd−1(K).

In the present case of an isolated singularity (or whenever the link happens to be a
manifold), the perverse link is to be constructed as follows: Fix a triangulation T
of L and let T ′ be the first barycentric subdivision of T . Let K be the union of all
closed simplices in T ′, whose dimension is less than (n− 1)/2. The following example
shows that Hd−1(K) can indeed be huge compared to Hd−1(L), so that the above
monomorphism is in general far from an isomorphism. Let L = S3, the 3-sphere,
so that n = 4, d = 2. Triangulate it for instance as the boundary of a standard
4-simplex. Then K is the union of all closed simplices of dimension at most 1 of the
first barycentric subdivision. Thus K is a graph with a large number of cycles and
the map Hd−1(L) = H1(S3) = 0 ↪→ H1(K) is far away from being an isomorphism.
Moreover, the example shows that the cohomology of the perverse link is not an
invariant of the space L. Indeed, Hd−1(K) depends on the triangulation of L: If we
refine the triangulation of S3 more and more, then the number of 1-cycles in K, and
consequently the rank of Hd−1(K), will increase beyond any bound and so the degree
(d− 1)-cohomology of K is in no way linked to the actual topology of S3.



CHAPTER 2

Intersection Spaces

2.1. Reflective Algebra

For a given pseudomanifold, the homology of its intersection space is not iso-
morphic to its intersection homology, but the two sets of groups are closely related.
The reflective diagrams to be introduced in this section will be used to display the
precise relationship between the two theories in the isolated singularities case. This
reflective nature of the relationship correlates with the fact that the two theories form
a mirror-pair for singular Calabi-Yau conifolds, see Section 3.8. Let R be a ring. If
M is an R-module, we will write M∗ for the dual Hom(M,R). Let k be an integer.

Definition 2.1.1. Let H∗, H
′
∗ and B∗ be Z-graded R-modules. Let A− and A+

be R-modules. A k-reflective diagram is a commutative diagram of the form

H′k

· · · - Bk+1
- Hk+1

- H′k+1
- Bk

β−- A−
α -

α
′ −
--

A+

β+-

⊂

α ′
+

-

Hk

α +

--
⊂

α
− -

Bk−1
- H′k−1

- Hk−1
- Bk−2

- · · ·

(17)

containing the following exact sequences:

(1) · · · → H ′k+1 → Bk
β−−→ A−

α−→ A+
β+−→ Bk−1 → H ′k−1 → Hk−1 → · · · ,

(2) · · · → H ′k+1 → Bk
α−β−−→ Hk

α+−→ A+ → 0,

(3) 0→ A−
α−−→ Hk

β+α+−→ Bk−1 → H ′k−1 → Hk−1 → · · · ,

(4) · · · → H ′k+1 → Bk
β−−→ A−

α′−−→ H ′k → 0,

(5) 0→ H ′k
α′+−→ A+

β+−→ Bk−1 → H ′k−1 → · · · .

The name derives from the obvious reflective symmetry of the diagram (17) across
the vertical line through Hk and H ′k. The module H∗ will eventually specialize to
the reduced homology of the intersection space and H ′∗ will be intersection homology.
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The entire information of a reflective diagram may also be blown up into a braid
diagram:

0

��66666 0

H ′k

��44444

DD					

H ′k+2

��44444

��
Bk+1

��44444

��
0

��444444

��
A−

EE






��44444

%%
A+

��44444

��
0

��444444

��
Bk−2

=
��44444

��
H ′k−2

Bk+1

=

DD






��44444
Hk+1

DD







��44444 Bk

DD






=
��44444 Hk

DD






��44444 Bk−1

DD







��44444
Hk−1

DD






=
��44444

Bk−2

DD






��444444

0

DD







FFHk+1

=

DD






EE
H ′k+1

DD






FFBk

DD






0

FFBk−1

=

DD






EE
H ′k−1

DD






FFHk−1

DD






FF0

While a k-reflective diagram does not directly display the relation between Hk

and H ′k, this relation can however be readily extracted from the diagram: Since

Hk/ imα− = Hk/ ker(β+α+) ∼= im(β+α+) = imβ+ and kerα′− = imβ−,

we have the following T-diagram of two short exact sequences:

(18)

0

0 - imβ− - A−
? α′− - H ′k

- 0

Hk

α−

?

imβ+

?

0
?

When R is a field, we can pick splittings and obtain a direct sum decomposition

Hk
∼= imβ− ⊕H ′k ⊕ imβ+.

Let l be an integer.
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Definition 2.1.2. A morphism from a k-reflective to an l-reflective diagram is a
commutative diagram of R-modules

H ′k

��

� q

""EEEEEEE

. . . // Hk+1
//

��

H ′k+1
//

��

Bk //

��

A−

<< <<yyyyyyy
� p

""DDDDDDD

��

G′l � p
DDD

""DDD

A+

��

//

. . . // Gl+1
// G′l+1

// Dl
// C−

zzz

<< <<zzz

� q

""EEEEEEE Hk

<< <<zzzzzzz

��

C+
//

Gl

<< <<yyyyyyy

Bk−1
//

��

H ′k−1
//

��

Hk−1
//

��

. . .

Dl−1
// G′l−1

// Gl−1
// . . .

Reflective diagrams form a category, since the composition of two morphisms, de-
fined by composing all the vertical arrows, is again a morphism of reflective diagrams.

Definition 2.1.3. A pair (H∗, H
′
∗) of Z-graded modules is called k-reflective

across a Z-graded module B∗ if there exist modules A− and A+ such that the data
H∗, H

′
∗, B∗, A± fits into a k-reflective diagram (17).

Definition 2.1.4. The k-truncated Euler characteristic χ<k(B∗) of a finitely
generated Z-graded abelian group B∗ is defined to be

χ<k(B∗) =
∑
i<k

(−1)i rkBi.

A reflective diagram for a pair (H∗, H
′
∗) implies in particular a relation between

the Euler characteristics of H∗ and H ′∗, as well as a relation between the ranks of Hk

and H ′k in the cut-off degree k.

Proposition 2.1.5. The Euler characteristics of a k-reflective pair (H∗, H
′
∗) of

finitely generated Z-graded abelian groups fitting into a k-reflective diagram (17) with
B∗, A−, A+ finitely generated obey the relation

χ(H∗)− χ(H ′∗) = χ(B∗)− 2χ<k(B∗).

Furthermore, the identity

rkHk + rkH ′k = rkA− + rkA+

holds in degree k.

Proof. Putting

χ>k =
∑
i>k

(−1)i rkHi, χ<k =
∑
i<k

(−1)i rkHi,

χ′>k =
∑
i>k

(−1)i rkH ′i, χ
′
<k =

∑
i<k

(−1)i rkH ′i,

hk = rkHk, h
′
k = rkH ′k, bk = rkBk, a− = rkA−, a+ = rkA+,
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the five exact sequences (1) – (5) associated to the reflective diagram (17) in Definition
(2.1.1) give the following linear system of five equations:

(1) χ>k − χ′>k + (−1)ka− − (−1)ka+ + χ′<k − χ<k − χ(B∗) = 0,
(2) χ>k − χ′>k − χ>k(B∗)− (−1)kbk + (−1)khk − (−1)ka+ = 0,
(3) (−1)ka− − (−1)khk − χ<k(B∗) + χ′<k − χ<k = 0,
(4) χ>k − χ′>k − χ>k(B∗)− (−1)kbk + (−1)ka− − (−1)kh′k = 0,
(5) (−1)kh′k − (−1)ka+ − χ<k(B∗) + χ′<k − χ<k = 0.

These equations are not linearly independent because we have the relations

(2) + (3) = (1) = (4) + (5).

Thus equation (1) is redundant and one of the other four can be expressed in terms
of the remaining three equations. The difference (2)− (4) yields the equation

(6) hk + h′k − a− − a+ = 0.

The system (1) – (5) is equivalent to the system (2), (3), (6). The latter three
equations are linearly independent, since (3) and (6) are independent as (3) contains
variables such as χ<k that are absent from (6), and (2) is not in the span of {(3), (6)},
since (2) contains variables such as χ>k that are absent from both (3) and (6). Us-
ing (2) and (5) (for example), we derive the formula for the difference of the Euler
characteristics of H∗ and H ′∗ as follows:

χ(H∗)− χ(H ′∗) = (χ>k + (−1)khk + χ<k)− (χ′>k + (−1)kh′k + χ′<k)
= (χ>k − χ′>k) + (−1)khk − (−1)kh′k + (χ<k − χ′<k)
= (χ>k(B∗) + (−1)kbk − (−1)khk + (−1)ka+) + (−1)khk

−(−1)kh′k + ((−1)kh′k − (−1)ka+ − χ<k(B∗))
= χ>k(B∗) + (−1)kbk − χ<k(B∗)
= χ(B∗)− 2χ<k(B∗).

�

We shall proceed to discuss duality for reflective diagrams over a field k = R. Let
∆ be the diagram (17).

Definition 2.1.6. The dual ∆∗ of ∆ is the k-reflective diagram

H ′∗k � q
α′∗−

""EEEEEEE

. . . // H∗k−1
// H ′∗k−1

// B∗k−1

β∗+ // A∗+

α′∗+
<< <<yyyyyyy

� q

α∗+ ""EEEEEEE
α∗ // A∗−

β∗− //

H∗k

α∗−

<< <<yyyyyyy

B∗k // H ′∗k+1
// H∗k+1

// . . .

obtained by applying Hom(−,k) to ∆.

Under this notion of duality, sequence (1) in Definition 2.1.1 is self-dual, sequences
(2) and (3) are dual to each other, and sequences (4) and (5) are dual to each other.
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Definition 2.1.7. Let (H∗, H
′
∗) be k-reflective across B∗ with reflective diagram

∆H and let (G∗, G
′
∗) be (n−k)-reflective across D∗ with reflective diagram ∆G. Then

(H∗, H
′
∗) and (G∗, G

′
∗) are called n-dual reflective pairs if ∆H and ∆G are related by

a duality isomorphism ∆∗H
∼= ∆G.

2.2. The Intersection Space in the Isolated Singularities Case

Let p̄ be a perversity. The intersection space of a stratified pseudomanifold M
with one stratum is by definition I p̄M = M. (Such a space is a manifold, but a
manifold is not necessarily a one-stratum space.) Let X be an n-dimensional com-
pact oriented CAT pseudomanifold with isolated singularities x1, . . . , xw, w ≥ 1, and
simply connected links Li = Link(xi), where CAT is PL or DIFF or TOP. (Pseudo-
manifolds whose links are all simply connected are sometimes called supernormal in
the literature, see [CW91].) Thus X has two strata: the bottom pure stratum is
{x1, . . . , xw} and the top stratum is the complement. By a DIFF pseudomanifold we
mean a Whitney stratified pseudomanifold. By a TOP pseudomanifold we mean a
topological stratified pseudomanifold as defined in [GM83]. In the present isolated
singularities situation, this means that the Li are closed topological manifolds and a
small neighborhood of xi is homeomorphic to the open cone on Li. If CAT=TOP,
assume for the moment n 6= 5. We shall define the perversity p̄ intersection space
I p̄X for X.

Lemma 2.2.1. Every link Li, i = 1, . . . , w, can be given the structure of a CW-
complex.

Proof. We begin with the case CAT=PL. Every link is then a closed PL man-
ifold, which can be triangulated. The triangulation defines the CW-structure. For
the case CAT=DIFF, i.e. the Whitney stratified case, we observe that links in Whit-
ney stratified sets are again canonically Whitney stratified by intersecting with the
strata of X. Since the links are contained in the top stratum, they are thus smooth
manifolds. By the triangulation theorem of J. H. C. Whitehead, the link can then
be smoothly triangulated. Again, the triangulation defines the desired CW-structure.
Lastly, suppose CAT=TOP. If n ≤ 1, then X has no singularities. If n = 2, the
links are finite disjoint unions of circles. By the simple connectivity assumption, such
unions must be empty. If n = 3, then by simple connectivity every link is a 2-sphere,
so again X would be nonsingular. (Simple connectivity is of course not essential here,
as circles and surfaces are certainly CW-complexes.) If n = 4, then the links are
closed topological 3-manifolds. Since they are simply connected, the links must be
3-spheres according to the Poincaré conjecture, proved by Perelman. The space X
would be nonsingular. (Simply connectivity is once more not essential for the exis-
tence of a CW-structure on the links because we could appeal to Moise’s theorem
[Moi52], asserting that every compact 3-manifold can be triangulated.) If n ≥ 6,
the links are closed topological manifolds of dimension at least 5. In this dimension
range, topological manifolds have CW-structures by [KS77] and [FQ90]. �

Remark 2.2.2. The preceding lemma makes a statement that is more refined
than necessary for constructing the intersection space. CW-structures arising from
triangulations for example, while having the virtue of being regular, typically are
very large and have lots of cells that are not closely tied to the global topology of
the space. To form the intersection space, it is enough to know that every link
is homotopy equivalent to a CW-complex. Using such an equivalence, one is free
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to choose smaller CW-structures, indeed minimal cell structures consistent with the
homology, or to obtain a CW-structure when it is not known to exist on the given
link per se. This latter situation arises in the case TOP and n = 5, not covered
by the lemma. In this case, the links Li are simply connected closed topological
4-manifolds. It is at present not known whether such a manifold possesses a CW-
structure. It is not possible to obtain such a structure from a handlebody because a
closed topological 4-manifold admits a topological handle decomposition if and only
if it is smoothable, since the attaching maps can always the smoothed by an isotopy.
For example, Freedman’s closed simply connected 4-manifold with intersection form
E8 does not admit a handle decomposition. However, such links Li are homotopy
equivalent to a cell complex with one 0-cell, a finite number of 2-cells and one 4-cell.
In the case TOP and n = 5, after having removed small open cone neighborhoods
of the singularities, we glue in the mapping cylinders of these homotopy equivalences
and now have CW-complexes sitting on the “boundary”. The intersection space can
then be defined, following the recipe below, in all dimensions, even when CAT=TOP.

We shall now invoke the spatial homology truncation machine of Section 1.1. If
k = n − 1 − p̄(n) ≥ 3, we can and do fix completions (Li, Yi) of Li so that every
(Li, Yi) is an object in CWk⊃∂ . If k ≤ 2, no groups Yi have to be chosen and we
simply apply the low-degree truncation of Section 1.1.5. Applying the truncation t<k :
CWk⊃∂ → HoCWk−1 as defined on page 41, we obtain a CW-complex t<k(Li, Yi) ∈
ObHoCWk−1. The natural transformation embk : t<k → t<∞ of Theorem 1.1.41
gives homotopy classes of maps

fi = embk(Li, Yi) : t<k(Li, Yi) −→ Li

such that for r < k,

fi∗ : Hr(t<k(Li, Yi)) ∼= Hr(Li),

while Hr(t<k(Li, Yi)) = 0 for r ≥ k. Let M be the compact manifold with boundary
obtained by removing from X open cone neighborhoods of the singularities x1, . . . , xw.
The boundary is the disjoint union of the links,

∂M =

w⊔
i=1

Li.

Let

L<k =

w⊔
i=1

t<k(Li, Yi)

and define a homotopy class

g : L<k −→M

by composing

L<k
f−→ ∂M −→M,

where f =
⊔
i fi. The intersection space will be the homotopy cofiber of g:

Definition 2.2.3. The perversity p̄ intersection space I p̄X of X is defined to be

I p̄X = cone(g) = M ∪g cone(L<k).

More precisely, I p̄X is a homotopy type of a space. If g1 and g2 are both repre-
sentatives of the class g, then cone(g1) ' cone(g2) by the following proposition.
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Proposition 2.2.4. If

Y �
f

A

Y ′

φY '

?
� f ′

A′

φA '

?

is a homotopy commutative diagram of continuous maps such that φY and φA are
homotopy equivalences, then there is a homotopy equivalence

Y ∪f coneA −→ Y ′ ∪f ′ coneA′

extending φY .

This is Theorem 6.6 in [Hil65], where a proof can be found. The preceding
construction of the intersection space I p̄X depends on choices of cellular subgroups Yi.
If a link Li is an object of the interleaf category ICW, then we may replace t<k(Li, Yi)
in the construction by t<kLi, where t<k : ICW→ HoCW is the truncation functor
of Section 1.9. The corresponding homotopy class fi is to be replaced by the homotopy
class embk(Li) : t<kLi → Li given by the natural transformation

embk : t<k −→ t<∞

from Section 1.9. The construction of the intersection space thus becomes technically
much simpler. The following theorem establishes generalized Poincaré duality for the
rational reduced homology of intersection spaces and describes the relation to the
intersection homology of Goresky and MacPherson.

Theorem 2.2.5. Let X be an n-dimensional compact oriented supernormal sin-
gular CAT pseudomanifold with only isolated singularities. Let p̄ and q̄ be comple-
mentary perversities. Then:

(1) The pair (H̃∗(I
p̄X), IH p̄

∗ (X)) is (n − 1 − p̄(n))-reflective across the homology of
the links, and

(2) (H̃∗(I
p̄X;Q), IH p̄

∗ (X;Q)) and (H̃∗(I
q̄X;Q), IH q̄

∗(X;Q)) are n-dual reflective pairs.

Remark 2.2.6. Note that, as stated in the hypotheses, the theorem cannot for-
mally be applied to a nonsingular X that is stratified with one stratum. The reason
is simply that the reduced homology of a manifold X = M does not possess Poincaré

duality. If M is connected, then H̃0(M) = 0 but H̃n(M) ∼= Z generated by the
fundamental class.

We begin the proof of Theorem 2.2.5:

Proof. We prove statement (1) first. Put L = ∂M and let j : L ↪→ M be the
inclusion of the boundary. We will study the braid of the triple

L<k
f //

g !!CCCCCC L

j
��
M,



94 2. INTERSECTION SPACES

Hk+2(j)

��77777

��
Hk+1(f)

��77777

��
Hk(L<k)

f∗ ��77777

g∗

��
Hk(M)

α−

��77777

α

��
Hk(j)

��77777

��
Hk−1(f)

��77777

��
Hk−2(L<k)

f∗ ��77777

g∗

��
Hk−2(M)

Hk+1(L)

CC�����

j∗

��77777 Hk+1(g)

CC�����

��77777 Hk(L)

j∗

CC�����

��77777 Hk(g)

α+

CC�����

��77777 Hk−1(L)

CC�����

j∗

��77777 Hk−1(g)

CC�����

��77777 Hk−2(L)

j∗

CC�����

��77777

Hk+1(L<k)

f∗
CC�����

g∗

EEHk+1(M)

CC�����

EEHk+1(j)

CC�����

EEHk(f)

CC�����

EEHk−1(L<k)

f∗
CC�����

g∗

EEHk−1(M)

CC�����

EEHk−1(j)

CC�����

EEHk−2(f)

Using the fact that f∗ is an isomorphism in degrees less than k, as well as Hr(L<k) = 0
for r ≥ k, the braid becomes

Hk+2(j)

��77777

��
Hk+1(f)

��77777
��
0

f∗ ��777777

g∗

��
Hk(M)
 m

α−

��77777

α

��
Hk(j)

��77777
��
0

��777777
��

Hk−2(L<k)

f∗

∼=

��77777

g∗

��
Hk−2(M)

Hk+1(L)

∼=
CC�����

j∗

��77777 Hk+1(g)

CC������

��77777 Hk(L)

j∗

CC�����

∼=

��77777 Hk(g)

α+

CC CC�����

��77777 Hk−1(L)

CC������

j∗

��77777 Hk−1(g)

CC�����

∼=

��77777 Hk−2(L)

j∗

CC�����

��777777

0

f∗
CC������

g∗

EEHk+1(M)

∼=

CC�����

EEHk+1(j)

CC�����

EEHk(f)

CC�����

0

EEHk−1(L<k)

f∗
∼=

CC�����

g∗

EEHk−1(M)

CC�����

EEHk−1(j)

CC�����
EE0

Since

H∗(g) = H̃∗(cone(g)) = H̃∗(I
p̄X)

and

IH p̄
r (X) =

{
Hr(M,L) = Hr(j), r > k

Hr(M), r < k,

this can be rewritten as

(19)

IH p̄
k+2(X)

��66666

��
Hk+1(f)

��66666
��
0

f∗ ��666666

g∗

��
Hk(M)� l

α−

��66666

α

��
Hk(j)

��666666
��
0

��666666
��

Hk−2(L<k)

f∗

∼=

��666666

g∗

��
IH p̄

k−2(X)

Hk+1(L)

∼=
CC������

j∗

��666666 H̃k+1(I
p̄X)

CC������

��66666
Hk(L)

j∗

CC������

∼=

��666666 H̃k(I
p̄X)

α+

CC CC�����

��66666
Hk−1(L)

CC������

j∗

��66666 H̃k−1(I
p̄X)

CC�����

∼=

��66666
Hk−2(L)

j∗

CC�����

��666666

0

f∗

CC������

g∗

EEHk+1(M)

∼=

CC�����

DD
IH p̄

k+1(X)

CC�����

EEHk(f)

CC�����

0

EEHk−1(L<k)

f∗
∼=

CC������

g∗

DD
IH p̄

k−1(X)

CC�����

EEHk−1(j)

CC������
EE0
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By composing with the indicated isomorphisms and their inverses, we may replace

Hr(f) by Hr(L) for r ≥ k, Hr(L<k) by Hr(L) for r < k, Hr(M) by H̃r(I
p̄X) for

r > k, and Hr(j) by H̃r(I
p̄X) for r < k to obtain

IH p̄
k+2(X)

��66666

��
Hk+1(L)

��66666
��
0

f∗ ��666666
��

Hk(M)� l

α−

��66666

α

��
Hk(j)

��666666
��
0

��666666
��

Hk−2(L)

=

��666666

��
IH p̄

k−2(X)

Hk+1(L)

=

CC������

��66666 H̃k+1(I
p̄X)

CC������

��66666
Hk(L)

j∗

CC������

=

��666666 H̃k(I
p̄X)

α+

CC CC�����

��66666
Hk−1(L)

CC������

j∗

��66666 H̃k−1(I
p̄X)

CC�����

=

��66666
Hk−2(L)

j∗

CC�����

��666666

0

f∗

CC������

DDH̃k+1(I
p̄X)

=

CC�����

DD
IH p̄

k+1(X)

CC�����

EEHk(L)

CC�����

0

EEHk−1(L)

=

CC������

DD
IH p̄

k−1(X)

CC�����

DDH̃k−1(I
p̄X)

CC�����

EE0

Finally, IH p̄
k (X) = imα, and we arrive at

0

��88888 0

IH p̄
k (X)

α′+

��66666

BB�����

IH p̄
k+2(X)

��66666

��
Hk+1(L)

��66666
��
0

f∗ ��666666
��

Hk(M)

α′−
CC�����

� l

α−

��66666

α

&&
Hk(j)

��666666
��
0

��666666
��

Hk−2(L)

=

��666666

��
IH p̄

k−2(X)

Hk+1(L)

=

CC������

��66666 H̃k+1(I
p̄X)

CC������

��66666
Hk(L)

j∗

CC������

=

��666666 H̃k(I
p̄X)

α+

CC CC�����

��66666
Hk−1(L)

CC������

j∗

��66666 H̃k−1(I
p̄X)

CC�����

=

��66666
Hk−2(L)

j∗

CC�����

��666666

0

f∗

CC������

DDH̃k+1(I
p̄X)

=

CC�����

DD
IH p̄

k+1(X)

CC�����

EEHk(L)

CC�����

0

EEHk−1(L)

=

CC������

DD
IH p̄

k−1(X)

CC�����

DDH̃k−1(I
p̄X)

CC�����

EE0

where α′− is given by regarding α as a map onto its image and α′+ is the inclusion
of imα into Hk(j). This braid contains the desired k-reflective diagram and all the
required exact sequences.

For the remainder of the proof we will work with rational coefficients. To prove
statement (2), we shall first construct duality isomorphisms

d : H̃r(I
p̄X)∗

∼=−→ H̃n−r(I
q̄X).

There are three cases to consider: r > k, r = k, and r < k. For r > k, braid (19)
contains the isomorphisms

Hr(M)
∼=−→ H̃r(I

p̄X).

For I q̄X, the cut-off degree k′ is given by k′ = n− 1− q̄(n) = n− k. Since n− r < k′,
we have isomorphisms

H̃n−r(I
q̄X)

∼=−→ Hn−r(j)
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by the braid of the (n−k)-reflective pair (H̃∗(I
q̄X), IH q̄

∗(X)) analogous to braid (19).
Using the Poincaré duality isomorphism Hr(M)∗ ∼= Hn−r(j), we define d to be the
unique isomorphism such that

H̃r(I
p̄X)∗

∼= //

d ∼=
��

Hr(M)∗

PD ∼=
��

H̃n−r(I
q̄X)

∼= // Hn−r(j)

commutes. Then

IH p̄
r (X)∗ //

GMD ∼=
��

H̃r(I
p̄X)∗ //

d ∼=
��

Hr(L)∗

PD ∼=
��

IH q̄
n−r(X) // H̃n−r(I

q̄X) // Hn−r−1(L)

commutes, where GMD denotes Goresky-MacPherson duality on intersection homol-
ogy. Indeed, via the universal coefficient isomorphism (which is natural), this diagram
is isomorphic to

Hr(M,∂M) //

−∩[M,∂M ] ∼=
��

Hr(M)
j∗ //

−∩[M,∂M ] ∼=
��

Hr(∂M)

−∩[∂M ] ∼=
��

Hn−r(M) // Hn−r(M,∂M)
∂∗ // Hn−r−1(∂M).

It commutes on the nose, not only up to sign, because

∂∗(ξ ∩ [M,∂M ]) = j∗ξ ∩ ∂∗[M,∂M ] = j∗ξ ∩ [∂M ],

see [Spa66], Chapter 5, Section 6, 20, page 255. (Recall that we are using Spanier’s
sign conventions.) For r < k, we proceed by “reflecting the construction of the
previous case.” That is, using the isomorphisms

H̃r(I
p̄X)

∼=−→ Hr(j), Hn−r(M)
∼=−→ H̃n−r(I

q̄X), PD : Hr(j)
∗ ∼= Hn−r(M),

we define d to be the unique isomorphism such that

Hr(j)
∗ ∼= //

PD ∼=
��

H̃r(I
p̄X)∗

d ∼=
��

Hn−r(M)
∼= // H̃n−r(I

q̄X)

commutes. It follows that

Hr−1(L)∗ //

PD ∼=
��

H̃r(I
p̄X)∗ //

d ∼=
��

IH p̄
r (X)∗

GMD ∼=
��

Hn−r(L) // H̃n−r(I
q̄X) // IH q̄

n−r(X)
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commutes as well. The remaining case r = k is perhaps the most interesting one. Let

IH
q̄
n−k(X)� s

γ′+

&&LLLLLLLLL

H̃n−k+1(Iq̄X) // IHq̄
n−k+1

(X) // Hn−k(L)
δ− // Hn−k(M)

γ //

γ′−
88 88rrrrrrrrr

� s

γ− &&MMMMMMMMM
Hn−k(j)

δ+//

H̃n−k(Iq̄X)

γ+

88 88qqqqqqqqq

Hn−k−1(L) // IHq̄
n−k−1

(X) // H̃n−k−1(Iq̄X) // . . .

be the (n − k)-reflective diagram for the pair (H̃∗(I
q̄X), IH q̄

∗(X)). The dual of the

k-reflective diagram for (H̃∗(I
p̄X), IH p̄

∗ (X)) near k is

(20)

IH p̄
k (X)∗� s

α′∗−

%%LLLLLLLL

Hk−1(L)∗
β∗+ // Hk(j)∗

α∗ //

α′∗+
99 99rrrrrrrr

� s

α∗+ %%LLLLLLLL
Hk(M)∗

β∗− // Hk(L)∗.

H̃k(I p̄X)∗
α∗−

99 99rrrrrrrr

The following Poincaré duality isomorphisms will play a role in the construction of d:

dM : Hk(M)∗
∼=−→ Hn−k(j),

d′M : Hk(j)∗
∼=−→ Hn−k(M),

dL : Hk(L)∗
∼=−→ Hn−k−1(L).

Since the square

Hk(M)∗
β∗− //

dM ∼=
��

Hk(L)∗

dL ∼=
��

Hn−k(j)
δ+ // Hn−k−1(L)

commutes, dL restricts to an isomorphism

dL : imβ∗−
∼=−→ im δ+.

Pick any splitting
spβ : imβ∗− −→ Hk(M)∗

for the surjection β∗− : Hk(M)∗ � imβ∗−. Set

sqδ = dMspβd
−1
L : im δ+ −→ Hn−k(j).

Then sqδ splits δ+ : Hn−k(j)� im δ+ because

δ+sqδ = δ+dMspβd
−1
L = dLβ

∗
−spβd

−1
L = id .

Pick any splitting

spα : Hk(M)∗ −→ H̃k(I p̄X)∗

for the surjection α∗− : H̃k(I p̄X)∗ � Hk(M)∗ and any splitting

sqγ : Hn−k(j) −→ H̃n−k(I q̄X)
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for the surjection γ+ : H̃n−k(I q̄X)� Hn−k(j). The composition

sp = spαspβ : imβ∗− −→ H̃k(I p̄X)∗

is a splitting for β∗−α
∗
− : H̃k(I p̄X)∗ � imβ∗−. Similarly, the composition

sq = sqγsqδ : im δ+ −→ H̃n−k(I q̄X)

is a splitting for δ+γ+ : H̃n−k(I q̄X)� im δ+. Next, choose a splitting

tp : IH p̄
k (X)∗ −→ Hk(j)∗

for α′∗+ : Hk(j)∗ � IH p̄
k (X)∗. Since duals of reflective diagrams are again reflective,

diagram (20) has an associated T-diagram of type (18):

0

��
0 // imβ∗+ // Hk(j)∗

α′∗+ //

α∗+
��

IH p̄
k (X)∗ // 0

H̃k(I p̄X)∗

β∗−α
∗
−

��
imβ∗−

��
0

Thus we obtain a decomposition

H̃k(I p̄X)∗ = α∗+(imβ∗+)⊕ α∗+tpIH
p̄
k (X)∗ ⊕ sp(imβ∗−)

and every v ∈ H̃k(I p̄X)∗ can be written uniquely as

v = α∗+(b+ + tp(h)) + sp(b−)

with b+ ∈ imβ∗+, h ∈ IH
p̄
k (X)∗ and b− ∈ imβ∗−. Write x = b+ + tp(h). Setting

d(v) = γ−d
′
M (x) + sqdL(b−)

defines a map

d : H̃k(I p̄X)∗ −→ H̃n−k(I q̄X).

We claim that d is an isomorphism: By construction, the square

Hk(j)∗
α∗+ //

d′M
∼=

��

H̃k(I p̄X)∗

d
��

Hn−k(M)
γ−// H̃n−k(I q̄X)

commutes. The square

H̃k(I p̄X)∗
β∗−α

∗
− //

d
��

imβ∗−

dL∼=
��

H̃n−k(I q̄X)
δ+γ+ // im δ+
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commutes also, since

dLβ
∗
−α
∗
−(v) = dLβ

∗
−α
∗(x) + dLβ

∗
−α
∗
−sp(b−)

= dL(b−)
= δ+γ+γ−d

′
M (x) + δ+γ+sqdL(b−)

= δ+γ+d(v).

Hence we have a morphism of short exact sequences

0 // Hk(j)∗
α∗+ //

d′M
∼=

��

H̃k(I p̄X)∗
β∗−α

∗
− //

d
��

imβ∗−

dL∼=
��

// 0

0 // Hn−k(M)
γ− // H̃n−k(I q̄X)

δ+γ+ // im δ+ // 0

By the five-lemma, d is an isomorphism. It remains to be shown that the square

H̃k(I p̄X)∗
α∗− //

d ∼=
��

Hk(M)∗

dM∼=
��

H̃n−k(I q̄X)
γ+ // Hn−k(j)

commutes. This is established by the calculation

γ+d(v) = γd′M (x) + γ+sqdL(b−)
= dMα

∗(x) + γ+sqγsqδdL(b−)
= dMα

∗
−(α∗+(x)) + sqδdL(b−)

= dMα
∗
−(α∗+(x)) + dMspβd

−1
L ◦ dL(b−)

= dMα
∗
−(α∗+(x)) + dMspβ(b−)

= dMα
∗
−(α∗+(x)) + dM (α∗−spα)spβ(b−)

= dMα
∗
−(α∗+(x)) + dMα

∗
−sp(b−)

= dMα
∗
−(v).

In summary, we have constructed the duality isomorphism

IH
p̄
k

(X)∗

∼=
��

� s
α′∗−

&&MMMMMMMMM

H̃k−1(Ip̄X)∗ //

∼=
��

IH
p̄
k−1

(X)∗ //

∼=
��

Hk−1(L)∗
β∗+ //

∼=

��

Hk(j)∗

α′∗+
88 88rrrrrrrrr

� s

α∗+
&&LLLLLLLLL

∼=d′M
��

IH
q̄
n−k(X)� s γ′+LLLL

&&LLLL

Hk(M)∗

∼=dM

��

β∗−//

H̃n−k+1(Iq̄X) // IHq̄
n−k+1

(X) // Hn−k(L)
δ− // Hn−k(M)

γ′−

rrrr

88 88rrrr

� s

γ− &&MMMMMMMMM H̃k(Ip̄X)∗
α∗−

88 88rrrrrrrrr

∼=d

��

Hn−k(j)
δ+//

H̃n−k(Iq̄X)

γ+

88 88qqqqqqqqq

Hk(L)∗ //

∼=dL

��

IH
p̄
k+1

(X)∗ //

∼=
��

H̃k+1(Ip̄X)∗ //

∼=
��

. . .

Hn−k−1(L) // IHq̄
n−k−1

(X) // H̃n−k−1(Iq̄X) // . . .

between the dual of the k-reflective diagram of the pair (H̃∗(I
p̄X), IH p̄

∗ (X)) and the

(n− k)-reflective diagram of the pair (H̃∗(I
q̄X), IH q̄

∗(X)). �
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Corollary 2.2.7. If n = dimX is even, then the difference between the Euler

characteristics of H̃∗(I
p̄X) and IH p̄

∗ (X) is given by

χ(H̃∗(I
p̄X))− χ(IH p̄

∗ (X)) = −2χ<n−1−p̄(n)(L),

where L is the disjoint union of the links of all the isolated singularities of X.
If n = dimX is odd, then

χ(H̃∗(I
n̄X))− χ(IH n̄

∗ (X)) = (−1)
n−1

2 b(n−1)/2(L),

where b(n−1)/2(L) is the middle dimensional Betti number of L and n̄ is the upper
middle perversity. Regardless of the parity of n, the identity

(21) rk H̃k(I p̄X) + rk IH p̄
k (X) = rkHk(M) + rkHk(M,L)

always holds in degree k = n − 1 − p̄(n), where M is the exterior of the singular set
of X.

Proof. By Theorem 2.2.5, the pair (H∗, H
′
∗) = (H̃∗(I

p̄X), IH p̄
∗ (X)) is (n− 1−

p̄(n))-reflective across the homology of L. Therefore, Proposition 2.1.5 applies and
we obtain

χ(H̃∗(I
p̄X))− χ(IH p̄

∗ (X)) = χ(L)− 2χ<n−1−p̄(n)(L).

If n is even, then L is an odd-dimensional closed oriented manifold and thus χ(L) =
0 by Poincaré duality. If n is odd, then the cut-off value k for the upper middle
perversity is k = n− 1− n̄(n) = (n− 1)/2, the middle dimension of L. We have

χ(L) = χ<k(L) + (−1)kbk(L) + χ>k(L) = 2χ<k(L) + (−1)kbk(L),

by Poincaré duality for L. Finally, as A− = Hk(M) and A+ = Hk(M,L), identity
(21) follows from the equation

rkHk + rkH ′k = rkA− + rkA+

of Proposition 2.1.5. �

If a link of some singularity is not simply connected, so that the general construc-
tion of the intersection space as described above does not strictly apply, then one can
in practice still often construct the intersection space provided one can find an ad hoc
spatial homology truncation for this specific link. One then uses this truncation in
place of the t<kLi applied above; the rest of the construction remains the same. The
simple connectivity assumption was adopted because our truncation machine required
it (which in turn is due to the employment of the Hurewicz theorem). Inspection of
the above proof on the other hand reveals that simple connectivity is nowhere neces-
sary, only the existence of a spatial homology truncation of the link in the required
dimension, dictated by the dimension of the pseudomanifold and the perversity. The
following example illustrates this.

Example 2.2.8. Let us study Poincaré’s own example of a 3-dimensional space
whose ordinary homology does not possess the duality that bears his name: X3 =
ΣT 2, the unreduced suspension of the 2-torus. This pseudomanifold has two singular-
ities x1, x2, whose links are L1 = L2 = T 2, not simply connected. There are only two
possible perversity functions to consider: p̄(3) = 0 and q̄(3) = 1. These two functions
are complementary to each other.

Let us build the intersection space I p̄X first. The cut-off value k is k = n− 1−
p̄(n) = 2. We have spatial homology truncations

t<2(L1) = t<2(L2) = S1 ∨ S1,
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the 1-skeleton of T 2. The p̄-intersection space is I p̄X = cone(g), where g is the
composition

L<2 = (S1 ∨ S1)× {0, 1} �
� f //

� x

g ++VVVVVVVVVVVVVVV
L = T 2 × {0, 1}� _

j
��

M = T 2 × I.

We shall proceed to work out its reduced homology. The braid utilized in the proof
of Theorem 2.2.5 looks like this:

0

��;;;;;;
��

H2(L<2) = 0

��;;;;;;

0

��
H2(M) ∼= Z� n

α− ��;;;;;;

α=0

��
H2(j) ∼= Z2� n

��;;;;;;

0

��
H1(f) = 0

0

��;;;;;;

0

��
H0(L<2) ∼= Z2

∼=

��;;;;;;

�� ��
H0(M) ∼= Z

0 ��;;;;;;

0

��
H0(j) = 0

H3(g) = 0

AA������

��;;;;;; H2(L) ∼= Z2

AA AA������

∼=

��;;;;;; H2(g) ∼= Z3

α+

AA AA������

��;;;;;; H1(L) ∼= Z4

AA AA������

�� ��;;;;;; H1(g) ∼= Z
0�

AA������

∼=

��;;;;;; H0(L) ∼= Z2

AA AA������

0

��;;;;;; H0(g) = 0

AA������

��;;;;;;

0

AA������
DDH3(j) ∼= Z

0�

AA������
� l DDH2(f) ∼= Z2

AA������

0

DDH1(L<2) ∼= Z4

∼=
AA������

DD DD
H1(M) ∼= Z2

0

AA������

0

DDH1(j) ∼= Z
0�

AA������

0

DDH0(f) = 0

AA������
DD 0

Therefore, the reduced homology of I p̄X,

H̃∗(I
p̄X) = H∗(g) = H∗(T

2 × I, (S1 ∨ S1)× {0, 1}),

is

H̃0(I p̄X) = 0,

H̃1(I p̄X) = Z〈pt×I〉,
H̃2(I p̄X) = Z〈T 2 × { 1

2}〉 ⊕ Z〈S1 × pt×I〉 ⊕ Z〈pt×S1 × I〉,
H̃3(I p̄X) = 0.

Let us now build the intersection space I q̄X. The cut-off value k is k = n−1−q̄(n) = 1.
The spatial homology truncations are

t<1(L1) = t<1(L2) = pt,

the 0-skeleton of T 2. The q̄-intersection space is I q̄X = cone(g), where g is the
composition

L<1 = pt×{0, 1} �
� f //

� v

g ))SSSSSSSSSSSS L = T 2 × {0, 1}� _

j
��

M = T 2 × I.

Thus I q̄X is obtained from a cylinder on the 2-torus by picking two points on it, one
on each of the two boundary components, and then joining the two points by an arc
outside of the cylinder. Its reduced homology

H̃∗(I
q̄X) = H∗(g) = H∗(T

2 × I, pt×{0, 1}),
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can be determined from the long exact sequence of the pair and is given by

H̃0(I q̄X) = 0,

H̃1(I q̄X) = Z〈pt×I〉 ⊕ Z〈S1 × pt×{ 1
2}〉 ⊕ Z〈pt×S1 × { 1

2}〉,
H̃2(I q̄X) = Z〈T 2 × { 1

2}〉,
H̃3(I q̄X) = 0.

The table below contrasts the intersection space homology with the intersection ho-
mology of X, listing the generators in each dimension.

r IH p̄
r (X) IH q̄

r (X) H̃r(I
p̄X) H̃r(I

q̄X)
0 pt pt 0 0
1 S1 × pt 0 pt×I pt×I

pt×S1 S1 × pt
pt×S1

2 0 Σ(S1 × pt) T 2 × { 1
2} T 2 × { 1

2}
Σ(pt×S1) S1 × pt×I

pt×S1 × I
3 Σ(S1 × S1) Σ(S1 × S1) 0 0

The relative 2-cycle S1×pt×I in the p̄-intersection space homology corresponds to the
suspension Σ(S1×pt) in the q̄-intersection homology, similarly pt×S1×I corresponds
to Σ(pt×S1). In dimension 1, we have an analogous correspondence between the
cycles S1 × pt, pt×S1. The fundamental class Σ(S1 × S1) is present in intersection
homology but is not seen in the homology of the intersection spaces. This is a general
phenomenon and explains why the duality holds for the reduced, not the absolute,
homology. Except for this phenomenon, the homology of the intersection spaces
sees more cycles than the intersection homology. The 2-cycle T 2×{ 1

2}, geometrically
present in X, is recorded by both the homology of I p̄X and I q̄X, but remains invisible
to intersection homology, though an echo of it is the 3-cycle ΣT 2 in intersection
homology. By the duality theorem, the 2-cycle T 2 × { 1

2} must have a dual partner.
Indeed, the intersection space homology automatically finds the geometrically dual
partner as well: It is the suspension of a point, the relative cycle pt×I. The relative
p̄-cycle S1× pt×I is dual to the q̄-cycle pt×S1 and the relative p̄-cycle pt×S1× I is
dual to the q̄-cycle S1× pt. In the table, one can also observe the reflective nature of
the relationship between intersection homology and the homology of the intersection
spaces. The example shows that in degrees other than k = n−1− p̄(n), the homology
of I p̄X need not contain a copy of intersection homology. (We shall return to this
point in Section 3.7.) In degree k it always does, as the proof of the theorem shows.

Let us also illustrate Corollary 2.2.7, relating the Euler characteristics of H̃∗(I
p̄X)

and IH p̄
∗ (X), in the context of this example. In general, see also Proposition 2.1.5,

χ(H̃∗(I
p̄X))− χ(IH p̄

∗ (X)) = χ(L)− 2χ<n−1−p̄(n)(L).

We have χ(L) = χ(T 2 × {0, 1}) = 0 and, since k = 2 for perversity p̄, χ<2(L) =
2− 4 = −2, whence

χ(H̃∗(I
p̄X))− χ(IH p̄

∗ (X)) = 4.

Indeed, χ(H̃∗(I
p̄X)) = 0 − 1 + 3 − 0 = 2 and χ(IH p̄

∗ (X)) = 1 − 2 + 0 − 1 = −2.
Furthermore, since a− = rkH2(T 2 × I) = 1 and a+ = rkH2(T 2 × I, ∂) = 2, we have
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according to equation (21),

rk H̃2(I p̄X) + rk IH p̄
2 (X) = rkH2(T 2 × I) + rkH2(T 2 × I, ∂) = 1 + 2 = 3,

in concurrence with the ranks listed in the table. Since q̄ = n̄ and the dimension
n = 3 is odd, we have for I q̄X:

χ(H̃∗(I
q̄X))− χ(IH q̄

∗(X)) = − rkH1(T 2 × {0, 1}) = −4,

consistent with χ(H̃∗(I
q̄X)) = 0−3+1−0 = −2 and χ(IH q̄

∗(X)) = 1−0+2−1 = 2.
Formula (21) states that

rk H̃1(I q̄X) + rk IH q̄
1 (X) = rkH1(T 2 × I) + rkH1(T 2 × I, ∂) = 2 + 1 = 3,

again in agreement with the ranks listed in the table.

Example 2.2.9. (The intersection space construction applied to a manifold point.)
The intersection space construction may in principle also be applied to a nonsingu-
lar, two-strata pseudomanifold. What happens when the construction is applied to
a manifold point x? One must remove a small open neighborhood of x and gets a
compact oriented manifold M with boundary ∂M = Sn−1. The open neighborhood
of x is an open n-ball, that is, the open cone on the link Sn−1. For a perversity p̄, the
cut-off degree k = n− 1− p̄(n) is at most equal to n− 1. Thus the spatial homology
truncation is t<kS

n−1 = pt. The fundamental class of the sphere is lost, no matter
which p̄ one takes. Thus I p̄N is M together with a whisker attached to the 0-cell of
the boundary sphere of M . This space is homotopy equivalent to M and to N −{x}.
The reduced homology of M satisfies Poincaré duality since H̃n(M) is dual to H̃0(M)
and Hr(M)→ Hr(M,∂M) = Hr(M,Sn−1) is an isomorphism for 0 < r < n.

Remark 2.2.10. There are two ways to truncate a chain complex C∗ algebraically.
The “good” truncation τ<kC∗ truncates the homology cleanly and corresponds to the
spatial homology truncation as introduced in Chapter 1. The so-called “stupid”
truncation σ<kC∗, defined by (σ<kC∗)i = Ci for i < k and (σ<kC∗)i = 0 for i ≥ k,
does not truncate the homology cleanly. On spaces, the stupid truncation σ<kL of
a CW-complex L would be σ<kL = Lk−1, the (k − 1)-skeleton of L, and is thus
much easier to define and to handle than the good spatial truncation. In light of
these advantages, one may wonder whether in the construction of the intersection
space, one could replace the good spatial truncation t<k(L, Y ) of the link L by the
above stupid truncation σ<kL and still get a space that possesses generalized Poincaré
duality. The following example will show that this is in fact not possible. Let Xn be
the 4-sphere, thought of as a stratified space

X = S4 = D4 ∪S3 D4 = M4 ∪L3 cone(L3),

where M4 = D4 and L3 = S3 is the link of the cone point, thought of as the bottom
stratum. Suppose L is equipped with the CW-structure

L = e0
1 ∪ e0

2 ∪ e1
1 ∪ e1

2 ∪ e2
1 ∪ e2

2 ∪ e3
1 ∪ e3

2,

so that the equatorial spheres S0 ⊂ S1 ⊂ S2 ⊂ L are all subcomplexes. Is cone(g),
where g is the composition

σ<kL = Lk−1 � � f //
� u

g
((QQQQQQQQQQQQ L = ∂M� _

j
��
M,
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a viable candidate for an intersection space of X? Since H̃∗(M) = H̃∗(D
4) = 0, the

exact sequence of the pair (M,Lk−1) shows

H̃∗(cone(g)) ∼= H̃∗−1(Lk−1).

For the middle perversity, one would take k = n/2 = 2. Thus σ<2L = L1 = S1 and
the middle homology of cone(g),

H̃2(cone(g)) ∼= H̃1(S1),

has rank one. If cone(g) had Poincaré duality, then the signature of the nondegenerate,

symmetric intersection form on H̃2(cone(g)) would have to be nonzero. (Zero signa-

ture would imply even rank.) But the signature of X = S4 is zero. Thus H̃∗(cone(g))
is a meaningless theory, unrelated to the geometry of X. It is therefore necessary to
choose a subgroup Y ⊂ C2(L) = Ze2

1 ⊕ Ze2
2 such that (L, Y ) ∈ ObCW2⊃∂ and apply

the good spatial truncation t<2(L, Y ), not the stupid truncation σ<2L. (Using σ<1L
or σ<3L does not yield self-dual homology groups either.) Any such Y arises as the
image of a splitting s : im ∂2 → C2(L) for ∂2 : C2(L) � im ∂2 = ker ∂1 = Z〈e1

1 − e1
2〉.

So we could for instance take Y = Ze2
1 or Y = Ze2

2 because ∂2(e2
1) = e1

1− e1
2 = ∂2(e2

2).

2.3. Independence of Choices of the Intersection Space Homology

The construction of the intersection spaces I p̄X involves choices of subgroups
Yi ⊂ Ck(Li), where the Li are the links of the singularities, such that (Li, Yi) is an
object in CWk⊃∂ with k = n− 1− p̄(n), n = dimX. Moreover, the chain complexes
C∗(Li) depend on the CW-structures on the links and these structures are another
element of choice. In this section we collect some results on the independence of these

choices of the intersection space homology H̃∗(I
p̄X).

Theorem 2.3.1. Let Xn be a compact oriented pseudomanifold with isolated sin-
gularities and fixed, simply connected links Li that can be equipped with CW-structures.
Then
(1) H̃∗(I

p̄X;Q) is independent of the choices involved in the construction of the in-
tersection space I p̄X,

(2) H̃r(I
p̄X;Z) is independent of choices for r 6= n− 1− p̄(n), and

(3) H̃k(I p̄X;Z), k = n− 1− p̄(n), is independent of choices if either

Ext(im(Hk(M,L)→ Hk−1(L)), Hk(M)) = 0,

or

Ext(Hk(M,L), im(Hk(L)→ Hk(M))) = 0.

Proof. We shall first look at the integral homology groups. For r > k, the proof
of Theorem 2.2.5 exhibits isomorphisms

Hr(M)
∼=−→ H̃r(I

p̄X).

Thus H̃r(I
p̄X) is independent of the choices of Yi for r > k. Similarly, the isomor-

phisms

H̃r(I
p̄X)

∼=−→ Hr(j) = Hr(M,L)

for r < k show that H̃r(I
p̄X) does not depend on the choices of Yi. This proves

statement (2); it remains to investigate r = k. By Theorem 2.2.5, the pair (H̃∗(I
p̄X),
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IH p̄
∗ (X)) is k-reflective across the homology of the links. The associated reflective

diagram near k is

IH p̄
k (X)� t

α′+

&&NNNNNNNN

Hk(L)
β−=j∗ // Hk(M)

α //

α′−
88 88pppppppp

� s

α− &&MMMMMMMM
Hk(j)

β+=∂∗// Hk−1(L).

H̃k(I p̄X)

α+

88 88qqqqqqqq

The sequence

(22) 0→ Hk(M)
α−−→ H̃k(I p̄X)

β+α+−→ imβ+ → 0

is exact. If Ext(imβ+, Hk(M)) = 0, then the induced exact sequence

0→ Hom(imβ+, Hk(M)) −→ Hom(H̃k(I p̄X), Hk(M))
−◦α−−→ Hom(Hk(M), Hk(M))

−→ Ext(imβ+, Hk(M)) = 0

shows that the sequence (22) splits. Thus

H̃k(I p̄X) ∼= Hk(M)⊕ imβ+

is independent of the choice of Yi. Similarly, if Ext(Hk(j), imβ−) = 0, then the exact
sequence

(23) 0→ imβ− −→ H̃k(I p̄X)
α+−→ Hk(j)→ 0

splits and

H̃k(I p̄X) ∼= Hk(j)⊕ imβ−

is again independent of the choice of Yi. This establishes claim (3) of the theorem.
Finally, working with rational coefficients, the sequences (22) and (23) split with-

out any assumption. This, together with

H̃r(I
p̄X;Q) ∼=

{
Hr(M ;Q), r > k,

Hr(j;Q), r < k,

proves claim (1) of the theorem. �

Remark 2.3.2. The assumption that the links be simply connected is adopted
only to ensure the existence of I p̄X and its omission does not invalidate the theorem,
as the simple connectivity is not used during the proof. In practice, I p̄X often exists
even if the links are not simply connected, as illustrated by Example 2.2.8 above and
Example 2.3.3 below.

Example 2.3.3. Let Lp be a 3-dimensional lens space with fundamental group
π1(Lp) ∼= Z/p, p ≥ 2. Let M4 be the total space of a D2-bundle over S2 with ∂M =
Lp. Let X4 be the pseudomanifold obtained from M by coning off the boundary.
Since this is a rational homology manifold, the ordinary rational homology of X
enjoys Poincaré duality; nevertheless we shall investigate the intersection space Im̄X
of X. Here k = n−1− m̄(n) = 2, so that we must determine a truncation t<2(Lp), as
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Lp is the link of the singularity. (Note that this is another example involving a non-
simply connected link.) The standard cell structure for Lp is Lp = e0 ∪ e1 ∪p e2 ∪ e3

with corresponding cellular chain complex

Ze3 0−→ Ze2 p−→ Ze1 0−→ Ze0.

Thus we may choose t<2(Lp) = e0 ∪ e1 ∪p e2, the 2-skeleton of Lp. Then Im̄X =
M/(S1 ∪p e2), S1 ∪p e2 ↪→ Lp = ∂M ↪→M. The exact sequence of the pair (M,Lp),

H2(Lp)→ H2(M)→ H2(M,Lp)→ H1(Lp)→ H1(M)

is

0→ Z p→ Z→ Z/p → 0,

whence

Ext(im(H2(M,Lp)→ H1(Lp)), H2(M)) = Ext(Z/p,Z) = Z/p 6= 0,

but

Ext(H2(M,Lp), im(H2(Lp)→ H2(M))) = Ext(Z, 0) = 0.

By Theorem 2.3.1, the integral homology H̃∗(I
m̄X;Z) is independent of choices.

Example 2.3.4. There are of course manifolds M with boundary ∂M = L for
which the hypothesis in (3) of Theorem 2.3.1 is not satisfied, that is, both Ext groups
are nonzero. Consider for instance M9 = Lp × S4 ×D2, where Lp is a 3-dimensional
lens space with fundamental group π1(Lp) ∼= Z/p, p ≥ 2, and take k = 3 = 8 − p̄(9)
for a perversity p̄ with p̄(9) = 5. The relevant homology groups are

H2(∂M) ∼= Z/p〈ω × pt×[S1]〉,
H3(M) ∼= Z〈[Lp]× pt×pt〉,

H3(M,∂M) ∼= Z/p〈ω × pt×[D2, ∂D2]〉,

where [−] denotes various fundamental classes and ω is the generating loop in Lp. The
connecting homomorphism ∂∗ : H3(M,∂M) → H2(∂M) is an isomorphism because
it maps the generator ω × pt×[D2, ∂D2] to

∂∗(ω × pt×[D2, ∂D2]) = ω × pt×∂∗[D2, ∂D2] = ω × pt×[∂D2],

which generates H2(∂M). Thus the exact sequence of the pair (M,∂M) has the form

H3(∂M)� H3(M)
0→ H3(M,∂M)

∼=→ H2(∂M).

It follows that

Ext(im(H3(M,∂M)→ H2(∂M)), H3(M)) = Ext(Z/p,Z) = Z/p 6= 0

and

Ext(H3(M,∂M), im(H3(∂M)→ H3(M))) = Ext(Z/p,Z) = Z/p 6= 0.

As an application of Theorem 2.3.1, we shall see that even the integral homology
of the (middle perversity) intersection space is well-defined independent of choices
for large classes of isolated hypersurface singularities in complex algebraic varieties.
Let w0 ≤ w1 ≤ · · · ≤ wn be a nondecreasing sequence of positive integers with
gcd(w0, . . . , wn) = 1. We shall refer to the wi as weights. Let z0, . . . , zn be complex
variables. For each i, we assign the weight (or “degree”) wi to the variable zi. This
means that the weighted degree of a monomial zu0

0 zu1
1 · · · zunn is w0u0 + · · ·+ wnun.
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Definition 2.3.5. A polynomial f ∈ C[z0, . . . , zn] is weighted homogeneous if

f(λw0z0, . . . , λ
wnzn) = λdf(z0, . . . , zn),

where d is the weighted degree of f .

For example, f(z0, z1, z2, z3) = z7
0z3 + z4

1 + z3
2z0 + z2

3z1 + z5
0z1z2 is weighted

homogeneous for weights (w0, w1, w2, w3) = (5, 14, 17, 21) with weighted degree d =
56. If all weights are equal to one, then “weighted homogeneous” is synonymous with
“homogeneous”. We shall be specifically interested in 3-folds, so we shall take n = 3.

Definition 2.3.6. A weight quadruple (w0, w1, w2, w3) is called well-formed (see
[BGN03]) if for any triple of distinct indices (i, j, k), gcd(wi, wj , wk) = 1. We shall
also refer to a polynomial f ∈ C[z0, z1, z2, z3] as well-formed if it is weighted homo-
geneous with respect to a well-formed weight quadruple.

The above example of a weighted homogeneous polynomial is well-formed in this
sense.

Theorem 2.3.7. Let X be a complex projective algebraic 3-fold with only isolated
singularities. If all the singularities are hypersurface singularities that are weighted

homogeneous and well-formed, then the integral homology H̃∗(I
m̄X) is well-defined,

independent of choices.

Proof. Let xi be one of the isolated hypersurface singularities of X. Since xi
is a hypersurface singularity, there exists a complex polynomial fi in four variables
z0, z1, z2, z3 such that an open neighborhood of xi in X is homeomorphic to the
intersection V (fi)∩ intD8

ε of the hypersurface V (fi) = f−1
i (0) ⊂ C4 with an open ball

intD8
ε = {z ∈ C4 | |z| < ε} of suitably small radius ε > 0. Under the homeomorphism,

xi corresponds to the origin 0 ∈ V (fi). The origin is the only singularity of V (fi).
Set S7

ε = ∂D8
ε = {z ∈ C4 | |z| = ε} and Li = V (fi)∩S7

ε . The space Li has dimension

dimLi = dimS7
ε + dimR V (fi)− dimR C4 = 7 + 6− 8 = 5.

For sufficiently small ε, Li is a smooth manifold by [Mil68, Corollary 2.9]. Fur-
thermore, [Mil68, Theorem 2.10] asserts that V (fi) ∩ D8

ε is homeomorphic to the
(closed) cone on Li. Thus an open neighborhood of xi in X is homeomorphic to the
(open) cone on Li and thus Li is the link of xi in the sense of stratification theory.
By [Mil68, Theorem 5.2], Li is simply connected. By assumption, fi is weighted
homogeneous with well-formed weights. According to [BGN03, Proposition 7.1], see
also [BG01, Lemma 5.8], this implies that H2(Li;Z) is torsion-free. Since Li is a
compact manifold, H2(Li;Z) is in addition finitely generated, hence free (abelian).
Consequently,

H2(L) =

w⊕
i=1

H2(Li)

is free, where w is the number of singularities of X. Thus the subgroup

im(H3(M,L)→ H2(L)) ⊂ H2(L)

is also free and

Ext(im(H3(M,L)→ H2(L)), H3(M)) = 0.

For the middle perversity m̄, we have m̄(6) = 2, so that k = 3. By the Independence-

Theorem 2.3.1, H̃∗(I
m̄X) is independent of choices. �
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If a link Li = V (fi)∩S7
ε in the context of the above proof is in addition known to be

spin, then Smale’s classification [Sma62] of simply connected closed spin 5-manifolds
implies that Li is diffeomorphic to S5#m(S2×S3), since H2(Li) is torsion-free. This
geometric information allows us to work out the intersection space explicitly and to
verify the independence of the intersection space homology rather directly. Indeed,
if m = 1 so that the link is S2 × S3, having the minimal CW-structure consistent
with its homology, i.e. S2 × S3 = e0 ∪ e2 ∪ e3 ∪ e5, then the boundary operator
C3(S2 × S3) → C2(S2 × S3) is zero. Therefore, C3 = Z3 (the cycle group) and
Y ⊂ C3 is forced to be zero. So there is in fact only one possible choice of Y .

Theorem 2.3.7 applies in particular to the case of nodal singularities: If a singular
point xi is a node, then the corresponding polynomial fi is z2

0 + z2
1 + z2

2 + z2
3 , which

is homogeneous (and hence well-formed). In this case, the link is in fact S2 × S3.
The case of isolated nodal singularities is rather important in string theory. It arises
there in the course of Calabi-Yau conifold transitions and will be discussed from this
perspective in Chapter 3.

2.4. The Homotopy Type of Intersection Spaces for Interleaf Links

In the previous section we have seen that in general the rational homology of
an intersection space of a given pseudomanifold is well-defined and that its integral
homology is well-defined at least under certain homological assumptions on the exte-
rior of the singular set. In the present section, we shall prove a stronger statement
under stronger hypotheses on the links of the singular points: If the links lie in the
interleaf category (Definition 1.9.1), then the homotopy type of the intersection space
is well-defined.

Let A be a topological space and k a positive integer. Consider the following
three properties for a map f : K → A:

(T1) K is a simply connected CW-complex,
(T2) f∗ : Hr(K;Z)→ Hr(A;Z) is an isomorphism for r < k and
(T3) Hr(K;Z) = 0 for r ≥ k.

Lemma 2.4.1. Let f : K → A be a map satisfying (T1)–(T3). If A is an object
of the interleaf category, then so is K.

Proof. By (T1), K is a simply connected CW-complex. By (T2) and (T3), the
even-dimensional integral homology of K is finitely generated, since this is true for A.
By Lemma 1.9.3, Heven(A;Z) is torsion-free, hence free (abelian) because it is finitely
generated. Thus, by (T2) and (T3), Heven(K;Z) is finitely generated free (abelian).
Since Hodd(A;Z) = 0 implies, again by (T2) and (T3), that Hodd(K;Z) = 0, we
deduce by an application of the universal coefficient theorem that Hodd(K;G) = 0
for any coefficient group G. �

Theorem 2.4.2. Let X be an n-dimensional compact PL pseudomanifold with
only isolated singularities x1, . . . , xw and links Li = Link(xi), i = 1, . . . , w. If all
Li, i = 1, . . . , w, are objects of the interleaf category, then the homotopy type of the
intersection space I p̄X is well-defined independent of choices. More precisely: Let
k = n − 1 − p̄(n). Given maps fi : (Li)<k → Li, i = 1, . . . , w, satisfying (T1)–(T3)

and a second set of maps f i : (Li)<k → Li, i = 1, . . . , w, satisfying (T1)–(T3) as
well, there exists a homotopy equivalence

I p̄X = cone(g) ' cone(g) = I p̄X,
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where g is the composition⊔
i

(Li)<k

⊔
fi−→
⊔
i

Li = ∂M
j
↪→M

and g is the composition ⊔
i

(Li)<k

⊔
fi−→
⊔
i

Li = ∂M
j
↪→M.

Proof. Since Li lies in ICW, there exists a homotopy equivalence εi : Li →
E(Li), where E(Li) is a finite CW-complex that has only even-dimensional cells, see
Proposition 1.9.7. Let ε′i : E(Li)→ Li be a homotopy inverse for εi. Set

L =
⊔
i

Li, E(L) =
⊔
i

E(Li),

ε =
⊔
i

εi : L→ E(L), ε′ =
⊔
i

ε′i : E(L)→ L.

Let F : E(L)k−1 → L be the restriction of ε′ to the (k − 1)-skeleton and let

G : E(L)k−1 −→M

be the composition

E(L)k−1 F−→ L = ∂M
j
↪→M.

The space cone(G) will serve as a reference model for the perversity p̄ intersection
space of X. Indeed, we shall show that both cone(g) and cone(g) are homotopy
equivalent to cone(G), hence they are in particular homotopy equivalent to each other.

Since (Li)<k is a simply connected homology truncation of Li (by (T1)–(T3) for
fi), it lies in ICW as well, by Lemma 2.4.1. Thus there exists a homotopy equivalence
(εi)<k : (Li)<k → E((Li)<k), where E((Li)<k) is a finite CW-complex that has only
even-dimensional cells. Let (εi)

′
<k : E((Li)<k) → (Li)<k be a homotopy inverse for

(εi)<k.
We claim that E((Li)<k) has no cells of dimension k or higher. To verify this, let

rd denote the number of d-dimensional cells of E((Li)<k). If k is even, then the even
cellular chain groups in degrees ≥ k are given by

Ck+2m(E((Li)<k)) = Zrk+2m , m ≥ 0.

Since all boundary maps are trivial, we have

Zrk+2m = Ck+2m(E((Li)<k)) = Hk+2m(E((Li)<k)) ∼= Hk+2m((Li)<k) = 0

by (T3). Thus rk+2m = 0 for all m ≥ 0 and E((Li)<k) is a complex of dimension at
most k − 1. Similarly, if k is odd, then Ck(E((Li)<k)) = 0 and rk+2m+1 = 0 for all
m ≥ 0 because the homology ranks equal the number of cells and the former vanish
in dimensions k + 2m+ 1, m ≥ 0, as before — the claim is established.

Let ei : E((Li)<k)→ E(Li) be a cellular approximation of (that is, cellular map
homotopic to) the composition

E((Li)<k)
(εi)
′
<k−→ (Li)<k

fi−→ Li
εi−→ E(Li).
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As E((Li)<k) has no cells of dimension k or higher, the map ei factors through the
(k − 1)-skeleton of E(Li),

E((Li)<k)
ei //

êi

��

E(Li).

E(Li)
k−1

+ �

99rrrrrrrrrr

Set

L<k =
⊔
i

(Li)<k, E(L<k) =
⊔
i

E((Li)<k),

ε<k =
⊔
i

(εi)<k : L<k → E(L<k), ε′<k =
⊔
i

(εi)
′
<k : E(L<k)→ L<k,

f =
⊔
i

fi : L<k → L, e =
⊔
i

ei : E(L<k)→ E(L), ê =
⊔
i

êi : E(L<k)→ E(L)k−1,

ẽ = êε<k : L<k → E(L)k−1.

The diagram

(24) L<k
g //

ẽ

��

M

idM

��
E(L)k−1 G // M

commutes up to homotopy because it factors as

L<k
f //

ẽ

��

L = ∂M
� � j //

idL

��

M

idM

��
E(L)k−1 F // L = ∂M

� � j // M

and the left-hand square homotopy commutes, since

F ẽ = (ε′ ◦ incl)(êε<k)
= ε′eε<k
' ε′(εfε′<k)ε<k
' f.

The map ẽ is a homotopy equivalence: If r ≥ k, thenHr(L<k) = 0 = Hr(E(L)k−1),
so that ẽ∗ : Hr(L<k)→ Hr(E(L)k−1) is an isomorphism in that range. Once we have
shown that ẽ is a homology isomorphism in the complementary range r < k as well,
it will follow from Whitehead’s theorem that ẽ is a homotopy equivalence, since L<k
and E(L)k−1 are CW-complexes, ẽ induces a bijection between the connected compo-
nents (Li)<k of L<k and the connected components E(Li)

k−1 of E(L)k−1, and each
of these components is simply connected. Suppose then that r < k. The skeletal
inclusion incl : E(L)k−1 ⊂ E(L) induces an isomorphism of cellular chain groups

incl∗ : Cr(E(L)k−1)
∼=−→ Cr(E(L)).

As Hr(E(L)k−1) = Cr(E(L)k−1) and Hr(E(L)) = Cr(E(L)), we deduce that

incl∗ : Hr(E(L)k−1) −→ Hr(E(L))
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is an isomorphism. By assumption, f∗ : Hr(L<k)→ Hr(L) is an isomorphism (prop-
erty (T2)). The commutativity of the pentagon

Hr(E(L<k))
(ε′<k)∗

∼=
//

ê∗

��

Hr(L<k)

f∗

∼= %%KKKKKKKKKK

Hr(L)

∼=
ε∗

yyssssssssss

Hr(E(L)k−1)
incl∗
∼=

// Hr(E(L))

implies that ê∗ is an isomorphism. Hence, as ẽ is the composition of the homotopy
equivalence ε<k and ê, ẽ∗ : Hr(L<k) → Hr(E(L)k−1) is an isomorphism for r < k
(and thus for all r).

Proposition 2.2.4 applied to the diagram (24) yields a homotopy equivalence

cone(g) ' cone(G)

extending the identity map on M . Since the fi and the f i both satisfy properties
(T1)–(T3), the same argument applied to the f i instead of the fi will produce a
homotopy equivalence

cone(g) ' cone(G).

�

2.5. The Middle Dimension

Let Xn be a compact oriented pseudomanifold whose dimension n is divisible by
4 and which has only isolated singularities with simply connected links. We work
exclusively with rational coefficients in this section. Since n̄(n) = m̄(n), an upper
middle perversity intersection space I n̄X for X may be taken to be equal to a lower
middle perversity intersection space Im̄X. Denote this space by IX = Im̄X =
I n̄X. Let m = n/2 be the middle dimension. The compact manifold-with-boundary
obtained by removing small open cone neighborhoods of the singularities is denoted
by (M,∂M). Theorem 2.2.5 defines a nonsingular pairing

H̃r(IX)⊗ H̃n−r(IX) −→ Q.

In the middle dimension, one obtains a nonsingular intersection form

H̃m(IX)⊗ H̃m(IX) −→ Q.

We shall prove that this form is symmetric. In particular, it defines an element in the
Witt group W (Q) of the rationals. On middle perversity intersection homology, one
has the symmetric, nonsingular Goresky-MacPherson intersection pairing

IHm(X)⊗ IHm(X) −→ Q,

which also defines an element in W (Q). We shall show that these two elements

coincide, so that while H̃m(IX) and IHm(X) can be vastly different, they do yield
essentially the same intersection theory.
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Lemma 2.5.1. Let (M,∂M) be an oriented compact manifold-with-boundary of
dimension 2m, with m even. Let dM : Hm(M) → Hm(M,∂M) = Hm(M,∂M)∗

be the Poincaré duality isomorphism inverse to capping with the fundamental class
[M,∂M ] ∈ H2m(M,∂M), α = j∗ : Hm(M) → Hm(M,∂M) the canonical map, and
let w ∈ Hm(M). If dM (w) annihilates the image of α, then α(w) = 0.

Proof. Set ω = dM (w), so that ω ∩ [M,∂M ] = w. If ω annihilates imα, then

〈j∗(ω), v〉 = 〈ω, j∗(v)〉 = 0

for all v ∈ Hm(M), j∗ : Hm(M,∂M)→ Hm(M), which implies that j∗(ω) = 0. The
diagram

Hm(M,∂M)
−∩[M,∂M ]- Hm(M)

Hm(M)

j∗

?
−∩[M,∂M ]- Hm(M,∂M)

j∗

?

commutes, whence

α(w) = j∗(ω ∩ [M,∂M ]) = j∗(ω) ∩ [M,∂M ] = 0.

�

Theorem 2.5.2. The intersection form

ΦIX : H̃m(IX)⊗ H̃m(IX) −→ Q

is symmetric. Its Witt element [ΦIX ] ∈W (Q) is independent of choices. In fact, if

ΦIH : IHm(X)⊗ IHm(X) −→ Q

denotes the Goresky-MacPherson intersection form, then

[ΦIX ] = [ΦIH ] ∈W (Q).

Proof. We shall use the following description of the intersection form on H̃m(IX).
Consider the commutative diagram (which is part of a self-duality isomorphism of an
m-reflective diagram)

H̃m(IX)

d∼=

��

α+

(( ((PPPPPPPPPP

Hm(∂M)
β− //

d∂∼=
��

Hm(M)
) 	

α−
66nnnnnnnnnn

α //

dM∼=
��

Hm(M,∂M)

d′M
∼=

��

β+ // Hm−1(∂M)

d′∂
∼=

��
Hm−1(∂M)∗

β∗+ // Hm(M,∂M)∗� u

α∗+ ((PPPPPPPPPP
α∗ // Hm(M)∗

β∗− // Hm(∂M)∗

H̃m(IX)∗
α∗−

66 66nnnnnnnnnn

The dotted isomorphism d is to be described. It determines the intersection form
ΦIX by the formula

ΦIX(v ⊗ w) = d(v)(w), v, w ∈ H̃m(IX).
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The Goresky-MacPherson intersection form ΦIH : imα ⊗ imα → Q is given by
ΦIH(v ⊗ w) = dM (v′)(w) for any v′ ∈ Hm(M) with α(v′) = v. This is well-defined
because if α(v′′) = v, then v′−v′′ is in the image of β−, v

′−v′′ = β−(u), u ∈ Hm(∂M),
and

dM (v′ − v′′)(w) = dMβ−(u)(α(w′)) = β∗+d∂(u)(α(w′)) = α∗β∗+d∂(u)(w′) = 0,

where α(w′) = w.
Frequently, we shall make use of the symmetry identity dM (v)(w) = d′M (w)(v),

v ∈ Hm(M), w ∈ Hm(M,∂M), which holds, since the cup product of m-dimensional
cohomology classes commutes as m is even.

Choose a basis {e1, . . . , er} for the subspace imα ⊂ Hm(M,∂M). Choose a subset
{e1, . . . , er} ⊂ Hm(M) with α(ei) = ei. In this basis, ΦIH(ei ⊗ ej) = dM (ei)(ej).
Define an annihilation subspace Q ⊂ Hm(M,∂M) by

Q = {q ∈ Hm(M,∂M) | dM (ei)(q) = 0, for all i}.

We claim that Q∩ imα = 0: Let v ∈ Q∩ imα. Then v = α(w) for some w ∈ Hm(M)
and dM (ei)(α(w)) = 0 for all i. Consequently,

dM (w)(ei) = d′M (ei)(w) = d′M (α(ei))(w) = α∗dM (ei)(w) = dM (ei)(α(w)) = 0

for all i and we see that dM (w) annihilates imα. By Lemma 2.5.1, v = α(w) =
0, which verifies the claim. Let us calculate the dimension of Q. The subspace
F ⊂ Hm(M,∂M)∗ spanned by {dM (e1), . . . , dM (er)} has dimension dimF = r, since
{e1, . . . , er} is a linearly independent set and dM is an isomorphism. If V is any
finite dimensional vector space and F ⊂ V ∗ is a subspace, then the dimension of the
corresponding annihilation space W = {v ∈ V | f(v) = 0 for all f ∈ F} is given by
dimW = dimV − dimF . Applying this dimension formula to V = Hm(M,∂M), we
get

dimQ = dimHm(M,∂M)− r,
or

dim imα+ dimQ = dimHm(M,∂M).

Hence we have an internal direct sum decomposition

Hm(M,∂M) = imα⊕Q.

Let {q1, . . . , ql} be a basis forQ. Then {e1, . . . , er, q1, . . . , ql} is a basis forHm(M,∂M).
By construction, the formula

(25) dM (ei)(qj) = 0

holds for all i, j. For the dual Hm(M,∂M)∗, we have the dual basis {e1, . . . , er, q1, . . . ,
ql}. Since dM : Hm(M)→ Hm(M,∂M)∗ is an isomorphism, there are unique vectors
pi ∈ Hm(M) such that dM (pi) = qi. We claim that {p1, . . . , pl, e1, . . . , er} is a basis
for Hm(M). Since dM is an isomorphism, the set {p1, . . . , pl} is linearly independent
and spans an l-dimensional subspace P ⊂ Hm(M). The linearly independent set
{e1, . . . , er} spans an r-dimensional subspace E ⊂ Hm(M). We will show that P ∩
E = 0. Let v =

∑
πipi =

∑
εjej ∈ P ∩ E, πi, εj ∈ Q. Then dM (v) =

∑
πiq

i,
α(v) =

∑
εjej , and∑

εjd
′
M (ej) = d′Mα(v) = α∗dM (v) = α∗

∑
πiq

i.
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Let w ∈ Hm(M) be an arbitrary vector. Its image α(w) can be written as α(w) =∑
ωkek, ωk ∈ Q. Thus

(
∑

εjd
′
M (ej))(w) = (α∗

∑
πiq

i)(w) = (
∑

πiq
i)(α(w))

= (
∑

πiq
i)(
∑

ωkek) =
∑
i,k

πiωkq
i(ek) = 0.

It follows that d′M
∑
εjej = 0 and so

∑
εjej = 0. Thus all coefficients εj vanish and

v =
∑
εjej = 0. Consequently, {p1, . . . , pl, e1, . . . , er} is a linearly independent set in

Hm(M). It is a basis, as

dimHm(M) = dimHm(M,∂M)∗ = dimHm(M,∂M) = r + l.

This finishes the verification of the claim. Since α+ is surjective, we can choose

qi ∈ H̃m(IX) with α+(qi) = qi. We claim that

B = {α−(p1), . . . , α−(pl), α−(e1), . . . , α−(er), q1, . . . , ql}

is a basis for H̃m(IX). Since α− is injective, the set {α−(p1), . . . , α−(pl), α−(e1), . . . ,

α−(er)} is linearly independent and spans imα− ⊂ H̃m(IX). The set {q1, . . . , ql}
is linearly independent (since {q1, . . . , ql} is linearly independent) and spans an l-

dimensional subspace Q ⊂ H̃m(IX). We shall show that imα− ∩ Q = 0. Suppose
v = α−(w) =

∑
λiqi ∈ imα− ∩Q. Since α+(v) = α(w) =

∑
λiqi and imα ∩Q = 0,

we have
∑
λiqi = 0. Therefore, λi = 0 for all i and v = 0. It follows that B is a

linearly independent set containing r + 2l vectors. The exact sequence

Hm(∂M)
α−β−−→ H̃m(IX)

α+−→ Hm(M,∂M)→ 0

shows that
dim H̃m(IX) = dimHm(M,∂M) + rk(α−β−).

Using rk(α−β−) = rkβ− = dim kerα and

r = rkα = dimHm(M)− dim kerα = r + l − dim kerα,

we see that
dim H̃m(IX) = (r + l) + l = r + 2l.

Thus B is a basis for H̃m(IX). This basis yields a dual basis

B∗ = {α−(p1)∗, . . . , α−(pl)
∗, α−(e1)∗, . . . , α−(er)

∗, q∗1, . . . , q
∗
l }

for H̃m(IX)∗. We observe that

(26) α∗(qi) = 0

and

(27) α(pi) = 0

for all i. Equality (26) holds, since on basis vectors,

α∗(qi)(ej) = qi(α(ej)) = qi(ej) = 0

and
α∗(qi)(pj) = qi(α(pj)) = qi(

∑
εkek) =

∑
εkq

i(ek) = 0.

Equality (27) follows from (26) by noting that, as d′M is an isomorphism, α(pi) van-
ishes if, and only if, d′Mα(pi) vanishes, and

d′Mα(pi) = α∗dM (pi) = α∗(qi) = 0.
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Furthermore, the relation

(28) q∗j = α∗+(qj)

holds for all j. Its verification will be carried out by checking the identity on the three
types of basis vectors of B: On vectors of the type α−(pk), we have

q∗j (α−(pk)) = 0 = qj(α(pk)) = (α∗+(qj))(α−(pk)),

using equation (27). On vectors of the type α−(ei), we have

α∗+(qj)(α−(ei)) = qj(α(ei)) = qj(ei) = 0 = q∗j (α−(ei)).

Finally, on vectors of the type qk, we have

q∗j (qk) = δjk = qj(qk) = qj(α+(qk)) = α∗+(qj)(qk),

which concludes the verification of (28).

Let us proceed to define the map d : H̃m(IX) → H̃m(IX)∗. On the elements of
the basis B, we set

d(α−(ei)) = α∗+dM (ei),
d(α−(pj)) = q∗j ,

d(qj) = α−(pj)
∗.

Set

IH = Q〈α−(e1), . . . , α−(er)〉 ⊂ H̃m(IX),

IH† = Q〈α−(e1)∗, . . . , α−(er)
∗〉 ⊂ H̃m(IX)∗,

L− = Q〈α−(p1), . . . , α−(pl)〉 ⊂ H̃m(IX),

L†− = Q〈α−(p1)∗, . . . , α−(pl)
∗〉 ⊂ H̃m(IX)∗,

L+ = Q〈q1, . . . , ql〉 ⊂ H̃m(IX),

L†+ = Q〈q∗1, . . . , q∗l 〉 ⊂ H̃m(IX)∗.

We obtain thus corresponding internal direct sum decompositions

H̃m(IX) = L− ⊕ IH ⊕ L+,

and

H̃m(IX)∗ = L†− ⊕ IH† ⊕ L
†
+.

Note that IH is isomorphic to the intersection homology of X. The isomorphism is
given by

IH
∼=−→ imα = IHm(X),

α−(ei) 7→ α+(α−(ei)) = α(ei) = ei.

We claim that d(IH) ⊂ IH†. To see this, we write d(α−(ei)) as a linear combination

d(α−(ei)) =
∑

πkα−(pk)∗ +
∑

εjα−(ej)
∗ +

∑
λsq
∗
s

with uniquely determined coefficients πk, εj , λs. The coefficient πk can be obtained
by evaluating on the basis vector α−(pk):

πk = (α∗+dM (ei))(α−(pk))
= dM (ei)(α(pk))
= 0,
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using (27). The coefficient λs can be obtained by evaluating on the basis vector qs:

λs = (α∗+dM (ei))(qs)
= dM (ei)(α+(qs))
= dM (ei)(qs)
= 0

by (25). The claim is thus established. We claim next that the restriction d| : IH →
IH† is injective: Let v ∈ IH be a vector with d(v) = 0. Writing v =

∑
εiα−(ei), we

have
α∗+dM (

∑
εiei) =

∑
εiα
∗
+dM (ei)

=
∑
εid(α−(ei))

= d(v)
= 0.

Since α∗+ is injective and dM is an isomorphism, it follows that
∑
εiei = 0. This

can only happen when εi = 0 for all i, which implies that v = 0. This finishes the
verification of the claim. From

dim IH = dim IH† = r

we conclude that

d| : IH
∼=−→ IH†

is an isomorphism. Note that under the above isomorphism IH ∼= IHm(X) to
intersection homology, d|IH is just the Goresky-MacPherson duality isomorphism

IHm(X)
∼=−→ IHm(X)∗. By construction, the restrictions

d| : L−
∼=−→ L†+, d| : L+

∼=−→ L†−

are isomorphisms as well. It follows from the above direct sum decompositions that
d is an isomorphism.

Our next objective is to prove that the pairing ΦIX , induced by d, is symmetric.
A sequence of calculations will lead up to this. Pairing IH with itself is symmetric:

d(α−(ei))(α−(ek)) = (α∗+dM (ei))(α−(ek))
= dM (ei)(α(ek))
= d′M (α(ek))(ei)
= (α∗dM (ek))(ei)
= (α∗−α

∗
+dM (ek))(ei)

= (α∗+dM (ek))(α−(ei))
= d(α−(ek))(α−(ei)).

The pairing is zero between IH and L−:

d(α−(ei))(α−(pj)) = (α∗+dM (ei))(α−(pj))
= dM (ei)(α(pj))
= 0,

by (27). The pairing is also zero between IH and L+:

d(α−(ei))(qj) = (α∗+dM (ei))(qj)
= dM (ei)(α+(qj))
= dM (ei)(qj)
= 0,
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by (25). The pairing vanishes between L− and IH:

d(α−(pj))(α−(ek)) = q∗j (α−(ek)) = 0

by definition of q∗j as a dual basis element. Pairing L− with itself yields another trivial
block:

d(α−(pj))(α−(pk)) = q∗j (α−(pk)) = 0,

again by definition of q∗j as a dual basis element. Pairing L− with L+ and pairing L+

with L− both give the identity matrix in our chosen bases:

d(α−(pj))(qk) = q∗j (qk)
= δjk
= α−(pk)∗(α−(pj))
= d(qk)(α−(pj)).

The pairing vanishes between L+ and IH:

d(qj)(α−(ek)) = α−(pj)
∗(α−(ek)) = 0

by definition of α−(pj)
∗ as a dual basis element. Finally, pairing L+ with itself yields

a trivial block:
d(qj)(qk) = α−(pj)

∗(qk) = 0.

We have
ΦIX(α−(ei)⊗ α−(ej)) = (α∗+dM (ei))(α−(ej))

= dM (ei)(α(ej))
= dM (ei)(ej)
= ΦIH(ei ⊗ ej).

In summary, we have shown that with respect to B, ΦIX has the matrix representation

(ΦIX)B =

IH L− L+

(ΦIH)B 0 0 IH
0 0 1l L−
0 1l 0 L+

with (ΦIH)B denoting the symmetric Goresky-MacPherson intersection matrix on
IHm(X) with respect to the basis {e1, . . . , er}, and where 1l denotes the identity
matrix of rank l. Thus ΦIX defines an element [ΦIX ] ∈ W (Q) in the Witt group

of the rationals. Set S = L− ⊕ L+ ⊂ H̃m(IX). The subspace S is split ([MH73])
because it contains the Lagrangian subspace L−, ΦIX |L− = 0, dimL− = l = 1

2 dimS.
Thus [ΦIX |S ] = 0 ∈W (Q) and we have

[ΦIX ] = [ΦIX |IH ] + [ΦIX |S ] = [ΦIH ] ∈W (Q).

It remains to be shown that the two squares

Hm(M) ⊂
α−- H̃m(IX)

α+-- Hm(M,∂M)

Hm(M,∂M)∗

∼= dM

?
⊂
α∗+- H̃m(IX)∗

∼= d

?
α∗−-- Hm(M)∗

∼= d′M

?

commute. The commutativity of the left-hand square can be checked on the basis
{p1, . . . , pl, e1, . . . , er} of Hm(M): For the vectors pj , we find

dα−(pj) = q∗j = α∗+(qj) = α∗+dM (pj)
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by (28), and for the vectors ei we have

dα−(ei) = α∗+dM (ei)

by definition. Thus the left-hand square commutes. The commutativity of the right-
hand square will be verified on the elements of B. For basis vectors α−(ei),

α∗−d(α−(ei)) = α∗−α
∗
+dM (ei)

= α∗dM (ei)
= d′Mα(ei)
= d′Mα+(α−(ei)).

For basis vectors α−(pj),

α∗−d(α−(pj)) = α∗−(q∗j ) = α∗−(α∗+(qj)) = α∗(qj) = 0 = d′Mα(pj) = d′Mα+(α−(pj)),

using (26), (27) and (28). For basis vectors qj , we need to verify the equality

α∗−(α−(pj)
∗) = d′M (qj) ∈ Hm(M)∗.

We will do this employing the basis {p1, . . . , pl, e1, . . . , er} of Hm(M):

α∗−(α−(pj)
∗)(pk) = α−(pj)

∗(α−(pk)) = δjk = qk(qj) = dM (pk)(qj) = d′M (qj)(pk),

α∗−(α−(pj)
∗)(ek) = α−(pj)

∗(α−(ek)) = 0 = dM (ek)(qj) = d′M (qj)(ek)

(using (25)). Hence the right-hand square commutes as well. �

Example 2.5.3. Let N4 = S2 × T 2. Drill out a small open 4-ball to obtain the
compact 4-manifold N0 = N − intD4 with boundary ∂N0 = S3. The manifold M8 =
N0 × S2 × S2 is compact with simply connected boundary L = ∂M = S3 × S2 × S2.
The pseudomanifold

X8 = M ∪L coneL

has one singular point of even codimension. Consequently, for classical intersection
homology IHm̄

∗ (X) = IH n̄
∗ (X) and for the intersection spaces Im̄X = I n̄X. We shall

denote the former groups by IH∗(X) and the middle perversity intersection space by

IX. Our objective is to compute the intersection form on H̃4(IX) and compare it
to the intersection form on IH4(X). We shall use the notation of the proof of the
Duality Theorem 2.2.5.

Let

a = [S2 × pt×pt], b = [pt×S1 × pt], c = [pt×pt×S1]

denote the three generating cycles of H∗(N). Inspecting the long exact homology
sequence of the pair (N0, ∂N0), we see that H1(N0) ∼= H1(N0, ∂N0) ∼= H1(N) is
generated by the cycles b, c. We see furthermore that H2(N0) ∼= H2(N) is generated
by a, b× c and H3(N0) ∼= H3(N) is generated by a× b, a× c. The homology of N0 is
summarized in the following table:

H∗(N0) H0 H1 H2 H3 H4

Generators pt b, c a, b× c a× b, a× c 0

Let

x = [S3 × pt×pt], y = [pt×S2 × pt], z = [pt×pt×S2]
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be the indicated cycles in H∗(L). By the Künneth theorem, the homology of L is
given by:

H∗(L) H0 H1 H2 H3 H4 H5 H6 H7

Generators pt 0 y, z x y × z x× y, x× z 0 x× y × z
If V is a vector space with basis e1, . . . , el, then e∗1, . . . , e

∗
l will denote the dual basis

for the linear dual V ∗. The Poincaré duality isomorphism

dL : H4(L)∗
∼=−→ H3(L)

is given by

dL(y × z)∗ = x.

We have

H3(M) = H3(N0)×H0(S2 × S2)⊕H1(N0)×H2(S2 × S2),

so that

H3(M) = Q〈a× b, a× c, b× y, c× y, b× z, c× z〉.
The middle homology of M is given by

H4(M) = H2(N0)×H2(S2 × S2)⊕H0(N0)×H4(S2 × S2),

so that

H4(M) = Q〈a× y, b× c× y, a× z, b× c× z, y × z〉.
The map

β− : H4(L) −→ H4(M)

maps the generator y × z to y × z ∈ H4(M), in particular, β− is injective. If v, w are
two homology classes, we shall from now on briefly write vw for their cross product
v × w. The surjective dual map

β∗− : H4(M)∗ −→ H4(L)∗

maps (yz)∗ to (yz)∗ and all other basis elements to zero. Next, let us discuss the
exact sequence

H4(L)
β−
↪→ H4(M)

α−→ H4(j)
δ+−→ H3(L)

ε−→ H3(M).

(Note that β+ = δ+ in the present context.) Let us first calculate the middle inter-
section homology group from it:

IH4(X) = imα ∼=
H4(M)

kerα
=
H4(M)

imβ−
=
H4(M)

Q〈yz〉
.

Hence,

IH4(X) = Q〈ay, bcy, az, bcz〉.
We claim that ε is the zero map. Since the boundary homomorphism H4(N0, ∂N0)→
H3(S3) maps the fundamental class [N ] = a × b × c, which we may identify with
the relative fundamental class [N0, ∂N0], to the fundamental class [∂N0], the latter
is mapped to 0 under H3(S3) → H3(N0). Pick some point in S2 × S2 to get a
commutative diagram of inclusions

S3 = ∂N0
//

��

N0

��
S3 × S2 × S2 // N0 × S2 × S2
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which induces a commutative square

H3(S3) //

��

H3(N0)

��
H3(L)

ε // H3(M)

Since the left vertical arrow maps [∂N0] to x and the upper horizontal arrow maps
[∂N0] to 0, it follows that ε(x) = 0. Since x generates H3(L), ε is indeed the zero
map. Consequently, δ+ is surjective,

im δ+ = Q〈x〉,
and

H4(j)

IH4(X)
=
H4(j)

imα
=
H4(j)

ker δ+
∼= im δ+ = Q〈x〉.

We have
H4(j) = H4(X) = Q〈ay, bcy, az, bcz, abc〉,

with
δ+(abc) = x.

The Poincaré duality isomorphism

dM : H4(M)∗
∼=−→ H4(j)

is given by
(ay)∗ 7→ bcz
(bcy)∗ 7→ az
(az)∗ 7→ bcy
(bcz)∗ 7→ ay
(yz)∗ 7→ abc.

Take spβ : imβ∗− → H4(M)∗ to be

spβ(yz)∗ = (yz)∗.

This determines sqδ : im δ+ → H4(j):

sqδ(x) = dMspβd
−1
L (x) = dMspβ(yz)∗ = dM (yz)∗ = abc.

The middle intersection space homology group is given by

H̃4(IX) = Q〈ay, bcy, az, bcz, yz, abc〉.
Note that α(yz) = 0, since yz is in the image of β−. The factorization

H4(M)
α−−→ H̃4(IX)

α+−→ H4(j)

of α is given by
α−(ay) = ay, α+(ay) = ay
α−(bcy) = bcy, α+(bcy) = bcy
α−(az) = az, α+(az) = az
α−(bcz) = bcz, α+(bcz) = bcz
α−(yz) = yz, α+(yz) = 0

α+(abc) = abc.

The map β+ : H4(j)→ H3(L) agrees with δ+, i.e. maps abc to x and all other basis

elements to zero. Take the splitting spα : H4(M)∗ → H̃4(IX)∗ for α∗− to be

spα(ay)∗ = (ay)∗, spα(bcy)∗ = (bcy)∗, spα(az)∗ = (az)∗,
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spα(bcz)∗ = (bcz)∗, spα(yz)∗ = (yz)∗.

Take the splitting sqγ : H4(j)→ H̃4(IX) for γ+ = α+ to be

sqγ(ay) = ay, sqγ(bcy) = bcy, sqγ(az) = az,

sqγ(bcz) = bcz, sqγ(abc) = abc.

Thus sp is

imβ∗−
sp−→ H̃4(IX)∗

(yz)∗ 7→ (yz)∗

and sq is

im δ+
sq−→ H̃4(IX)

x 7→ abc.

The Poincaré duality isomorphism

d′M : H4(j)∗
∼=−→ H4(M)

is given by
(ay)∗ 7→ bcz
(bcy)∗ 7→ az
(az)∗ 7→ bcy
(bcz)∗ 7→ ay
(abc)∗ 7→ yz.

The following table calculates the duality isomorphism

d : H̃4(IX)∗
∼=−→ H̃4(IX)

on the middle intersection space homology group:

v d(v)

(ay)∗ = α∗+(ay)∗ γ−d
′
M (ay)∗ = γ−(bcz) = bcz

(bcy)∗ = α∗+(bcy)∗ γ−d
′
M (bcy)∗ = γ−(az) = az

(az)∗ = α∗+(az)∗ γ−d
′
M (az)∗ = γ−(bcy) = bcy

(bcz)∗ = α∗+(bcz)∗ γ−d
′
M (bcz)∗ = γ−(ay) = ay

(abc)∗ = α∗+(abc)∗ γ−d
′
M (abc)∗ = γ−(yz) = yz

(yz)∗ = sp(yz)
∗ sqdL(yz)∗ = sq(x) = abc

(Note γ− = α− here.) The intersection form on H̃4(IX) with respect to the basis
{ay, bcy, az, bcz, abc, yz} is thus given by the matrix

0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


On the basis elements {ay, bcy, az, bcz}, this matrix contains the block

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


which is the intersection form on IH4(X).
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2.6. Cap products for Middle Perversities

The intersection space cohomology trivially has internal (with respect to the space
and with respect to the perversity) cup products

Hr(I p̄X)⊗Hs(I p̄X)
∪−→ Hr+s(I p̄X),

given by the ordinary cup product. The ordinary cap product

H̃r(Im̄X)⊗ H̃i(I
m̄X)

∩−→ H̃i−r(I
m̄X)

is of little use in establishing duality isomorphisms, since H̃∗(I
m̄X) never contains an

orientation class, the reason being that H̃n(Im̄X) ∼= H̃0(I n̄X)∗ = 0 (n = dimX, X
connected). Orientation classes for singular spaces X are usually contained in H∗(X),
so what would be desirable would be cap products of the type

H̃r(Im̄X)⊗ H̃i(X)
∩−→ H̃i−r(I

n̄X)

and

H̃r(I n̄X)⊗ H̃i(X)
∩−→ H̃i−r(I

m̄X).

We shall construct such products, at least on the even cohomology H2∗ of the middle
perversity intersection spaces. Chern classes of a complex vector bundle, for instance,
lie in the even cohomology of the underlying base space. The L-class of a pseudo-
manifold, when defined, generally lies in the ordinary homology of X. Thus the new
product allows one to multiply such classes and get a result that is again a middle
perversity intersection space homology class. In constructing the products, we shall
concentrate on the important two middle perversities and leave the obvious modifica-
tions necessary to deal with other perversities to the reader. Similarly, it is possible
to go beyond the even cohomology-degree assumption, but we do not work this out
here.

2.6.1. Motivational Considerations. The existence of a cap product of the
type

H̃r(Im̄X)⊗ H̃i(X)
∩−→ H̃i−r(I

n̄X)

seems counterintuitive from the point of view of classical intersection homology. The
product asserts that one may take a class in the cohomology of the middle perversity
intersection space, pair it with an arbitrary homology class and one will end up with
a class that lifts back to a class in the homology of the middle perversity intersection
space again. An analogous statement for intersection homology is certainly false, as
the following example shows. Suppose X is the pseudomanifold with one singularity
obtained by coning off the boundary of a compact manifold M of dimension, say, 10.
The codimension of the singularity is even, so Im̄X = I n̄X = IX and IHm̄

∗ (X) =
IH n̄
∗ (X) = IH∗(X). There cannot generally be a cap product

∩ : IH2(X)⊗H4(X) −→ IH2(X),

for example. The reason is that since 2 is below the middle dimension 5, we have
IH2(X) = H2(M) and IH2(X) = H2(M). Furthermore, H4(X) = H4(M,∂M) so
that the existence of the above product would amount to a cap product

∩ : H2(M)⊗H4(M,∂M) −→ H2(M).
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Such a product cannot generally be defined. The evaluation of the absolute chain-level
product

(29) ∩ : Cj(M)⊗ Ci(M) −→ Ci−j(M),

on the submodule Cj(M)⊗Ci(∂M) will lead to chains in Ci−j(∂M), but these chains
can be nontrivial, even homologically. Thus the product (29) induces only a product

∩ : Hj(M)⊗Hi(M,∂M) −→ Hi−j(M,∂M)

and not a product

∩ : Hj(M)⊗Hi(M,∂M) −→ Hi−j(M).

Why, then, does the pairing of an intersection space homology class with an arbi-
trary homology class again yield an intersection space homology class? Let us give a
systematic analysis of the behavior of intersection homology versus the homology of
intersection spaces in this regard. The analysis continues to be framed in the context
of the above 10-dimensional X. Let the symbol “a” denote the absolute (co)homology
of M and let the symbol “r” denote the relative (co)homology of the pair (M,∂M).
Since we always wish to cap with arbitrary homology classes, we only deal with cap
products of the type − ∩ r → −. As we have seen, capping an absolute cohomol-
ogy class with a relative homology class gives a relative homology class. Capping a
relative cohomology class with a relative homology class gives an absolute homology
class, since (29) restricts to zero on the submodule Cj(M,∂M)⊗Ci(∂M). Thus, cap
type behaves like a logical negation operator

r ⊗ r → a,
a⊗ r → r.

We shall first focus on intersection homology. To simplify our analysis, we shall leave
aside the middle dimension. In the tables below, a field will be crossed out (receive
an entry “×”) if either middle dimensional elements would be required to fill it or a
cap product for this field would land in a negative dimension. We investigate in detail
for which i and j one can define a pairing

∩ : IHj(X)⊗Hi(X) −→ IHi−j(X).

In terms of the pair (M,∂M), the groups IHj(X) have the following types:

(30)
j 0 1 2 3 4 5 6 7 8 9 10

IHj
m̄(X) a a a a a × r r r r r

The entries of the following table show what the actual cap type of the result of ∩ on
IHj(X) ⊗Hi(X) is. Since cap type is negation, the rows of this table are obtained
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by negating the row (30).

(31)

irj 0 1 2 3 4 5 6 7 8 9 10
0 r × × × × × × × × × ×
1 r r × × × × × × × × ×
2 r r r × × × × × × × ×
3 r r r r × × × × × × ×
4 r r r r r × × × × × ×
5 r r r r r × × × × × ×
6 r r r r r × a × × × ×
7 r r r r r × a a × × ×
8 r r r r r × a a a × ×
9 r r r r r × a a a a ×
10 r r r r r × a a a a a

The next table contains the dimensions i− j of the results of ∩ on IHj(X)⊗Hi(X)

or on H̃j(IX)⊗Hi(X).

(32)

irj 0 1 2 3 4 5 6 7 8 9 10
0 0 × × × × × × × × × ×
1 1 0 × × × × × × × × ×
2 2 1 0 × × × × × × × ×
3 3 2 1 0 × × × × × × ×
4 4 3 2 1 0 × × × × × ×
5 5 4 3 2 1 0 × × × × ×
6 6 5 4 3 2 1 0 × × × ×
7 7 6 5 4 3 2 1 0 × × ×
8 8 7 6 5 4 3 2 1 0 × ×
9 9 8 7 6 5 4 3 2 1 0 ×
10 10 9 8 7 6 5 4 3 2 1 0

The table below decodes the a/r-type of IHi−j(X).

(33)
i− j 0 1 2 3 4 5 6 7 8 9 10

IHm̄
i−j(X) a a a a a × r r r r r

Putting the result of table (33) into table (32) we obtain:

(34)

irj 0 1 2 3 4 5 6 7 8 9 10
0 a × × × × × × × × × ×
1 a a × × × × × × × × ×
2 a a a × × × × × × × ×
3 a a a a × × × × × × ×
4 a a a a a × × × × × ×
5 × a a a a × × × × × ×
6 r × a a a × a × × × ×
7 r r × a a × a a × × ×
8 r r r × a × a a a × ×
9 r r r r × × a a a a ×
10 r r r r r × a a a a a
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Take table (31) and table (34) and perform the transformation

(31) (34) (35)
r r → white
r a → black �
a r → white
a a → white

on it. (White fields mean that there is no inconsistency between the actual result
(31) of the cap product and the putative target (34). For instance, a, r receives white
because there is a canonical map from absolute to relative homology. The pair r, a
receives black, since you cannot always lift a relative class to an absolute one.) The
result is:

(35)

irj 0 1 2 3 4 5 6 7 8 9 10
0 � × × × × × × × × × ×
1 � � × × × × × × × × ×
2 � � � × × × × × × × ×
3 � � � � × × × × × × ×
4 � � � � � × × × × × ×
5 × � � � � × × × × × ×
6 × � � � × × × × ×
7 × � � × × × ×
8 × � × × ×
9 × × ×
10 ×

The presence of the black fields is the reason that no general cap product ∩ : IHj(X)⊗
Hi(X) −→ IHi−j(X) can be defined.

Let us carry out the very same kind of analysis for the homology of the intersection

space, asking for a cap product ∩ : H̃j(IX) ⊗ H̃i(X) → H̃i−j(IX). The groups

H̃j(IX) have the following a/r-types:

(36)
j 0 1 2 3 4 5 6 7 8 9 10

H̃j(IX) r r r r r × a a a a a

The entries of the following table show what the actual cap type of the result of ∩ on

H̃j(IX) ⊗ Hi(X) is. Since cap type is negation, the rows are obtained by negating
the row (36).

(37)

irj 0 1 2 3 4 5 6 7 8 9 10
0 a × × × × × × × × × ×
1 a a × × × × × × × × ×
2 a a a × × × × × × × ×
3 a a a a × × × × × × ×
4 a a a a a × × × × × ×
5 a a a a a × × × × × ×
6 a a a a a × r × × × ×
7 a a a a a × r r × × ×
8 a a a a a × r r r × ×
9 a a a a a × r r r r ×
10 a a a a a × r r r r r
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The table below decodes the a/r-type of H̃i−j(IX).

(38)
i− j 0 1 2 3 4 5 6 7 8 9 10

H̃i−j(IX) r r r r r × a a a a a

Putting the result of table (38) into table (32) we obtain:

(39)

irj 0 1 2 3 4 5 6 7 8 9 10
0 r × × × × × × × × × ×
1 r r × × × × × × × × ×
2 r r r × × × × × × × ×
3 r r r r × × × × × × ×
4 r r r r r × × × × × ×
5 × r r r r × × × × × ×
6 a × r r r × r × × × ×
7 a a × r r × r r × × ×
8 a a a × r × r r r × ×
9 a a a a × × r r r r ×
10 a a a a a × r r r r r

Take table (37) and table (39) and perform the above transformation

(37) (39) (40)
r r → white
r a → black �
a r → white
a a → white

on it to get

(40)

irj 0 1 2 3 4 5 6 7 8 9 10
0 × × × × × × × × × ×
1 × × × × × × × × ×
2 × × × × × × × ×
3 × × × × × × ×
4 × × × × × ×
5 × × × × × × ×
6 × × × × × ×
7 × × × × ×
8 × × × ×
9 × × ×
10 ×

There are no blackouts for H̃∗(IX). This explains why a cap product ∩ : H̃j(IX)⊗
H̃i(X)→ H̃i−j(IX) can be defined.

2.6.2. Canonical Maps. Let Xn be a pseudomanifold with isolated singular-
ities x1, . . . , xw. Let X̂ be the quotient of X obtained by identifying the points
x1, . . . , xw. Then X̂ is again a pseudomanifold. It has one singular point whose link
is the disjoint union of the links Li of the points xi. The quotient map X → X̂ is a
normalization of X̂ if all Li are connected. If w = 1, then X̂ = X. For the homology
we have the formula

H̃r(X̂) = Hr(M,∂M).
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If j : ∂M ↪→M denotes the inclusion of the boundary, then X̂ may also be described
as X̂ = cone(j). The reason why we introduce X̂ here is that there will be canonical

maps c : I p̄X → X̂, but if there is more than one singularity, i.e. w ≥ 2, then there is
no map from I p̄X to X. However, as far as (co)homology is concerned, switching back

and forth between X and X̂ is no big deal, since the map X → X̂, for X connected,
induces isomorphisms Hr(X) ∼= Hr(X̂) for r 6= 1 and H1(X̂) ∼= H1(X) ⊕ Zw−1.
The intersection homology does not change at all under normalization. Another in-
terpretation of X̂ is this: If a negative perversity value p̄(n) = −1 were allowed
(this would be one step below the zero perversity 0̄), then k = n − 1 − p̄(n) = n,
L<k = L<n = L = ∂M (since L has dimension n − 1), f = id : L<k → ∂M and

I p̄X = cone(g) = cone(jf) = cone(j) = X̂. So one may view X̂, but not X, as an
extreme case “I−1X” of an intersection space of X and thus a canonical map c should
have target X̂, not X.

To a diagram of continuous maps

X
f - Y

Z

h

?

hf

-

we can associate a commutative diagram

Y
h - Z

id - Z

X × {1}

f

6

id- X × {1}

hf

6

f- Y × {1}

h

6

cone(X)
?

∩

id- cone(X)
?

∩

cone(f)- cone(Y )
?

∩

The pushout of the left column is cone(f), the pushout of the middle column is
cone(hf) and the pushout of the right column is cone(h). Thus the horizontal maps
of the diagram induce maps

cone(f) −→ cone(hf)
c−→ cone(h).

The braid of the triple (f, hf, h) contains the exact sequences

Hr(X)
(hf)∗−→ Hr(Z)

b∗−→ Hr(hf)
∂∗−→ Hr−1(X)

as well as

Hr(Y )
h∗−→ Hr(Z)

a∗−→ Hr(h)
∂∗−→ Hr−1(Y ).
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The diagram

Hr(Z)
b∗- Hr(hf)

Hr(h)

c∗

?

a
∗

-

is contained in the braid and commutes. The corresponding diagram on cohomology

Hr(Z) �
b∗

Hr(hf)

Hr(h)

c∗

6
�

a ∗

commutes also.

Applying this to the diagram

L<k
f- L = ∂M

M

j

?

g=
jf

-

we obtain canonical maps

I p̄X = cone(g)
c−→ cone(j) = X̂

and

M
b−→ I p̄X

(the latter is the canonical inclusion map from the target of a map to its mapping
cone) such that

Hr(M)
b∗- H̃r(I

p̄X)

H̃r(X̂)

c∗

?

a
∗
-

and

Hr(M) �
b∗

H̃r(I p̄X)

H̃r(X̂)

c∗

6
�

a ∗

commute. The manifold M has the following interpretation as an intersection space:
If p̄(n) = n− 1 were allowed (it is actually one step above the top perversity t̄), then
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k = n−1− p̄(n) = 0, L<k = L<0 = ∅ (the empty space) and I p̄X = cone(∅→M) =
M+, the union of M with a disjoint point.

Remark 2.6.1. Due to the fact that the construction of intersection spaces re-
quires (in general) certain choices in the k-th cellular chain groups of the links, the
existence of maps between I p̄X and I q̄X for different perversities p̄, q̄ is a some-
what delicate matter and will not be pursued in the present book. When such maps
I p̄X → I q̄X exist, then certainly only for p̄ ≥ q̄. For such p̄, q̄ one has canonical maps
IH q̄
∗(X) → IH p̄

∗ (X) on intersection homology, once again documenting the reflec-
tive nature of the relationship between intersection space homology and intersection
homology.

2.6.3. Construction of the Cap Products. We take rational coefficients for
this section. With more care, integral products can also be defined, where possibly
exceptional degrees are those close to k. The difficulty stems from the fact that for ho-
mology, Hr(I

m̄X;Z) ∼= Hr(M ;Z) when r > k, while one need not have Hr(Im̄X;Z) ∼=
Hr(M ;Z) for cohomology when r > k. Since Hk(L<k) ∼= Ext(Hk−1(L),Z) (see Re-
mark 1.1.42), one has in the borderline case r = k + 1 the exact sequence

Ext(Hk−1(L),Z) −→ Hk+1(Im̄X;Z) −→ Hk+1(M ;Z)
g∗=0−→ Hk+1(L<k;Z) = 0,

which shows that for r = k + 1, Hr(Im̄X;Z) → Hr(M ;Z) is only onto with kernel
given by the image of the torsion subgroup of Hk−1(L;Z). Over Q, this group is zero,
so we get an isomorphism. In order not to clutter up our statements with torsion-
freeness assumptions in relevant degrees r close to k, we prefer to phrase them in this
book for rational coefficients only.

Proposition 2.6.2. Suppose n = dimX ≡ 2 mod 4. Then there exists a cap
product

H̃2l(Im̄X)⊗ H̃i(X̂)
∩−→ H̃i−2l(I

m̄X)

such that

H̃2l(Im̄X)⊗ H̃i(X̂)
∩- H̃i−2l(I

m̄X)

H̃2l(X̂)⊗ H̃i(X̂)

c∗⊗id

6

∩- H̃i−2l(X̂)

c∗

?

commutes, where the bottom arrow is the ordinary cap product.

Proof. Write n = 4m+ 2. If i > n, then H̃i(X̂) = 0, so we may assume i ≤ n.
From m̄(2p) = p− 1 it follows that

k = n− 1− m̄(n) = 4m+ 1− 2m = 2m+ 1 = n/2

is odd. Thus for r = 2l, we have either r > k or r < k. Suppose r > k. In this case,

the map b∗ : H̃r(Im̄X)→ H̃r(M) is an isomorphism. Since

i− r ≤ n− r < n− k = n/2 = k,

the map

c∗ : H̃i−r(I
m̄X) = Hi−r(g)→ Hi−r(j) = Hi−r(M,∂M) = H̃i−r(X̂)
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is an isomorphism. Define

H̃r(Im̄X)⊗ H̃i(X̂)
∩−→ H̃i−r(I

m̄X)

through the diagram

H̃r(Im̄X)⊗ H̃i(X̂)
∩- H̃i−r(I

m̄X)

H̃r(M)⊗Hi(M,∂M)

b∗⊗id ∼=

?
∩- Hi−r(M,∂M).

∼= c∗

?

Since the diagrams

(41)

H̃r(X̂)⊗ H̃i(X̂)
∩ - H̃i−r(X̂)

H̃r(M)⊗Hi(M,∂M)

a∗⊗id

?
∩- Hi−r(M,∂M)

wwwwwwwww
and

H̃r(X̂)
c∗- H̃r(Im̄X)

H̃r(M)

∼= b∗

?

a ∗

-

commute, we have for ξ ∈ H̃r(X̂) and x ∈ H̃i(X̂):

c∗(ξ) ∩ x = (b∗)−1a∗(ξ) ∩ x
= c−1

∗ (a∗(ξ) ∩ x) (by definition)
= c−1

∗ (ξ ∩ x) (by the commutativity of (41))

so that

c∗(c
∗(ξ) ∩ x) = ξ ∩ x

as required. Now suppose r < k. Then the map c∗ : H̃r(X̂) = Hr(M,∂M) →
H̃r(Im̄X) is an isomorphism. Define

H̃r(Im̄X)⊗ H̃i(X̂)
∩−→ H̃i−r(I

m̄X)

by

ξ ∩ x = b∗((c
∗)−1(ξ) ∩ x),

where b∗ is the map b∗ : H̃i−r(M) → H̃i−r(I
m̄X) and the cap product used on the

right-hand side is

∩ : Hr(M,∂M)⊗Hi(M,∂M) −→ Hi−r(M)→ Hi−r(M, ∗) = H̃i−r(M).
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(If i− r > k, then b∗ is an isomorphism.) Using the commutativity of the diagram

Hr(M,∂M)⊗Hi(M,∂M)
∩- H̃i−r(M)

H̃r(X̂)⊗ H̃i(X̂)

wwwwwwwww
∩ - H̃i−r(X̂)

a∗

?

we compute for ξ ∈ H̃r(X̂), x ∈ H̃i(X̂):

c∗(c
∗(ξ) ∩ x) = c∗(b∗(ξ ∩ x)) (by definition)

= a∗(ξ ∩ x)
= ξ ∩ x.

�

Proposition 2.6.3. Suppose n = dimX ≡ 0 mod 4. Then there exists a cap
product

H̃2l(Im̄X)⊗ H̃i(X̂)
∩−→ H̃i−2l(I

m̄X)

for 2l 6= n/2 such that

H̃2l(Im̄X)⊗ H̃i(X̂)
∩- H̃i−2l(I

m̄X)

H̃2l(X̂)⊗ H̃i(X̂)

c∗⊗id

6

∩- H̃i−2l(X̂)

c∗

?

commutes.

Proof. Write n = 4m. We may assume i ≤ n. From m̄(2p) = p − 1 it follows
that

k = n− 1− m̄(n) = 4m− 1− (2m− 1) = 2m = n/2.

Thus for r = 2l 6= n/2, we have either r > k or r < k. Suppose r > k. In this case,
the map b∗ : Hr(Im̄X)→ Hr(M) is an isomorphism. As in the case 2 mod 4,

i− r ≤ n− r < n− k = n/2 = k,

so the construction can proceed precisely as in the proof of Proposition 2.6.2. When
r < k, the cap product can be defined by the formula ξ ∩ x = b∗((c

∗)−1(ξ) ∩ x), just
as in the proof of Proposition 2.6.2. �

Proposition 2.6.4. Suppose n = dimX ≡ 1 mod 4. Then there exists a cap
product

H̃2l(Im̄X)⊗ H̃i(X̂)
∩−→ H̃i−2l(I

n̄X)

such that

H̃2l(Im̄X)⊗ H̃i(X̂)
∩- H̃i−2l(I

n̄X)

H̃2l(X̂)⊗ H̃i(X̂)

c∗⊗id

6

∩- H̃i−2l(X̂)

c∗

?
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commutes.

Proof. Write n = 4m + 1. As usual, we may assume i ≤ n. From m̄(n) =
(n− 3)/2, n̄(n) = (n− 1)/2 it follows that for Im̄X,

km̄ = n− 1− m̄(n) = 4m− 4m− 2

2
= 2m+ 1

is odd and for I n̄X,

kn̄ = n− 1− n̄(n) = 4m− 4m

2
= 2m

is even. Thus for r = 2l, we have either r > km̄ or r < km̄. Suppose r > km̄. In this

case, the map b∗m̄ : H̃r(Im̄X)→ H̃r(M) is an isomorphism. Since

i− r ≤ n− r < n− km̄ = 4m+ 1− (2m+ 1) = 2m = kn̄,

the map

cn̄∗ : H̃i−r(I
n̄X)→ Hi−r(M,∂M) = H̃i−r(X̂)

is an isomorphism. Define

H̃r(Im̄X)⊗ H̃i(X̂)
∩−→ H̃i−r(I

n̄X)

through the diagram

H̃r(Im̄X)⊗ H̃i(X̂)
∩- H̃i−r(I

n̄X)

H̃r(M)⊗Hi(M,∂M)

b∗m̄⊗id ∼=

?
∩- Hi−r(M,∂M).

∼= cn̄∗

?

Since the diagrams

(42)

H̃r(X̂)⊗ H̃i(X̂)
∩ - H̃i−r(X̂)

H̃r(M)⊗Hi(M,∂M)

a∗⊗id

?
∩- Hi−r(M,∂M)

wwwwwwwww
and

H̃r(X̂)
c∗m̄- H̃r(Im̄X)

H̃r(M)

∼= b∗m̄

?

a ∗

-

commute, we have for ξ ∈ H̃r(X̂) and x ∈ H̃i(X̂):

c∗m̄(ξ) ∩ x = (b∗m̄)−1a∗(ξ) ∩ x
= (cn̄∗ )

−1(a∗(ξ) ∩ x) (by definition)
= (cn̄∗ )

−1(ξ ∩ x) (by the commutativity of (42))

so that
cn̄∗ (c

∗
m̄(ξ) ∩ x) = ξ ∩ x
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as required. Now suppose r < km̄. Then the map c∗m̄ : H̃r(X̂) = Hr(M,∂M) →
H̃r(Im̄X) is an isomorphism. Define

H̃r(Im̄X)⊗ H̃i(X̂)
∩−→ H̃i−r(I

n̄X)

by

ξ ∩ x = bn̄∗ ((c
∗
m̄)−1(ξ) ∩ x),

where bn̄∗ is the map bn̄∗ : H̃i−r(M) → H̃i−r(I
n̄X) and the cap product used on the

right-hand side is

∩ : Hr(M,∂M)⊗Hi(M,∂M) −→ Hi−r(M)→ Hi−r(M, ∗) = H̃i−r(M).

(If i− r > kn̄, then bn̄∗ is an isomorphism.) Using the commutativity of the diagram

Hr(M,∂M)⊗Hi(M,∂M)
∩- H̃i−r(M)

H̃r(X̂)⊗ H̃i(X̂)

wwwwwwwww
∩ - H̃i−r(X̂)

a∗

?

we compute for ξ ∈ H̃r(X̂), x ∈ H̃i(X̂):

cn̄∗ (c
∗
m̄(ξ) ∩ x) = cn̄∗ (b

n̄
∗ (ξ ∩ x)) (by definition)

= a∗(ξ ∩ x)
= ξ ∩ x.

�

Proposition 2.6.5. Suppose n = dimX ≡ 3 mod 4. Then there exists a cap
product

H̃2l(I n̄X)⊗ H̃i(X̂)
∩−→ H̃i−2l(I

m̄X)

such that

H̃2l(I n̄X)⊗ H̃i(X̂)
∩- H̃i−2l(I

m̄X)

H̃2l(X̂)⊗ H̃i(X̂)

c∗⊗id

6

∩- H̃i−2l(X̂)

c∗

?

commutes.

Proof. Write n = 4m + 3. We may assume i ≤ n. From m̄(n) = (n − 3)/2,
n̄(n) = (n− 1)/2 it follows that for Im̄X,

km̄ = n− 1− m̄(n) = 4m+ 2− 4m

2
= 2m+ 2

is even and for I n̄X,

kn̄ = n− 1− n̄(n) = 4m+ 2− 4m+ 2

2
= 2m+ 1

is odd. Thus for r = 2l, we have either r > kn̄ or r < kn̄. Suppose r > kn̄. In this

case, the map b∗n̄ : H̃r(I n̄X)→ H̃r(M) is an isomorphism. Since

i− r ≤ n− r < n− kn̄ = 4m+ 3− (2m+ 1) = 2m+ 2 = km̄,
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the map

cm̄∗ : H̃i−r(I
m̄X)→ Hi−r(M,∂M) = H̃i−r(X̂)

is an isomorphism. Define

H̃r(I n̄X)⊗ H̃i(X̂)
∩−→ H̃i−r(I

m̄X)

through the diagram

H̃r(I n̄X)⊗ H̃i(X̂)
∩- H̃i−r(I

m̄X)

H̃r(M)⊗Hi(M,∂M)

b∗n̄⊗id ∼=

?
∩- Hi−r(M,∂M).

∼= cm̄∗

?

Since the diagrams

(43)

H̃r(X̂)⊗ H̃i(X̂)
∩ - H̃i−r(X̂)

H̃r(M)⊗Hi(M,∂M)

a∗⊗id

?
∩- Hi−r(M,∂M)

wwwwwwwww
and

H̃r(X̂)
c∗n̄- H̃r(I n̄X)

H̃r(M)

∼= b∗n̄

?

a ∗

-

commute, we have for ξ ∈ H̃r(X̂) and x ∈ H̃i(X̂):

c∗n̄(ξ) ∩ x = (b∗n̄)−1a∗(ξ) ∩ x
= (cm̄∗ )−1(a∗(ξ) ∩ x) (by definition)
= (cm̄∗ )−1(ξ ∩ x) (by the commutativity of (43))

so that

cm̄∗ (c∗n̄(ξ) ∩ x) = ξ ∩ x

as required. Now suppose r < kn̄. Then the map c∗n̄ : H̃r(X̂) = Hr(M,∂M) →
H̃r(I n̄X) is an isomorphism. Define

H̃r(I n̄X)⊗ H̃i(X̂)
∩−→ H̃i−r(I

m̄X)

by

ξ ∩ x = bm̄∗ ((c∗n̄)−1(ξ) ∩ x),

where bm̄∗ is the map bm̄∗ : H̃i−r(M)→ H̃i−r(I
m̄X) and the cap product used on the

right-hand side is

∩ : Hr(M,∂M)⊗Hi(M,∂M) −→ Hi−r(M)→ Hi−r(M, ∗) = H̃i−r(M).
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(If i− r > km̄, then bm̄∗ is an isomorphism.) Using the commutativity of the diagram

Hr(M,∂M)⊗Hi(M,∂M)
∩- H̃i−r(M)

H̃r(X̂)⊗ H̃i(X̂)

wwwwwwwww
∩ - H̃i−r(X̂)

a∗

?

we compute for ξ ∈ H̃r(X̂), x ∈ H̃i(X̂):

cm̄∗ (c∗n̄(ξ) ∩ x) = cm̄∗ (bm̄∗ (ξ ∩ x)) (by definition)
= a∗(ξ ∩ x)
= ξ ∩ x.

�

2.7. L-Theory

Let L• be the 0-connective symmetric L-spectrum, as in [Ran92, §16, page 173],
with homotopy groups

πi(L•) = Li(Z) =


Z, i ≡ 0 mod 4 (signature)

Z/2, i ≡ 1 mod 4 (de Rham invariant)

0, i ≡ 2, 3 mod 4

for i ≥ 0, and πi(L•) = 0 for negative i. Rationally, L• has the homotopy type of a
product of Eilenberg-MacLane spectra

L• ⊗Q '
∏
i≥0

K(Q, 4i).

A compact oriented smooth n-manifold-with-boundary (M,∂M) possesses a canonical
L•-orientation [M,∂M ]L ∈ Hn(M,∂M ;L•) which is given rationally by the homology
L-class of M :

[M,∂M ]L ⊗ 1 = L∗(M,∂M) = L∗(M) ∩ [M,∂M ]

∈ Hn(M,∂M ;L•)⊗Q =
⊕
i≥0

Hn−4i(M,∂M ;Q),

where L∗(M) ∈ H4∗(M ;Q) denotes the Hirzebruch L-class of (the tangent bundle
of) M and [M,∂M ] ∈ Hn(M,∂M ;Q) denotes the fundamental class in ordinary
homology. There is defined a cap product

∩ : Hi(M ;L•)⊗Hn(M,∂M ;L•) −→ Hn−i(M,∂M ;L•)

such that

− ∩ [M,∂M ]L : Hi(M ;L•) −→ Hn−i(M,∂M ;L•)

is an isomorphism. This product induces a cap product on the rationalized groups,

∩ : Hi(M ;L•)⊗Q⊗Hn(M,∂M ;L•)⊗Q −→ Hn−i(M,∂M ;L•)⊗Q
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such that the diagram

Hi(M ;L•)⊗Q⊗Hn(M,∂M ;L•)⊗Q ∩- Hn−i(M,∂M ;L•)⊗Q

Hi+4l(M ;Q)⊗Hn−4r(M,∂M ;Q)

proj

?
∩- Hn−i−4(l+r)(M,∂M ;Q)

proj

?

commutes, where the lower product is the usual cap product in ordinary homology.

Let Xn be an oriented, compact pseudomanifold of positive dimension n with
only isolated singularities and let (M,∂M) be the exterior, assumed to be smooth, of

the singular set. We define the reduced L•-orientation [X̂]L of X̂ to be

[X̂]L = [M,∂M ]L ∈ Hn(M,∂M ;L•) = H̃n(X̂;L•).

(The “denormalization” X̂ of X was defined in Section 2.6.2). We define the reduced

L-class L∗(X̂) of X̂ to be

L∗(X̂) = L∗(M,∂M) ∈ Hn−4∗(M,∂M ;Q) = H̃n−4∗(X̂;Q).

Thus [X̂]L ⊗ 1 = L∗(X̂).

Definition 2.7.1. A homology class

u = un + un−4 + un−8 + · · · ∈ H̃n−4∗(X̂;Q)

is called unipotent if

− ∩ un : Hr(M,∂M ;Q) −→ Hn−r(M ;Q)

(and

− ∩ un : Hr(M ;Q) −→ Hn−r(M,∂M ;Q))

are isomorphisms for all r. An L•-homology class u ∈ H̃n(X̂;L•) is called rationally

unipotent if u⊗ 1 ∈ H̃n(X̂;L•)⊗Q is unipotent.

Examples 2.7.2. If X is an oriented compact pseudomanifold, then the funda-
mental class u = [X] ∈ Hn(X;Q) is unipotent. Thus any class u with un = [X]

is unipotent. In particular, the L-class u = L∗(X̂) is unipotent, since the top-
component of the homology L-class of a pseudomanifold is the fundamental class.

The L•-homology fundamental class [X̂]L ∈ H̃n(X̂;L•) is rationally unipotent as

[X̂]L ⊗ 1 = L∗(X̂).

The following duality theorem covers all dimensions n, except n ≡ 0(8).

Theorem 2.7.3. Let X be an n-dimensional compact pseudomanifold, n > 0, with

only isolated singularities. Capping with a rationally unipotent class u ∈ H̃n(X̂;L•)
induces an isomorphism

− ∩ u⊗ 1 : H̃0(Im̄X;L•)⊗Q
∼=−→ H̃n(Im̄X;L•)⊗Q
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for n ≡ 2 mod 4 and n ≡ 4 mod 8 such that

H̃0(Im̄X;L•)⊗Q
∼=

−∩u⊗1
- H̃n(Im̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗

6

−∩u⊗1
- H̃n(X̂;L•)⊗Q

c∗

?

commutes, an isomorphism

− ∩ u⊗ 1 : H̃0(Im̄X;L•)⊗Q
∼=−→ H̃n(I n̄X;L•)⊗Q

for n ≡ 1 mod 4 such that

H̃0(Im̄X;L•)⊗Q
∼=

−∩u⊗1
- H̃n(I n̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗

6

−∩u⊗1
- H̃n(X̂;L•)⊗Q

c∗

?

commutes, and an isomorphism

− ∩ u⊗ 1 : H̃0(I n̄X;L•)⊗Q
∼=−→ H̃n(Im̄X;L•)⊗Q

for n ≡ 3 mod 4 such that

H̃0(I n̄X;L•)⊗Q
∼=

−∩u⊗1
- H̃n(Im̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗

6

−∩u⊗1
- H̃n(X̂;L•)⊗Q

c∗

?

commutes.

Proof. Let us provide the details for the case n ≡ 2 mod 4 first. We have

H̃0(Im̄X;L•)⊗Q =
⊕

l≥0 H̃
4l(Im̄X;Q)

∼=
⊕

4l<kH
4l(M,∂M ;Q)⊕

⊕
4l>kH

4l(M ;Q),

where k = n/2 (an odd number). Let {εl1, . . . , εljl} be a basis for H4l(M,∂M ;Q) when

4l < k and for H4l(M ;Q) when 4l > k. The homology groups are rationally given by

H̃n(Im̄X;L•)⊗Q =
⊕

l≥0 H̃n−4l(I
m̄X;Q)

∼=
⊕

n−4l>kHn−4l(M ;Q)⊕
⊕

n−4l<kHn−4l(M,∂M ;Q).

Since u is rationally unipotent, capping with the top component un of

u⊗ 1 = un + un−4 + . . . ∈ H̃n−4∗(X̂;Q)

yields isomorphisms

− ∩ un : H4l(M,∂M ;Q)
∼=−→ Hn−4l(M ;Q)

and
− ∩ un : H4l(M ;Q)

∼=−→ Hn−4l(M,∂M ;Q).
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Thus, setting elj = εlj ∩un yields bases {el1, . . . , eljl} for Hn−4l(M ;Q) when 4l < k and
for Hn−4l(M,∂M ;Q) when 4l > k. With respect to the basis

{ε01, . . . , ε0j0 , ε
1
1, . . . , ε

1
j1 , . . .}

of H̃0(Im̄X;L•)⊗Q and the basis

{e0
1, . . . , e

0
j0 , e

1
1, . . . , e

1
j1 , . . .}

of H̃n(Im̄X;L•)⊗Q, the linear map −∩ u⊗ 1 can be expressed as a matrix U . The
image of a basis vector εlp, 1 ≤ p ≤ jl, is

εlp ∩ (u⊗ 1) = εlp ∩ un + εlp ∩ un−4 + εlp ∩ un−8 + . . . ∈ Hn−4l−4∗

= elp +

jl+1∑
j=1

λl+1
j el+1

j +

jl+2∑
j=1

λl+2
j el+2

j + . . . .

(The cap product used here is of course the one provided by Proposition 2.6.2. For

εlp ∩ un−4i with 4l < k < 4(i + l), this involves the map b∗ : H̃∗(M) → H̃∗(I
m̄X).)

Hence, the l
p-column of U is

(0, . . . , 0︸ ︷︷ ︸
j0

, . . . , 0, . . . , 0︸ ︷︷ ︸
jl−1

, 0, . . . ,
p

1, . . . , 0︸ ︷︷ ︸
jl

, λl+1
1 , . . . , λl+1

jl+1
, . . .)T .

In terms of (jl × jr)-block matrices, U has thus the form

U =


Ij0 0 0 · · ·
∗ Ij1 0 · · ·
∗ ∗ Ij2
...

...
. . .

 ,

where Iq denotes the q×q identity matrix. We see that U is a lower triangular matrix
with entries 1 on the diagonal, i.e. a unipotent matrix. In particular, it is invertible
and so −∩ u⊗ 1 is an isomorphism. The commutativity of the diagram follows from
the commutative diagram of Proposition 2.6.2.

Let us explain why the other cases concerning the dimension n can be treated
analogously and why the argument breaks down when n ≡ 0 mod 8. Let k = n −
1 − p̄(n) be the cut-off value for the cohomology perversity (p̄ = m̄ or n̄) and k′ =
n− 1− q̄(n) be the cut-off value for the homology perversity (q̄ = n̄ or m̄). In order
for the above argument to work, the rational L•-cohomology has to be decomposed
into degrees 4l < k and 4l > k, so we need k 6≡ 0(4). In addition, the rational L•-
homology has to be decomposed into degrees n− 4l > k′ and n− 4l < k′, so we also
need n− k′ 6≡ 0(4). Since for complementary middle perversities we have k + k′ = n,
the two conditions are equivalent. The following table shows that this condition is
satisfied for all n (using appropriate complementary middle perversities), except when
n ≡ 0(8).

n 4q + 1 4q + 2 4q + 3 8q + 4 8q
p̄ m̄ m̄ n̄ m̄ m̄
k 2q + 1 2q + 1 2q + 1 4q + 2 4q
q̄ n̄ m̄ m̄ m̄ m̄
k′ 2q 2q + 1 2q + 2 4q + 2 4q
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Once the decomposition has been carried out, using for the homology decomposition
k′ instead of k, the rest of the argument is the same. �

Corollary 2.7.4. Let X be an n-dimensional, compact, oriented pseudomanifold
with only isolated singularities. Capping with the L•-homology fundamental class

[X̂]L ∈ H̃n(X̂;L•) induces rationally an isomorphism

− ∩ [X̂]L ⊗ 1 : H̃0(Im̄X;L•)⊗Q
∼=−→ H̃n(Im̄X;L•)⊗Q

for n ≡ 2 mod 4 and n ≡ 4 mod 8 such that

H̃0(Im̄X;L•)⊗Q
∼=

−∩[X̂]L⊗1

- H̃n(Im̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗

6

−∩[X̂]L⊗1

- H̃n(X̂;L•)⊗Q

c∗

?

commutes, an isomorphism

− ∩ [X̂]L ⊗ 1 : H̃0(Im̄X;L•)⊗Q
∼=−→ H̃n(I n̄X;L•)⊗Q

for n ≡ 1 mod 4 such that

H̃0(Im̄X;L•)⊗Q
∼=

−∩[X̂]L⊗1

- H̃n(I n̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗

6

−∩[X̂]L⊗1

- H̃n(X̂;L•)⊗Q

c∗

?

commutes, and an isomorphism

− ∩ [X̂]L ⊗ 1 : H̃0(I n̄X;L•)⊗Q
∼=−→ H̃n(Im̄X;L•)⊗Q

for n ≡ 3 mod 4 such that

H̃0(I n̄X;L•)⊗Q
∼=

−∩[X̂]L⊗1

- H̃n(Im̄X;L•)⊗Q

H̃0(X̂;L•)⊗Q

c∗

6

−∩[X̂]L⊗1

- H̃n(X̂;L•)⊗Q

c∗

?

commutes.

Proof. The class u = [X̂]L is rationally unipotent. �

Example 2.7.5. Let us work out the duality for the 12-dimensional pseudoman-
ifold

X12 = D4 × P4 ∪S3×P4 cone(S3 × P4),

where P4 denotes complex projective space. Let g ∈ H2(P4) be the negative of the
first Chern class of the tautological line bundle over P4 so that 〈g4, [P4]〉 = 1 and the
Pontrjagin class is p(P4) = (1 + g2)5 = 1 + 5g2 + 10g4. As L1(p1) = 1

3p1, we have
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L1(P4) = 5
3g

2. Since the signature of P4 is 1, we have L2(P4) = g4 by the Hirzebruch
signature theorem, so that

L∗(P4) = 1 +
5

3
g2 + g4.

In this example (M,∂M) = (D4 × P4, S3 × P4) and

L∗(M) = 1× L∗(P4) = 1× 1 +
5

3
1× g2 + 1× g4.

Let µ = [D4, S3] ∈ H4(D4, S3) and [P4] ∈ H8(P4) be the fundamental classes. Then
the homology L-class of (M,∂M) is given by

L∗(M,∂M) = (1× 1) ∩ µ× [P4] + 5
3 (1× g2) ∩ µ× [P4] + (1× g4) ∩ µ× [P4]

= µ× [P4] + 5
3µ× [P2] + µ× [P0].

The link L of the singularity of X is L = S3×P4. The cut-off-value k for the middle-
perversity intersection space Im̄X is k = n − 1 − m̄(n) = 11 − m̄(12) = 6. Since
all boundary operators in the cellular chain complex C∗(S

3) and C∗(P4) vanish, the
boundary operators in the complex C∗(S

3 × P4) vanish also because they are given
by the Leibniz formula. Thus L<k = L<6 is the 5-skeleton of S3×P4 and Im̄X is the
cofiber of the composite cofibration

(S3 × P4)5 ↪→ L = ∂M ↪→ D4 × P4.

Let d ∈ H4(D4, S3) be the unique generator such that d∩µ = [pt] ∈ H0(D4). For the
L•-homology we have

H̃12(Im̄X;L•)⊗Q = H̃12(Im̄X) ⊕ H̃8(Im̄X) ⊕ H̃4(Im̄X) ⊕ H̃0(Im̄X)
= H12(M) ⊕ H8(M) ⊕ H4(M,∂M) ⊕ H0(M,∂M)
= 0 ⊕ Q[pt]× [P4] ⊕ Qµ× [P0] ⊕ 0,

and for the L•-cohomology

H̃0(Im̄X;L•)⊗Q = H̃0(Im̄X) ⊕ H̃4(Im̄X) ⊕ H̃8(Im̄X) ⊕ H̃12(Im̄X)
= H0(M,∂M) ⊕ H4(M,∂M) ⊕ H8(M) ⊕ H12(M)
= 0 ⊕ Qd× 1 ⊕ Q1× g4 ⊕ 0.

Setting ε1 = d× 1 and ε2 = 1× g4, we obtain a basis {ε1, ε2} for H̃0(Im̄X;L•)⊗Q.

The dual basis for H̃12(Im̄X;L•)⊗Q is {e1, e2}, with

e1 = ε1 ∩ u12 = d× 1 ∩ µ× [P4] = [pt]× [P4],
e2 = ε2 ∩ u12 = 1× g4 ∩ µ× [P4] = µ× [P0].

The images of the basis elements under cap product with the reduced L-class of X̂
are

ε1 ∩ L∗(X̂) = (d× 1) ∩ (µ× [P4] + 5
3µ× [P2] + µ× [P0])

= e1 + 5
3b∗((d× 1) ∩ (µ× [P2]))

= e1,

since the map b∗ : H̃4(M)→ H4(M,∂M) is zero (its neighboring maps in the sequence
of the pair are isomorphisms), and

ε2 ∩ L∗(X̂) = (1× g4) ∩ (µ× [P4] + 5
3µ× [P2] + µ× [P0])

= e2.

Thus in the bases {ε1, ε2} and {e1, e2}, the map

− ∩ [X̂]L ⊗ 1 : H̃0(Im̄X;L•)⊗Q
∼=−→ H̃12(Im̄X;L•)⊗Q
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is given by the identity matrix

U =

(
1 0
0 1

)
.

The pseudomanifold X itself does not possess Poincaré duality. The cohomology
group H4(X;Q) is generated by d× 1, which is dual to pt×[P4]. However, the cycle
pt×[P4] is zero in H8(X;Q) = Q〈µ× [P2]〉.

2.8. Intersection Vector Bundles and K-Theory

Given a pseudomanifold X with fixed intersection space I p̄X, we may define a
p̄-intersection vector bundle ξ on X to be an actual vector bundle ξ on I p̄X. That is,
the isomorphism classes I p̄V BR(X) of real n-plane p̄-intersection vector bundles on
X may be defined by

I p̄V BR(X) = [I p̄X,BOn]

and similarly for complex intersection vector bundles using BUn in place of BOn.
More generally, given any structure group G, one may describe principal intersection
G-bundles over X as

I p̄ PrincG(X) = [I p̄X,BG].

The variation of these notions over different choices of I p̄X for fixed X remains to
be investigated. Any vector bundle over X̂ determines a p̄-intersection vector bundle
on X by pulling back under the canonical map c : I p̄X → X̂. Naturally, a complex
intersection vector bundle onX has Chern classes in the intersection space cohomology
of X.

As in the previous section, there are Poincaré duality statements between the re-

duced rational K-theory of the intersection space, K̃∗(Im̄X)⊗Q, and reduced rational

K-homology K̃∗(I
n̄X) ⊗ Q. These can be worked out in analogy with the previous

section, observing that the rational type of the K-spectrum and KO-spectrum can be
easily understood using the Chern and the Pontrjagin character, respectively.

Let M , as usual, denote the exterior of the singular set of X. If M is smooth, for
example X Whitney stratified, then it has a tangent bundle TM , which defines an

element in K̃O
0
(M). Even in the isolated singularity situation, X itself will not have

a tangent bundle in the classical sense of vector bundle theory, restricting to TM ,
unless the link of the singularity is parallelizable. Let a : M → X and b : M → I p̄X
be the canonical maps, see Section 2.6.2. It may very well happen (see Example 2.8.1
below) that the tangent bundle element does not lift under

K̃O
0
(X)

a∗−→ K̃O
0
(M),

but does lift back to the KO-theory of the intersection space I p̄X under

K̃O
0
(I p̄X)

b∗−→ K̃O
0
(M).

Indeed, the higher the perversity p̄, the closer I p̄X is to M , and the easier it becomes
to lift. The intersection space I p̄X (in the isolated singularity case) is the mapping
cone cone(g) of a map g : L<k →M. The cofibration sequence

L<k
g−→M

b−→ I p̄X = cone(g) −→ S(L<k),

where S(−) denotes reduced suspension, induces an exact sequence

K̃O
−1

(L<k) −→ K̃O
0
(I p̄X)

b∗−→ K̃O
0
(M)

g∗−→ K̃O
0
(t<kL),
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which can be used to investigate existence and uniqueness of such lifts. Thus sin-
gular pseudomanifolds may have (stable classes of) p̄-intersection tangent bundles,
even when they do not have actual tangent bundles. Such a p̄-intersection tangent
bundle will have characteristic classes, for example Chern classes ci ∈ H2i(I p̄X) in
the complex case, or Pontrjagin classes pi ∈ H4i(I p̄X) in the real case. Using the
cap products of Section 2.6, one can multiply these characteristic classes with any
homology class in X and will get a class in the homology of an intersection space of
X, not merely an ordinary homology class of X. (If p̄ is a middle perversity, then
the resulting class will again lie in the homology of a middle perversity intersection
space.)

Example 2.8.1. By surgery theory, there exist infinitely many smooth manifolds
Li, i = 1, 2, . . . , in the homotopy type of S2×S4, distinguished by the first Pontrjagin
class of their tangent bundle, p1(TLi) ∈ H4(S2 × S4) ∼= Z, namely, p1(TLi) = Pi, P
a fixed integer 6= 0. Let L6 be any such manifold, p1(L) 6= 0. A smooth triangulation,
for example, gives L a CW-structure. Since the bordism group ΩSO

6 is trivial, there
exists a smooth compact oriented manifold M7 with ∂M = L. Set

X = M ∪L cone(L).

We will show that the tangent bundle element t = [TM ] − [θ7
M ] ∈ K̃O

0
(M), where

θrX is the (isomorphism class of the) trivial r-plane bundle over a space X, has no lift
under

K̃O
0
(X)

a∗−→ K̃O
0
(M),

but does have a lift under

K̃O
0
(I n̄X)

b∗−→ K̃O
0
(M),

a : M → X, b : M → I n̄X. Since X ∼= M/L and a : M → X ∼= M/L is homotopic to

the quotient map, the cofibration sequence L
j
↪→M

a→ X induces an exact sequence

K̃O
0
(X)

a∗−→ K̃O
0
(M)

j∗−→ K̃O
0
(L).

Thus t lifts back to K̃O
0
(X) if and only if j∗(t) = 0. To show that in fact j∗(t) 6= 0,

we use the Pontrjagin character ph as a detector,

ph : KO0(−) −→
⊕
i≥0

H4i(−;Q),

ph = rank +p1 +
1

12
(p2

1 − 2p2) + · · · .

Using the naturality of the Pontrjagin classes and observing that classes of degree 8
and higher vanish in the cohomology of M as M is 7-dimensional, we calculate

ph(j∗t) = j∗ ph([TM ]− [θ7
M ]) = j∗(rk(TM) + p1(TM)− rk(θ7

M )− p1(θ7
M ))

= j∗p1(TM) = p1(TM |∂M ) = p1(TL⊕ θ1
L) = p1(L) 6= 0.

Thus j∗t 6= 0 and t cannot be lifted back to K̃O
0
(X).

The manifold L, being homotopy equivalent to S2×S4, is an object of the interleaf
category ICW. (See also Example 1.9.4(2).) Thus to construct the spatial homology
truncation t<kL, where k = n− 1− n̄(n) = 3, we may use the functor t<k : ICW→
HoCW of Section 1.9. The natural transformation emb3 : t<3 → t<∞ gives a
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homotopy class [f ] = emb3(L) : t<3L → L, whose canonical representative f is

t<3L = E(L)2 incl
↪→ E(L)

h′L→ L, with h′L a cellular homotopy equivalence. Since h′L is
cellular, its restriction (h′L)2 to the 2-skeleton maps into the 2-skeleton L2 of L and
we have a factorization

E(L)2
f //

(h′L)2

##FFFFFFFF L

L2.
?�

i2

OO

The intersection space I n̄X is the mapping cone of g : t<3L → M, where g is the
composition

t<3L
f−→ L

j
↪→M.

The cofibration sequence t<3L
g−→M

b−→ I n̄X = cone(g) induces an exact sequence

K̃O
0
(I n̄X)

b∗−→ K̃O
0
(M)

g∗−→ K̃O
0
(t<3L),

which shows that t lifts back to K̃O
0
(I n̄X) if and only if g∗(t) = 0. Let us prove

first that L is spinnable, i.e. the restriction of its tangent bundle TL to the 2-
skeleton is trivial. While the Pontrjagin classes of closed manifolds are of course
not homotopy invariant, Wu’s formula implies that the Stiefel-Whitney classes wi
of closed manifolds are homotopy invariants. Thus w1(L) = w1(S2 × S4), w2(L) =
w2(S2 × S4). As H1(S2 × S4;Z/2) = 0, we have w1(L) = 0. The second Wu class
v2 = v2(S2×S4) ∈ H2(S2×S4;Z/2) ∼= Z/2 is determined by v2∪x = Sq2(x) for all x.
Since Sq2 : H∗(S2 × S4;Z/2)→ H∗+2(S2 × S4;Z/2) is zero, as follows, for instance,
from the Cartan formula , we have v2 = 0. By Wu’s formula, w2(L) = w2(S2×S4) =
v2(S2 × S4) = 0. Let V5(TL) denote the 5-frame Stiefel manifold bundle associated
to TL. There exists a cross-section of V5(TL) over the 1-skeleton L1 of L. There
exists a cross-section over the 2-skeleton L2 if and only if a primary obstruction class
in H2(L;Z/2) vanishes, and that class is w2(L), indeed zero. Thus TL|L2 ∼= θ5

L2 ⊕λ1,
where λ1 is some line bundle over L2. Now

w1(λ1) = w1(λ1 ⊕ θ5
L2) = w1(TL|L2) = i∗2w1(L) = 0,

whence λ1 is trivial also. Hence TL|L2 ∼= θ6
L2 and the element g∗(t) is

g∗(t) = f∗j∗([TM ]− [θ7
M ])

= f∗([TM |L]− [θ7
M |L])

= f∗([TL⊕ θ1
L]− [θ7

L])
= f∗([TL]− [θ6

L])
= (h′L)2∗i∗2([TL]− [θ6

L])
= (h′L)2∗([TL|L2 ]− [θ6

L|L2 ])
= (h′L)2∗([θ6

L2 ]− [θ6
L2 ])

= 0.

Therefore, t lifts back to K̃O
0
(I n̄X).

2.9. Beyond Isolated Singularities

Let X be an n-dimensional, compact, stratified pseudomanifold with two strata

X = Xn ⊃ Xn−c.
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The singular set Σ = Xn−c is thus an (n − c)-dimensional closed manifold and the
singularities are not isolated, unless c = n. Assume that X has a trivial link bundle,

that is, a neighborhood of Σ in X looks like Σ× ◦
coneL, where L is a (c−1)-dimensional

closed manifold, the link of Σ. We assume furthermore that L is a simply connected
CW-complex in order to be able to apply the spatial homology truncation machine of
Section 1.1. For such a pseudomanifold X, we shall construct associated perversity p̄
intersection spaces I p̄X by performing truncation fiberwise. If k = c−1−p̄(c) ≥ 3, we
can and do fix a completion (L, Y ) of L so that (L, Y ) is an object in CWk⊃∂ . If k ≤ 2,
no group Y has to be chosen and we simply apply the low-degree truncation of Section
1.1.5. Applying the truncation t<k : CWk⊃∂ → HoCWk−1 as defined on page 41,
we obtain a CW-complex t<k(L, Y ) ∈ ObHoCWk−1. The natural transformation
embk : t<k → t<∞ of Theorem 1.1.41 gives a homotopy class

f = embk(L, Y ) : t<k(L, Y ) −→ L

such that for r < k,

f∗ : Hr(t<k(L, Y )) ∼= Hr(L),

while Hr(t<k(L, Y )) = 0 for r ≥ k. Let Mn be the compact manifold-with-boundary

obtained by removing from X an open neighborhood Σ × ◦
coneL of Σ. Thus the

boundary of M is ∂M = Σ× L. Let

g : Σ× t<k(L, Y ) −→M

be the composition

Σ× t<k(L, Y )
idΣ×f−→ Σ× L = ∂M

j
↪→M.

The intersection space will be the homotopy cofiber of g:

Definition 2.9.1. The perversity p̄ intersection space I p̄X of X is defined to be

I p̄X = cone(g) = M ∪g cone(Σ× t<k(L, Y )).

(More precisely, I p̄X is a homotopy type of a space.) As pointed out in Section
2.2, the construction simplifies if the link happens to lie in the interleaf category ICW,
for then we apply t<k : ICW→ HoCW instead of t<k : CWk⊃∂ → HoCWk−1.

Rational coefficients for homology and cohomology will be understood for the
rest of this section. If N is a simply connected CW-complex, k an integer, and N<k
a homological k-truncation of N with structure map f : N<k → N (so that f∗ on
homology is an isomorphism in degrees less than k), then we shall often think of f up
to homotopy as an inclusion, by replacing N with the mapping cylinder of f . We shall
thus also use the notation H∗(N,N<k) for the reduced homology of the mapping cone
of f . A statement similar to Lemma 2.9.2 below was already discussed in Proposition
1.9.14; nevertheless we shall provide details.

Lemma 2.9.2. Let N be a simply connected CW-complex. Then the map

π∗ : Hr(N) −→ Hr(N,N<k)

induced on homology by the inclusion is an isomorphism when r ≥ k, while Hr(N,N<k) =
0 when r < k.

Proof. If r < k, then the long exact homology sequence of f has the form

Hr(N<k)
∼=−→ Hr(N)

0−→ Hr(N,N<k)
∂∗=0−→ Hr−1(N<k)

∼=−→ Hr−1(N),
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whence Hr(N,N<k) = 0. For r = k, it has the form

0 = Hk(N<k) −→ Hk(N) −→ Hk(N,N<k)
∂∗=0−→ Hk−1(N<k)

∼=−→ Hk−1(N),

so that Hk(N) −→ Hk(N,N<k) is an isomorphism. Finally, if r > k, then the exact
sequence

0 = Hr(N<k) −→ Hr(N) −→ Hr(N,N<k)
∂∗−→ Hr−1(N<k) = 0

again exhibits Hr(N) −→ Hr(N,N<k) as an isomorphism. �

Proposition 2.9.3. Let Nn be a closed, oriented, simply connected manifold
equipped with a CW-structure. Let k be an integer. Let N<k be any homological k-
truncation and N<n−k+1 be any homological (n− k + 1)-truncation of N .
(1) There exists a cap product

Hn−r(N<k)⊗Hn(N)
∩−→ Hr(N,N<n−k+1)

such that

(44)

Hn−r(N<k)⊗Hn(N)
∩- Hr(N,N<n−k+1)

Hn−r(N)⊗Hn(N)

f∗⊗id

6

∩ - Hr(N)

π∗

6

commutes.

(2) Capping with the fundamental class [N ] ∈ Hn(N) is an isomorphism

− ∩ [N ] : Hn−r(N<k)
∼=−→ Hr(N,N<n−k+1).

Proof. (1): We consider the two cases n − r < k and n − r ≥ k separately.
Suppose n − r < k. Then f∗ is an isomorphism and we define the cap product of
ξ ∈ Hn−r(N<k) and x ∈ Hn(N) by

ξ ∩ x = π∗((f
∗)−1(ξ) ∩ x).

By definition, diagram (44) commutes. If n− r ≥ k then Hn−r(N<k) = 0 and we set
ξ ∩ x = 0 ∈ Hr(N,N<n−k+1). This is in fact the only available value, since n− r ≥ k
implies r < n− k + 1, and by Lemma 2.9.2, Hr(N,N<n−k+1) = 0. In particular, the
diagram commutes in this case as well.

(2): Suppose n− r < k. As this implies r ≥ n− k + 1, Lemma 2.9.2 asserts that

π∗ : Hr(N) −→ Hr(N,N<n−k+1)

is an isomorphism. The map f∗ is an isomorphism, too, and the claim follows from
Poincaré duality for the manifold N and the commutativity of the diagram

Hn−r(N<k)
−∩[N ]- Hr(N,N<n−k+1)

Hn−r(N)

f∗ ∼=

6

−∩[N ]

∼=
- Hr(N).

∼= π∗

6
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If n − r ≥ k, then both Hn−r(N<k) and Hr(N,N<n−k+1) are zero, using Lemma
2.9.2. �

Proposition 2.9.4. Let Σs, Nn be closed, oriented manifolds with N simply con-
nected and equipped with a CW-structure. Let k be an integer.
(1) There exists a cap product

Hs+n−r(Σ×N<k)⊗Hs+n(Σ×N)
∩−→ Hr(Σ× (N,N<n−k+1))

such that

(45)

Hs+n−r(Σ×N<k)⊗Hs+n(Σ×N)
∩- Hr(Σ× (N,N<n−k+1))

Hs+n−r(Σ×N)⊗Hs+n(Σ×N)

(idΣ×f)∗⊗id

6

∩ - Hr(Σ×N)

incl∗

6

commutes.

(2) Capping with the fundamental class [Σ×N ] ∈ Hs+n(Σ×N) is an isomorphism

− ∩ [Σ×N ] : Hs+n−r(Σ×N<k)
∼=−→ Hr(Σ× (N,N<n−k+1)).

Proof. In the interest of better readability, we shall denote the product to be
constructed by ∩′ and the product of Proposition 2.9.3 by ∩̃. (1): Let ξ ∈ Hs+n−r(Σ×
N<k) and x ∈ Hs+n(Σ×N). By the Künneth theorem, these elements can be uniquely
written as

ξ =
∑

p+q=s+n−r

∑
i

σ(i)
p × ν(i)

q , σ(i)
p ∈ Hp(Σ), ν(i)

q ∈ Hq(N<k),

x = u× v, u ∈ Hs(Σ), v ∈ Hn(N).

(For the latter equation, observe that Σ need not be connected, but N is connected
by assumption.) We define

ξ ∩′ x =
∑

p+q=s+n−r
(−1)p(n−q)

∑
i

(σ(i)
p ∩ u)× (ν(i)

q ∩̃v),

with σ
(i)
p ∩ u ∈ Hs−p(Σ) and ν

(i)
q ∩̃v ∈ Hn−q(N,N<n−k+1). (Recall that we are using

the sign conventions of [Spa66].) Let us verify that diagram (45) commutes. Given
η ∈ Hs+n−r(Σ×N) and x ∈ Hs+n(Σ×N), write

η =
∑

p+q=s+n−r

∑
i

σ(i)
p × µ(i)

q , σ(i)
p ∈ Hp(Σ), µ(i)

q ∈ Hq(N),

x = u× v, u ∈ Hs(Σ), v ∈ Hn(N).

Then

incl∗(η ∩ x) = (idΣ×π)∗((
∑
σ

(i)
p × µ(i)

q ) ∩ (u× v))

=
∑

(−1)p(n−q)(idΣ×π)∗(σ
(i)
p ∩ u)× (µ

(i)
q ∩ v)

=
∑

(−1)p(n−q)(σ
(i)
p ∩ u)× π∗(µ(i)

q ∩ v)

=
∑

(−1)p(n−q)(σ
(i)
p ∩ u)× (f∗µ

(i)
q ∩̃v) (by Proposition 2.9.3)

=
∑

(σ
(i)
p × f∗µ(i)

q ) ∩′ (u× v)

=
∑

((idΣ×f)∗(σ
(i)
p × µ(i)

q )) ∩′ x
= ((idΣ×f)∗η) ∩′ x.
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(2): Let {σ(i)
p }i be a basis for Hp(Σ) and let {ν(j)

q }j be a basis for Hq(N<k). Then

{σ(i)
p ⊗ ν(j)

q }i,j is a basis for Hp(Σ)⊗Hq(N<k) and thus, by the Künneth theorem,

{σ(i)
p × ν(j)

q } i,j,p,q
p+q=s+n−r

is a basis for Hs+n−r(Σ×N<k). We shall show that

{(σ(i)
p × ν(j)

q ) ∩′ [Σ×N ]} i,j,p,q
p+q=s+n−r

is a basis for Hr(Σ× (N,N<n−k+1)). Set

a
(i)
p = (−1)p(p+r−s)σ

(i)
p ∩ [Σ] ∈ Hs−p(Σ),

b
(j)
q = ν

(j)
q ∩̃[N ] ∈ Hn−q(N,N<n−k+1).

Since

Hp(Σ)
−∩[Σ]−→ Hs−p(Σ)

is an isomorphism by Poincaré duality, {a(i)
p }i is a basis for Hs−p(Σ). By Proposition

2.9.3(2),

Hq(N<k)
−∩̃[N ]−→ Hn−q(N,N<n−k+1)

is an isomorphism, so that {b(j)q }j is a basis for Hn−q(N,N<n−k+1). Thus {a(i)
p ⊗

b
(j)
q }i,j is a basis for Hs−p(Σ)⊗Hn−q(N,N<n−k+1) and

{a(i)
p ⊗ b(j)q } i,j,p,q

p+q=s+n−r

is a basis for ⊕
(s−p)+(n−q)=r

Hs−p(Σ)⊗Hn−q(N,N<n−k+1).

By the Künneth theorem,

{a(i)
p × b(j)q } i,j,p,q

p+q=s+n−r

is a basis for Hr(Σ× (N,N<n−k+1)). Since

(σ
(i)
p × ν(j)

q ) ∩′ [Σ×N ] = (σ
(i)
p × ν(j)

q ) ∩′ ([Σ]× [N ])

= (−1)p(n−q)(σ
(i)
p ∩ [Σ])× (ν

(j)
q ∩̃[N ])

= (−1)p(p+r−s)(σ
(i)
p ∩ [Σ])× (ν

(j)
q ∩̃[N ])

= a
(i)
p × b(j)q

for p+ q = s+ n− r, the claim is established. �

We return to the notation present in the definition of I p̄X. The manifold Σ thus
has dimension n−c and the link L has dimension c−1. Assume thatXn is oriented and
that the singular stratum Σ and the link L are oriented in a compatible way, that is, for
the fundamental classes we have [∂M ] = [Σ×L] = [Σ]× [L], where M , and hence ∂M,
receive their orientation from the orientation of X. Put L<k = t<k(L, Y ). Choose a
Y ′ such that (L, Y ′) is an object of CW(c−k)⊃∂ and set L<c−k = t<c−k(L, Y ′). (If
c− k ≤ 2, no Y ′ has to be chosen and we apply low-degree truncations, as usual.)
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Lemma 2.9.5. The diagram

(46)

Hn−r(M)
g∗- Hn−r(Σ× L<k)

Hr(M,∂M)

−∩[M,∂M ] ∼=

?
∂∗- Hr−1(Σ× (L,L<c−k))

∼= −∩[Σ×L]

?

commutes (there is no sign here), where ∂∗ is the connecting homomorphism for the
triple (M,∂M = Σ× L,Σ× L<c−k).

Proof. The connecting homomorphism ∂∗ : Hn(M,∂M) → Hn−1(∂M) sends
the fundamental class [M,∂M ] to ∂∗[M,∂M ] = [∂M ] = [Σ × L]. Since for j∗ :
Hn−r(M)→ Hn−r(Σ× L) and ξ ∈ Hn−r(M) we have

∂∗(ξ ∩ [M,∂M ]) = j∗ξ ∩ ∂∗[M,∂M ] = j∗ξ ∩ [Σ× L]

(see [Spa66], Chapter 5, Section 6, 20, page 255), the square

(47)

Hn−r(M)
j∗- Hn−r(Σ× L)

Hr(M,∂M)

−∩[M,∂M ] ∼=

?
∂∗- Hr−1(Σ× L)

∼= −∩[Σ×L]

?

commutes. By Proposition 2.9.4, the square

(48)

Hn−r(Σ× L)
(idΣ×f)∗- Hn−r(Σ× L<k)

Hr−1(Σ× L)

−∩[Σ×L] ∼=

?
incl∗- Hr−1(Σ× (L,L<c−k))

∼= −∩[Σ×L]

?

commutes as well. Since g∗ = (idΣ×f)∗ ◦ j∗ and the connecting homomorphism

∂∗ : Hr(M,∂M) −→ Hr−1(Σ× (L,L<c−k))

of the triple factors as

Hr(M,∂M)
∂∗−→ Hr−1(Σ× L)

incl∗−→ Hr−1(Σ× (L,L<c−k)),

diagram (46) is the composition of diagram (47) and diagram (48) and therefore
commutes as well. �

Lemma 2.9.6. Let

A
f - B

g - C
h - D

i - E

A′

α

?
f ′ - B′

β

?
g′ - C ′

h′ - D′

δ

?
i′ - E′

ε

?

be a commutative diagram of rational vector spaces with exact rows. Then there exists
a map γ : C → C ′ completing the diagram commutatively.
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Proof. Let s : imh→ C be a splitting for h| : C � imh and let s′ : imh′ → C ′

be a splitting for h′| : C ′ � imh′. Then C = im g ⊕ im s and an element c ∈ C can
be uniquely written as c = cg + cs, with cg ∈ im g and cs ∈ im s. We set

γ(c) = g′β(b) + s′δh(cs),

where b ∈ B is any element such that g(b) = cg. Note that indeed δh(cs) ∈ imh′ =
ker i′, since i′δh = εih = 0. To show that γ is well-defined, consider b′ ∈ B with
g(b′) = cg. Then b− b′ = f(a) for some a ∈ A and thus

g′β(b)− g′β(b′) = g′βf(a) = g′f ′α(a) = 0.

Furthermore,

h′γ(c) = h′g′β(b) + h′s′δh(cs) = δh(cs) = δhg(b) + δh(cs) = δh(c)

and for any b ∈ B,
γg(b) = g′β(b)

by definition. �

Theorem 2.9.7. Let X be an n-dimensional, compact, oriented, stratified pseu-
domanifold with one singular stratum Σ of dimension n − c and trivial link bundle.
The link L is assumed to be simply-connected and X,Σ and L are oriented compatibly.
Let I p̄X and I q̄X be p̄- and q̄-intersection spaces of X with p̄ and q̄ complementary
perversities. Then there exists a generalized Poincaré duality isomorphism

D : H̃n−r(I p̄X)
∼=−→ H̃r(I

q̄X)

such that

H̃n−r(I p̄X) - Hn−r(M)

H̃r(I
q̄X)

D ∼=

?
- Hr(M,∂M)

∼= −∩[M,∂M ]

?

commutes, where (M,∂M) is the complement of an open tube neighborhood of Σ, and

Hn−r−1(Σ× L<k)
δ∗- H̃n−r(I p̄X)

Hr(∂M,Σ× L<c−k)

−∩[∂M ] ∼=

?
- H̃r(I

q̄X)

∼= D

?

commutes, where k = c− 1− p̄(c).

Proof. We have

I p̄X = cone(gp̄) = M ∪gp̄ cone(Σ× L<k)

for gp̄ : Σ× L<k →M the composition

Σ× L<k
idΣ×fp̄−→ Σ× L = ∂M

j
↪→M,

and, since c− k = c− 1− q̄(c),
I q̄X = cone(gq̄) = M ∪gq̄ cone(Σ× L<c−k)
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for gq̄ : Σ× L<c−k →M the composition

Σ× L<c−k
idΣ×fq̄−→ Σ× L = ∂M

j
↪→M.

Hence

H̃∗(I p̄X) = H∗(gp̄) = H∗(M,Σ× L<k),

H̃∗(I q̄X) = H∗(gq̄) = H∗(M,Σ× L<c−k),

and similarly for homology. Consider the diagram

Hn−r−1(M)
−∩[M,∂M ]

∼=
//

g∗p̄

��

Hr+1(M,∂M)

∂∗

��
Hn−r−1(Σ× L<k)

−∩[Σ×L]

∼=
//

δ∗

��

Hr(Σ× (L,L<c−k))

��
Hn−r(M,Σ× L<k)

��

Hr(M,Σ× L<c−k)

��
Hn−r(M)

−∩[M,∂M ]

∼=
//

g∗p̄

��

Hr(M,∂M)

∂∗

��
Hn−r(Σ× L<k)

−∩[Σ×L]

∼=
// Hr−1(Σ× (L,L<c−k)),

whose left hand column is the long exact sequence of the pair (M,Σ×L<k) and whose
right hand column is the long exact sequence of the triple (M,Σ×L,Σ×L<c−k). By
Lemma 2.9.5, the top and bottom squares commute. By Lemma 2.9.6, there exists a
map

D : Hn−r(M,Σ× L<k) −→ Hr(M,Σ× L<c−k)

filling in the diagram commutatively. By the 5-lemma, D is an isomorphism. �

Example 2.9.8. Set L = S3×S4 and M14 = D3×S2×S2×L. We will compute
the duality in the homology of the intersection space Im̄X for the pseudomanifold

X14 = M ∪∂M S2 × S2 × S2 × coneL.

This pseudomanifold is to be stratified in the intrinsic manner, with singular set
Σ = S2 × S2 × S2 × {σ}, where σ is the cone point of cone(L), and link L. Since
the codimension c of Σ is 8, the cut-off value k is k = c − 1 − m̄(c) = 4. Hence
L<k = L<4 = S3 × pt and

f : L<4 = S3 × pt ↪→ S3 × S4

is the inclusion. The intersection space Im̄X is the mapping cone of

g : S2 × S2 × S2 × S3 × pt ↪→ D3 × S2 × S2 × S3 × S4,

that is,

Im̄X ' D3 × S2 × S2 × S3 × S4

S2 × S2 × S2 × S3 × pt
.

If A,B are cycles in a 2-sphere and C is a cycle in the 3-sphere, then

D3 ×A×B × C × pt∪S2×A×B×C×pt cone(S2 ×A×B × C × pt)
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is a cycle in the space Im̄X. We shall denote the homology class of such a cycle
briefly by [D3×A×B×C×pt]∧. The following table lists all generating cycles of the
homology of the intersection space. Dual cycles are next to each other in the same
row.

H̃∗(I
m̄X) H̃14−∗(I

m̄X)
∗ = 0 0 0
∗ = 1 0 0
∗ = 2 0 0
∗ = 3 [D3 × pt×pt×pt×pt]∧ [pt×S2 × S2 × S3 × S4]
∗ = 4 [pt×pt×pt× pt×S4] [D3 × S2 × S2 × S3 × pt]∧

∗ = 5 [D3 × S2 × pt×pt× pt]∧ [pt×pt×S2 × S3 × S4]
[D3 × pt×S2 × pt×pt]∧ [pt×S2 × pt×S3 × S4]

∗ = 6 [pt×S2 × pt× pt×S4] [D3 × pt×S2 × S3 × pt]∧

[pt×pt×S2 × pt×S4] [D3 × S2 × pt×S3 × pt]∧

[D3 × pt×pt×S3 × pt]∧ [pt×S2 × S2 × pt×S4]
∗ = 7 [pt×pt×pt×S3 × S4] [D3 × S2 × S2 × pt×pt]∧

[D3 × S2 × S2 × pt×pt]∧ [pt×pt×pt×S3 × S4]

Let us indicate how one may form candidates for intersection spaces I p̄X for pseu-
domanifolds X having more than two strata and whose link bundle may be nontrivial.
Up to now, we have used only a small fraction of the spatial homology truncation
machine as developed in Chapter 1, namely, we have only invoked it on the object
level. For general stratifications, the full range of capabilities of the machine will
have to be employed. Let us start out with some remarks on gluing constructions and
homotopy pushouts. A 3-diagram Γ of spaces is a diagram of the form

X
f←− A g−→ Y,

where A,X, Y are topological spaces and f, g are continuous maps. The realization |Γ|
of Γ is the pushout of f and g. A morphism Γ→ Γ′ of 3-diagrams is a commutative
diagram

(49) X

��

A
foo

��

g // Y

��
X ′ A′

f ′oo g′ // Y ′

in the category of topological spaces. The universal property of the pushout implies
that a morphism Γ→ Γ′ induces a map |Γ| → |Γ′| between realizations. A homotopy
theoretic weakening of a morphism is the notion of an h-morphism Γ→h Γ′. This is
again a diagram of the above form (49), but the two squares are required to commute
only up to homotopy. An h-morphism does not induce a map between realizations.
The remedy is to use the homotopy pushout, or double mapping cylinder. This is
a special case of the notion of a homotopy colimit. To a 3-diagram Γ we associate
another 3-diagram H(Γ) given by

X ∪f A× I = cyl(f)
at 0←↩ A at 0

↪→ cyl(g) = Y ∪g A× I.
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We define the homotopy pushout, or homotopy colimit, of Γ to be

hocolim(Γ) = |H(Γ)|.

The morphism H(Γ)→ Γ given by

X ∪f A× I

r

��

Aoo

idA

��

// Y ∪g A× I

r

��
X A

foo g // Y,

where the maps r are the canonical mapping cylinder retractions, induces a canonical
map

hocolim(Γ) −→ |Γ|.
An h-morphism Γ→h Γ′ together with a choice of homotopies between clockwise and
counterclockwise compositions will induce a map on the homotopy pushout,

hocolim(Γ) −→ |Γ′|.

Indeed, let

X

ξ

��

A
foo

α

��

g // Y

η

��
X ′ A′

f ′oo g′ // Y ′

be the given h-morphism. Let F : A× I → X ′ be a homotopy between F0 = f ′α and
F1 = ξf. Let G : A× I → Y ′ be a homotopy between G0 = g′α and G1 = ηg. Then

X ∪f A× I

ξ∪fF
��

A?
_at 0oo

α

��

� � at 0 // Y ∪g A× I

η∪gG
��

X ′ A′
f ′oo g′ // Y ′,

commutes (on the nose) and thus defines a morphism H(Γ) → Γ′. This morphism
induces a continuous map on realizations hocolim(Γ) = |H(Γ)| → |Γ′|.

Let Xn be a PL stratified pseudomanifold with a stratification of the form Xn =
Xn ⊃ X1 ⊃ X0, X1

∼= S1, X0 = {x0}. There are thus three strata. If the link-
type at x0 is the same as for points in X1 − X0, then X can be restratified as
X̂n = Xn ⊃ X̂1

∼= S1, X̂0 = ∅, and the link bundle around the circle X̂1 may
be a twisted mapping torus. Let N0 be a regular neighborhood of x0 in X. Then
N0 = cone(L0), where L0 is a compact PL stratified pseudomanifold of dimension
n−1, the link of x0. Set X ′ = X−int(N0), a compact pseudomanifold with boundary.
This X ′ has one singular stratum, X ′1 = X1∩X ′ ∼= ∆1, where ∆1 is a 1-simplex (closed
interval). Let L1 be the link of X ′1, a closed manifold of dimension n−2. The link L0

may be singular with singular stratum L0 ∩X1 = L0 ∩X ′1 = ∂∆1 = {∆0
0,∆

0
1} (two

points). A regular neighborhood of ∆0
i , i = 0, 1, in L0 is isomorphic to cone(L1). If

we remove the interiors of these two cones from L0, we obtain a compact (n − 1)-
manifold W , which is a bordism between L1 at ∆0

0 and L1 at ∆0
1. A normal regular

neighborhood of X ′1 in X ′ is isomorphic to a product ∆1 × cone(L1) since ∆1 is
contractible. Removing the interior of this neighborhood from X ′, we get a compact
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n-manifold M with boundary ∂M . The boundary is ∆1 × L1 glued to W along the
boundary ∂W = ∂∆1 × L1 = {∆0

0,∆
0
1} × L1. Thus ∂M has the form

∂M = |Γ|,

where Γ is a 3-diagram of spaces

W ∂∆1 × L1

f0tf1oo � � incl× id // ∆1 × L1,

for suitable maps fi : ∆0
i × L1 → W, i = 0, 1. For example, if the link-type does not

change running along X1 −X0 into x0, then L0 is the suspension of L1 and W is the
cylinder W = I ×L1. The boundary of M is a mapping torus with fiber L1. We may
take f0 to be the identity and f1 the monodromy of the mapping torus.

Given a perversity p̄, set cut-off degrees

kL = n− 2− p̄(n− 1), kW = n− 1− p̄(n).

We observe that the inequality kW ≥ kL holds because p̄(n) ≤ p̄(n − 1) + 1. Two
cases arise. If p̄(n) = p̄(n − 1) + 1, then kL = kW ; if p̄(n) = p̄(n − 1), then kW =
kL + 1. Suppose the perversity value actually increases and we are thus in the case
kL = kW (denote this value simply by k). Next, and this is the only point where an
obstruction could conceivably occur, you have to be able to choose YL and YW such
that f0, f1 : (L1, YL) → (W,YW ) become morphisms in CWk⊃∂ . If f0 and f1 are
inclusions, then Proposition 1.5.1 is frequently helpful to settle this. If L1 or W lie in
the interleaf category ICW, then no YL or no YW has to be chosen and dealing with
the obstructions simplifies considerably. Once f0 and f1 are known to be morphisms
in CWk⊃∂ , we can apply spatial homology truncation and receive diagrams

t<k(L1, YL)

t<k(fi)

��

embk(L1,YL) // L1

[fi]

��
t<k(W,YW )

embk(W,YW ) // W,

i = 0, 1, which commute in HoCWk−1. Let (fi)<k be a representative of the homo-
topy class t<k(fi), i = 0, 1, and let t<kΓ be the 3-diagram of spaces

t<k(W,YW ) ∂∆1 × t<k(L1, YL)
(f0)<kt(f1)<koo � � incl× id // ∆1 × t<k(L1, YL).

Let eL be a representative of the homotopy class embk(L1, YL) and let eW be a
representative of the homotopy class embk(W,YW ). An h-morphism t<kΓ →h Γ is
given by

t<k(W,YW )

eW

��

∂∆1 × t<k(L1, YL)

id×eL
��

(f0)<kt(f1)<koo � � incl× id // ∆1 × t<k(L1, YL)

id×eL
��

W ∂∆1 × L1

f0tf1oo � � incl× id // ∆1 × L1.

(The right-hand square commutes on the nose.) Once the requisite homotopy has
been chosen, this h-morphism induces a map

hocolim(t<kΓ)
f−→ |Γ| = ∂M.
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Let g be the composition

hocolim(t<kΓ)
f //

g

((QQQQQQQQQQQQQ ∂M� _

j

��
M.

It is consistent with our earlier constructions to consider cone(g) as a candidate for
I p̄X.

If the perversity value does not increase, so that kW = kL + 1, then one must
use iterated truncation techniques to form a 3-diagram t<kΓ. If f0, f1 : L1 → W
can be promoted to morphisms f0, f1 : (L1, Y1)→ (W,YW ) in CWkW⊃∂ by choosing
suitable Y1, YW , then there are truncations

t<kW (fi) : t<kW (L1, Y1) −→ t<kW (W,YW ).

By Proposition 1.6.1, there is a homotopy equivalence

t<kL(t<kW (L1, Y1), YL) ' t<kL(L1, YL),

where (L1, YL) ∈ ObCWkL⊃∂ . Choosing a representative for the result of applying
the natural transformation embkL to the pair (t<kW (L1, Y1), YL) gives a map

e : t<kL(t<kW (L1, Y1), YL)→ t<kW (L1, Y1).

Let
a : ∂∆1 × t<kL(L1, YL) −→ t<kW (W,YW )

be the composition

∂∆1 × t<kL(L1, YL)

a

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
id×' // ∂∆1 × t<kL(t<kW (L1, Y1), YL)

id×e
��

∂∆1 × t<kW (L1, Y1)

(f0)<kW t(f1)<kW
��

t<kW (W,YW ),

where (fi)<kW is a representative of t<kW (fi), i = 0, 1. Let t<kΓ be the 3-diagram

t<kW (W,YW ) ∂∆1 × t<kL(L1, YL)
aoo � � incl× id // ∆1 × t<kL(L1, YL).

For an appropriate t<kΓ→h Γ, one will get f, g and a candidate for I p̄X as above.



CHAPTER 3

String Theory

3.1. Introduction

String theory models physical phenomena by closed vibrating loops (“strings”)
moving in space. As the string moves, it forms a surface, its world sheet Σ. The
movement in space is described by a map Σ→ T to some target space T . (This is the
starting point for the data of a nonlinear sigma model.) This space is usually required
to be 10 = 4 + 6-dimensional and is often assumed to be of the form T = M4 ×X6,
where M4 is a 4-manifold which, at least locally, may be thought of as the space-time
of special relativity. The additional 6 dimensions are necessary because a string needs
a sufficient number of directions in which it can vibrate. If this number is smaller
than 6, then problems such as negative probabilities occur. The space X carries
a Riemannian metric and is very small compared to M . Among other constraints,
supersymmetry imposes conditions on the metric of X that imply that it has to be a
Calabi-Yau space. A Calabi-Yau manifold has a complex structure such that the first
Chern class vanishes, and the metric is Kähler for this complex structure. (A large
class of examples of Kähler manifolds are complex submanifolds of complex projective
spaces.) Calabi conjectured that all Kähler manifolds with vanishing first Chern class
admit a Ricci-flat metric, which was later proven by S. T. Yau. Many examples of
Calabi-Yau manifolds are obtained as complete intersections in products of projective
spaces. Consider for instance the quintic

Pε(z) = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5(1 + ε)z0z1z2z3z4,

depending on a complex structure parameter ε. The variety

Xε = {z ∈ CP 4 | Pε(z) = 0}

is Calabi-Yau. It is smooth for small ε 6= 0 and becomes singular for ε = 0. (For Xε to
be singular, 1+ε must be fifth root of unity, so Xε is smooth for 0 < |ε| < |e2πi/5−1|.)
It is at present not known which Calabi-Yau space is the physically correct choice.
Thus it is very important to analyze the moduli space of all Calabi-Yau 3-folds and
to find ways to navigate in it. One such way is the conifold transition. The term
“conifold” arose in physics and we shall here adopt the following definition:

Definition 3.1.1. A topological conifold is a 6-dimensional topological stratified
pseudomanifold S, whose singular set consists of isolated points, each of which has
link S2×S3. That is, S possesses a subset Σ, the singular set, such that S−Σ is a 6-
manifold, every point s of Σ is isolated and has an open neighborhood homeomorphic
to the open cone on S2 × S3.

An example is the above space X0. The singularities are those points where the
gradient of P0 vanishes. If one of the five homogeneous coordinates z0, . . . , z4 vanishes,
then the gradient equations imply that all the others must vanish, too. This is not

155
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a point on CP 4, and so all coordinates of a singularity must be nonzero. We may
then normalize the first one to be z0 = 1. From the gradient equation z4

0 = z1z2z3z4

it follows that z1 is determined by the last three coordinates, z1 = (z2z3z4)−1. The
gradient equations also imply that

1 = z5
0 = z0z1z2z3z4 = z5

1 = z5
2 = z5

3 = z5
4 ,

so that all coordinates of a singularity are fifth roots of unity. Let (ω, ξ, η) be any
triple of fifth roots of unity. (There are 125 distinct such triples.) The 125 points

(1 : (ωξη)−1 : ω : ξ : η)

lie on X0 and the gradient vanishes there. These are thus the 125 singularities of X0.
Each one of them is a node, whose neighborhood therefore looks topologically like the
cone on the 5-manifold S2 × S3.

3.2. The Topology of 3-Cycles in 6-Manifolds

Middle dimensional homology classes in a Calabi-Yau 3-manifold have particularly
nice representative cycles, namely embedded 3-spheres, as we shall now prove.

Proposition 3.2.1. Every 3-dimensional homology class in a simply connected
smooth 6-manifold X, in particular in a (simply connected) complex 3-dimensional
Calabi-Yau manifold, can be represented by a smoothly embedded 3-sphere S3 ⊂ X
with trivial normal bundle.

Proof. AsX is simply connected, the Hurewicz theorem implies that the Hurewicz
map π2(X) → H2(X) is an isomorphism and the Hurewicz map π3(X) → H3(X)
is onto. Thus, given a homology class x ∈ H3(X), there exists a continuous map
f : S3 → X such that f∗[S

3] = x, where [S3] ∈ H3(S3) is the fundamental class. Let
us recall part of the Whitney embedding theorem [Whi36], [Whi44]: Let Nn,M2n

be smooth manifolds, n ≥ 3. If M is simply connected, then every map f : Nn →M2n

is homotopic to a smooth embedding N ↪→ M . Hence, with n = 3, our f is homo-
topic to a smooth embedding f ′ : S3 ↪→ X, f ′∗[S

3] = f∗[S
3] = x. So x is represented

by an embedded S3. The transition function for the normal bundle of f ′ lies in
π2(GL(3,R)) = π2(O(3)) = π2(SO(3)) = 0. Thus the normal bundle is trivial. �

This result implies in particular that one can do (smooth) surgery on any 3-
dimensional homology class in a Calabi-Yau 3-manifold. One represents the class
by a smoothly embedded 3-sphere. Since the normal bundle is trivial, this cycle
has an open tubular neighborhood diffeomorphic to S3 × int(D3). Removing this
neighborhood, one gets a manifold with boundary S3×S2. The surgery is completed
by gluing in D4 × S2 along the boundary ∂(D4 × S2) = S3 × S2.

3.3. The Conifold Transition

The conifold transition takes as its input a Calabi-Yau manifold and produces an-
other (topologically different) Calabi-Yau manifold as an output by passing through a
Calabi-Yau conifold. Let Xε be a Calabi Yau 3-fold whose complex structure depends
on a complex parameter ε. The dependence is such that for small ε 6= 0, Xε is smooth
and the homotopy type of Xε is independent of ε, while in the limit ε→ 0, one obtains
a singular space S which is a conifold in the above sense. We will refer to this process

Xε ; S
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as a deformation of complex structures. Let us assume that the singularities are
all nodes. This implies that the link of every singularity is a product of spheres
S2 × S3 and the neighborhood of every singularity thus is topologically a cone on
S2 × S3. Topologically, the deformation Xε ; S collapses S3-shaped cycles in Xε to
the singular points and there is a collapse map Xε → S. The singular space S admits
a small resolution Y → S, which replaces every node in S by a CP 1. The resulting
space Y is a smooth Calabi-Yau manifold. The transition

Xε ; S ; Y

is an instance of a conifold transition. (Other instances may involve singularities worse
than nodes.) Suitable generalizations of such transitions connect the parameter spaces
of many large families of simply connected Calabi-Yau manifolds, see [GH88] and
[GH89], and may indeed connect all of them.

3.4. Breakdown of the Low Energy Effective Field Theory Near a
Singularity

Let X be a Calabi-Yau manifold of complex dimension 3. By Poincaré duality,
there exists a symplectic basis A1, . . . , Ar, B

1, . . . , Br for H3(X;Z), that is, a basis
with the intersections

Ai ∩Bj = −Bj ∩Ai = δij , Ai ∩Aj = 0 = Bi ∩Bj .

By Proposition 3.2.1, we may think of the Ai and Bj as smoothly embedded 3-spheres
with trivial normal bundle. Let Ω be the holomorphic 3-form on X, which is unique
up to a nonzero complex rescaling (b3,0 = 1). Then a complex structure on X is
characterized by the periods

Fi =

∫
Ai

Ω, Zj =

∫
Bj

Ω.

The Zj can serve as projective coordinates on the moduli space M of complex struc-
tures on X. Locally, the Fi may be regarded as functions of the Zj . When one of
the periods, say Z1, goes to zero, the corresponding 3-cycle B1 collapses to a singular
point and X becomes a conifold. On M there is a natural metric G, the Petersson-Weil
metric [Tia87]. According to [Str95], see also [Pol00], near Z1 = 0,

F1(Z1) ∼ const +
1

2πi
Z1 logZ1,

and one obtains

G11̄ ∼ log(Z1Z
1
)

for the metric near Z1 = 0. Thus, while the distance with respect to G to Z1 = 0 is
finite, the metric blows up at the conifold. The conifold is hence a singularity for M

in this sense. This singularity is responsible for generic inconsistencies in low-energy
effective field theories arising from the Calabi-Yau string compactification.

3.5. Massless D-Branes

The problem is rectified in type II string theories by (nonperturbative quantum
effects due to) the presence of D-branes that become massless at the conifold, see
[Str95], [Hüb97]. In ten-dimensional type IIB theory, there is a charged threebrane
that wraps around (a minimal representative of) the 3-cycle B1, which collapses to a
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singularity for Z1 → 0. The mass of the threebrane is proportional to the volume of
B1. In the limit

ε = Z1 → 0, Xε ; S,

this volume goes to zero and the threebrane becomes massless. If the conifold S has
n nodes arising from the collapse of n 3-cycles, and there are m homology relations
between these n cycles in Xε, then there will be n−m massless threebranes present,
since a D-brane is really an object associated to a homology class.

In type IIA theory, there are charged twobranes that wrap around (minimal
representatives of) the 2-cycles CP 1 of Y , where

S ; Y

is the second part of the conifold transition (the small resolution) and the curves CP 1

resolve the nodes. Again, the mass of the twobrane is proportional to the volume of
the CP 1. As the resolution map Y → S collapses the CP 1, this volume goes to zero
and the twobrane becomes massless. If n and m are as before, then there will be m
massless twobranes present, as we will see in Section 3.7 below. For a nonsingular
description of the physics, these extra massless particles arising from the D-branes
must be explicitly kept present in the effective theory.

3.6. Cohomology and Massless States

Following [GSW87], we will explain that cohomology classes on X, that is, har-
monic forms on X, are manifested in four dimensions as massless particles. Let ω be
an antisymmetric tensor field, i.e. a differential form, on T = M4 × X. For such a
form to be physically realistic, it must satisfy the field equation

d∗dω = 0

(if ω is a 1-form, this is the Maxwell equation) and the generalization

d∗ω = 0

of the Lorentz gauge condition in electrodynamics, where d∗ is the adjoint operator1

d∗ : Ωk(T ) → Ωk−1(T ) and ∗ : Ωk(T ) → Ω10−k(T ) is the Hodge star-operator. If
∆T = dd∗+ d∗d denotes the Hodge-de Rham Laplacian on T, then the two equations
imply

∆Tω = 0.

The Laplacian on the product manifold decomposes as

∆T = ∆M + ∆X ,

where ∆M and ∆X are the Hodge-de Rham Laplacians of M and X, respectively.
Hence, ω satisfies the wave equation

(50) (∆M + ∆X)ω = 0.

This equation suggests the interpretation of ∆X as a kind of “mass” operator for four-
dimensional fields, whose eigenvalues are masses as seen in four dimensions. (Compare
this to the Klein-Gordon equation (2M+m2)ω = 0 for a free particle, wherem denotes
mass and 2M is the d’Alembert operator, i.e. the Laplace operator of Minkowski
space.) In particular, for the zero modes of ∆X (the harmonic forms on X), one
sees in the four-dimensional reduction massless forms. For example if ξ is the unique

1On an even-dimensional manifold the mathematical literature usually uses d∗ = − ∗ ◦d ◦ ∗,
whereas physicists seem to prefer d∗ = + ∗ ◦d ◦ ∗ in the present context.
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harmonic representative of a cohomology class in X and ω = µ ∧ ξ, where µ is a
differential form on M, then the wave equation (50) implies that

∆Mµ = 0

so that µ is indeed massless. Therefore, a good cohomology theory for X should
capture all physically present massless particles. This is the case for intersection
cohomology in type IIA theory, but is not the case for ordinary cohomology, nor for
intersection cohomology or L2-cohomology, in type IIB theory, as we shall see in the
next section.

3.7. The Homology of Intersection Spaces and Massless D-Branes

In the present section, homology will be understood with rational coefficients.
Let

Xε ; S ; Y

be a conifold transition as in Section 3.3, with some of the 3-cycles (3-spheres) Bj

collapsing to points. Let Σ ⊂ S be the singular set of S and let n = card(Σ) denote
the number of nodes in S. Let Xε → S denote the collapse map. Set

p = b2(Xε), q = rk(H3(S − Σ)→ H3(S)) = rk IH3(S),

and

m = rk coker(H4(Xε)→ H4(S)).

(Here, bi(·) is the i-th ordinary Betti number of a space and IH∗ = IHm̄
∗ denotes

middle-perversity intersection homology.)

Lemma 3.7.1. The conifold transition is accompanied by the following Betti num-
bers:
(1) The map H3(Xε)→ H3(S) is surjective.
(2) The map H4(Xε)→ H4(S) is injective.
(3) rkH4(S) = p+m.
(4) rk ker(H3(Xε)→ H3(S)) = n−m.
(5) rkH2(Y ) = rkH4(Y ) = p+m.
(6) rkH3(Y ) = q.
(7) rkH3(Xε) = q + 2(n−m).
(8) rkH3(S) = q + (n−m).
(9) rkH2(S) = p.

Proof. We shall briefly write X for Xε. Let C =
⊔n
j=1 S

3
j ⊂ X be the dis-

joint union of those 3-spheres S3
j that are collapsed to the n nodes in S. The

collapse map X → X/C = S induces an isomorphism H∗(X,C)
∼=−→ H̃∗(S). Let

D =
⊔n
j=1 CP 1

j ⊂ Y be the disjoint union of those 2-spheres CP 1
j that are collapsed

to the n nodes in S by the small resolution Y → S. The collapse map Y → Y/D = S

induces an isomorphism H∗(Y,D)
∼=−→ H̃∗(S).
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(1): The diagram

H3(X) - H3(S)

H3(X,C)

∼=

6

-

commutes. Consequently, it suffices to show that H3(X) → H3(X,C) is surjective.
This follows from the exactness of the homology sequence of the pair (X,C),

H3(X) −→ H3(X,C)
∂∗−→ H2(C) =

n⊕
j=1

H2(S3
j ) = 0.

(2): As in (1), it suffices to show that H4(X) → H4(X,C) is injective. This follows
from the exactness of the sequence

0 = H4(C) −→ H4(X) −→ H4(X,C).

(3): Consider the exact sequence

H4(X)
α
↪→ H4(S)

∂∗→ H3(C)
β→ H3(X)

γ→ H3(S).

(The first map, α, is injective by (2).) By Poincaré duality in the manifold X,
rkH4(X) = rkH2(X) = p and by (2) and the definition of m, rkH4(S) = p+m.

(4): By exactness of the sequence in (3),

rk kerβ = rk ∂∗
= rkH4(S)− rk ker ∂∗
= p+m− rkα
= p+m− p
= m.

Since

rkH3(C) =

n∑
j=1

rkH3(S3
j ) = n,

we have

rk ker γ = rkβ = rkH3(C)− rk kerβ = n−m.
(5): The exact homology sequence of the pair (Y,D),

0 = H4(D) −→ H4(Y ) −→ H4(S) −→ H3(D) = 0

shows that the small resolution Y → S induces an isomorphism H4(Y ) ∼= H4(S). In
particular, rkH4(Y ) = rkH4(S) = p + m, see (3). By Poincaré duality, rkH2(Y ) =
rkH4(Y ).

(6): The intersection homology does not change under a small resolution of singular-
ities, and the intersection homology of a manifold equals the ordinary homology of
the manifold. Thus

rkH3(Y ) = rk IH3(S) = q.

(7): The Euler characteristic of X is given by

χ(X) = 2 + 2p− b3(X).
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By (5) and (6), the Euler characteristic of Y is given by

χ(Y ) = 2 + 2(p+m)− q.

By the Mayer-Vietoris sequence,

χ(Y ) = χ(Y −D) + χ(D)− χ(
⊔
S3
j × S2

j )

and

χ(X) = χ(X − C) + χ(C)− χ(
⊔
S3
j × S2

j ).

Subtracting these two equations and observing that X − C ∼= S − Σ ∼= Y − D, we
obtain

χ(Y )− χ(X) = χ(D)− χ(C) = 2n,

as noted also in [Hüb92]. Therefore,

2m− q + b3(X) = 2n,

that is, b3(X) = q + 2(n−m).

(8): By (1), H3(X)→ H3(S) is surjective. Thus

rkH3(S) = rkH3(X)− rk ker(H3X → H3S) = q+ 2(n−m)− (n−m) = q+ (n−m),

using (7) and (4).
(9): This follows from the exactness of the sequence

0 = H2(C)→ H2(X)→ H2(S)
∂∗→ H1(C) = 0.

�

In general, the set of the n collapsed 3-spheres does not define a set of linearly
independent homology classes. The number

m = rk coker(H4(Xε)→ H4(S))

is precisely the number of homology relations between these 3-spheres. In type IIB
theory, there will therefore, as we have already mentioned in Section 3.5, be n −m
massless threebranes present, since a D-brane is a homological object. Similarly, the
set of the n two-spheres collapsed by the resolution map does not generally define
a set of linearly independent homology classes. The number of homology relations
between these two-spheres is

rk coker(H3(Y )→ H3(S)).

From the exact homology sequence of the pair (Y,D) (notation as in the proof of
Lemma 3.7.1) we see that H3(Y )→ H3(S) is injective. So the rank of the cokernel is
q+(n−m)−q = n−m using Lemma 3.7.1. Hence there are n two-spheres with n−m
relations between them. Consequently, in type IIA theory, the number of twobranes is
n− (n−m) = m. By Lemma 3.7.1 and Section 3.6, we obtain the following summary
of the topology and physics of the conifold transition.
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Type dim Xε S Y

2 p p p+m
Elem. Massless 3 q + 2(n−m) q + (n−m) q

4 p p+m p+m

m m
2 (massless) (IIA 2-Branes,

massive)
D-Branes

n−m n−m
3 (IIB 3-Branes, (massless)

massive)

2 p p + m p+m
Total Massless 3 q + 2(n−m) q + (n − m) q
IIA 4 p p + m p+m

2 p p p+m
Total Massless 3 q + 2(n−m) q + 2(n − m) q
IIB 4 p p + m p+m

2 p p p+m
rkH∗ 3 q + 2(n−m) q + (n−m) q

4 p p+m p+m
H∗(Y ) = IH∗(S)

In type IIB string theory, a good homology theory HIIB
∗ for singular Calabi-Yau

varieties should ideally satisfy Poincaré duality (actually the entire Kähler package
would be desirable) and record all massless particles. But as we see from the above
table, these two requirements are mutually inconsistent; the total IIB numbers of
massless particles do not satisfy Poincaré duality. Thus one has a choice of modifying
one of the two requirements. Either we do not insist on Poincaré duality or we omit
some massless particles. In the present monograph we investigate theories that do
possess Poincaré duality. Which massless particles, then, should be omitted? Clearly
the ones that have no geometrically dual partner in the singular space. As the table
suggests, in the IIB regime, these are m 4-dimensional classes that are not dually
paired to classes in dimension 2. But these classes correspond to elementary massless
particles. Thus the n−m threebrane classes that repair the physical inconsistencies
discussed in Section 3.4 are recorded by such a theory, as required, and they will have
geometrically Poincaré dual classes in the theory.

An analogous discussion applies to type IIA string theory. If we do insist on
Poincaré duality for a good homology theory HIIA

∗ for singular Calabi-Yau varieties,
then, according to the above table, we must omit those n −m 3-dimensional classes
that do not have dual partners. Again, these correspond to elementary massless par-
ticles and the m twobrane classes that repair the physical inconsistencies are recorded
by HIIA

∗ . We thus adopt the following axiomatics.
Let C be a class of possibly singular Calabi-Yau 3-folds such that the singular

ones all sit in the middle of a conifold transition.

Definition 3.7.2. A homology theory HIIA
∗ defined on C is called IIA conifold

calibrated, if



3.7. THE HOMOLOGY OF INTERSECTION SPACES AND MASSLESS D-BRANES 163

(CCA1) for every space S ∈ C, HIIA
∗ (S) (or its reduced version) satisfies Poincaré

duality; for singular S ∈ C one has
(CCA2) rkHIIA

2 (S) = p+m,
(CCA3) rkHIIA

3 (S) = q; and
(CCA4) it agrees with ordinary homology on nonsingular S ∈ C.

A homology theory HIIB
∗ defined on C is called IIB conifold calibrated, if

(CCB1) for every space S ∈ C, HIIB
∗ (S) (or its reduced version) satisfies Poincaré

duality; for singular S ∈ C one has
(CCB2) rkHIIB

2 (S) = p,
(CCB3) rkHIIB

3 (S) = q + 2(n−m); and
(CCB4) it agrees with ordinary homology on nonsingular S ∈ C.

Examples 3.7.3. If S sits in the conifold transition X ; S ; Y , then setting

HIIA
∗ (S) = H∗(Y ;Q)

and

HIIB
∗ (S) = H∗(X;Q)

yields conifold calibrated theories according to the above table. However, these the-
ories are not intrinsic to the space S as they use extrinsic data associated to the
surrounding conifold transition. A mathematically superior construction of such the-
ories should have access only to S itself, not to its process of formation. (For example,
one advantage is that such an intrinsic construction may then generalize to singular
spaces that do not arise in the course of a conifold transition.) In type IIA the-
ory, a solution is given by (middle perversity) intersection homology IH∗(S). Since
IH∗(S) = H∗(Y ), taking

HIIA
∗ (S) = IH∗(S)

gives us a IIA conifold calibrated theory which only uses the geometry of S. A
solution for type IIB theory is given by taking the homology of the (middle perversity)
intersection space IS of S.

Proposition 3.7.4. The theory

HIIB
∗ (S) = H∗(IS;Q)

is IIB conifold calibrated on C.

Proof. Axiom (CCB4) follows from IS = S for a one-stratum space S. Poincaré
duality (CCB1) is established in Theorem 2.2.5. Let M denote the exterior manifold

of the singular set with boundary ∂M and let Ŝ = M/∂M, see Section 2.6.2 for this
“denormalization”. Axiom (CCB2) is verified by

rkH2(IS) = rkH2(M,∂M) = rkH2(Ŝ) = rkH2(S) = p,

using Lemma 3.7.1. By Theorem 3.7.7 below, there is a short exact sequence

0→ K −→ H3(IS) −→ H3(S)→ 0,

where K = ker(H3(S−Σ)→ H3(S)). Each of the n singular points has a small open

neighborhood of the form
◦

cone(S3 × S2). Thus the singular set Σ possesses an open

neighborhood U of the form U =
⊔n
j=1

◦
conej(S

3×S2). Removing this neighborhood,
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one obtains a compact manifold M6 with boundary ∂M consisting of n disjoint copies
of S3 × S2. From the exact sequence

0 = H3(U) −→ H3(S) −→ H3(S,U) −→ H2(U) = 0

we conclude that

H3(S) ∼= H3(S,

n⊔
j=1

◦
conej(S

3 × S2)) ∼= H3(M,∂M),

where the second isomorphism is given by excision and homotopy invariance. By
Poincaré duality and the universal coefficient theorem,

rkH3(M,∂M) = rkH3(M) = rkH3(M).

Since M and S − Σ are homotopy equivalent, we have rkH3(M) = rkH3(S − Σ).
Hence

rkH3(S − Σ) = rkH3(S) = q + (n−m),

and consequently,

rkH3(IS) = rkH3(S) + rkK
= q + (n−m) + rkH3(S − Σ)− rk(H3(S − Σ)→ H3(S))
= 2q + 2(n−m)− q
= q + 2(n−m).

Thus (CCB3) holds. �

How would one characterize theories that faithfully record the physically correct
number of massless D-branes if one does not know that the singular space sits in a
conifold transition? Let C be any class of 6-dimensional compact oriented pseudo-
manifolds with only isolated singularities and simply connected links, not necessarily
arising from conifold transitions.

Definition 3.7.5. A homology theory HIIA
∗ defined on C is called IIA-brane-

complete, if

(BCA1) for every space S ∈ C, HIIA
∗ (S) (or its reduced version) satisfies Poincaré

duality,
(BCA2) HIIA

2 (S) is an extension of H2(S) by ker(H2(S − Σ) → H2(S)) for singular
S ∈ C, and
(BCA3) HIIA

∗ agrees with ordinary homology on nonsingular S ∈ C.

A homology theory HIIB
∗ defined on C is called IIB-brane-complete, if

(BCB1) for every space S ∈ C, HIIB
∗ (S) (or its reduced version) satisfies Poincaré

duality,
(BCB2) HIIB

3 (S) is an extension of H3(S) by ker(H3(S − Σ) → H3(S)) for singular
S ∈ C, and
(BCB3) HIIB

∗ agrees with ordinary homology on nonsingular S ∈ C.

In the IIA context, provided all links have vanishing first homology, there is
actually an obvious candidate for the extension required by axiom (BCA2), namely

HIIA
2 (S) = H2(S − Σ),
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as follows from identifying the map H2(S − Σ) → H2(S) up to isomorphism with
H2(M)→ H2(M,∂M) and observing that the latter is onto, since H1(∂M) vanishes.
Since intersection homology satisfies

IH2(S) = H2(S − Σ),

as well as (BCA1) and (BCA3), we obtain

Proposition 3.7.6. Middle perversity intersection homology is IIA-brane-complete
on the class C of 6-dimensional compact oriented pseudomanifolds with only isolated
singularities and simply connected links (or more generally, links with zero first ho-
mology).

In the IIB situation, on the other hand, there is a priori no obvious space around,
whose homology gives the sought extension.

Theorem 3.7.7. The theory

HIIB
∗ (S) = H∗(IS;Q)

is IIB-brane-complete on the class C of 6-dimensional compact oriented pseudomani-
folds with only isolated singularities and simply connected links.

Proof. Axiom (BCB3) follows from IS = S for a one-stratum space S. Poincaré
duality (BCB1) is established in Theorem 2.2.5. To prove (BCB2), we observe that
the diagram

H3(M)

H3(L)
α−j∗
-

j∗-

H̃3(IS)
α+-

⊂α−-

H3(j) = H3(M,∂M) ∼= H3(S) - 0,

with exact bottom row (L = ∂M), yields a short exact sequence

0→ im(α−j∗) −→ H̃3(IS)
α+−→ H3(S)→ 0.

Since α− is injective, it induces an isomorphism im j∗ ∼= im(α−j∗). By the exactness
of the sequence

H3(∂M)
j∗−→ H3(M) −→ H3(M,∂M),

we have

im j∗ = ker(H3(M)→ H3(M,∂M)).

From the commutative diagram

H3(M) - H3(M,∂M)

H3(S − Σ)

∼=

?
- H3(S)

∼=

?

we see that

ker(H3(M)→ H3(M,∂M)) ∼= ker(H3(S − Σ)→ H3(S)).

�
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3.8. Mirror Symmetry

Let us turn to the behavior of these theories with respect to mirror symmetry.
We begin by reviewing this phenomenon briefly, following [CK99]. Supersymmetry
interchanges bosons and fermions. The Lie algebra of the symmetry group of a super-
symmetric string theory contains two generators Q,Q called supersymmetric charges
that are only well-defined up to sign. Replacing Q by −Q and leaving Q unchanged is
a physically valid operation. Regarding Q,Q as operators on a Hilbert space of states,
e.g. some complex of differential forms on a manifold, particles are assigned eigen-
values of (Q,Q) that indicate their charge. A given Calabi-Yau threefold M together
with a complexified Kähler class ω determines such an algebra. In particular, it deter-
mines the pair (Q,Q), and for p, q ≥ 0, the (p, q)-eigenspace can be computed to be
Hq(M ;∧pTM), while the (−p, q)-eigenspace turns out to be Hq(M ; ΩpM ). Replacing

Q by −Q (leaving Q unchanged), the (p, q)- and (−p, q)-eigenspaces are interchanged.
Roughly, a space M◦ together with a complexified Kähler class ω◦ is called a mirror
of (M,ω) if the supersymmetry charges determined by (M◦, ω◦) are (−Q,Q) and the
field theories of (M,ω) and (M◦, ω◦) are isomorphic. This implies identifications

Hq(M ;∧pTM) ∼= Hq(M◦; ΩpM◦),

Hq(M ; ΩpM ) ∼= Hq(M◦;∧pTM◦).

Using the nonvanishing holomorphic 3-form on M ,

Hq(M ;∧pTM) ∼= Hq(M ; Ω3−p
M ).

We obtain thus isomorphisms

Hq(M ; Ω3−p
M ) ∼= Hq(M◦; ΩpM◦).

The two interesting Hodge numbers bp,q(M) = dimHq(M ; ΩpM ) of a simply connected
smooth Calabi-Yau threefold M are b1,1(M) and b2,1(M). We have seen that mirror
symmetry interchanges these:

b1,1(M) = b2,1(M◦), b2,1(M) = b1,1(M◦).

For the ordinary Betti numbers

b2 = b1,1 = b4, b3 = 2 + 2b2,1,

this means

b3(M) = b2(M◦) + b4(M◦) + 2,

b3(M◦) = b2(M) + b4(M) + 2.

In the conifold transition context, we shall answer below the following question: What
is the correct version of these formulae if M is allowed to be singular and in either
the left or right hand side, the ordinary Betti numbers are replaced by intersection
Betti numbers?

Definition 3.8.1. A class C of possibly singular Calabi-Yau 3-folds is called
mirror-closed, if it is closed under the formation of mirrors in the sense of mirror
symmetry.
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Definition 3.8.2. Let C be a mirror-closed class and (HIIA
∗ ,HIIB

∗ ) a pair of
homology theories on C. We call (HIIA

∗ ,HIIB
∗ ) a mirror-pair, if

rkHIIA
3 (S) = rkHIIB

2 (S◦) + rkHIIB
4 (S◦) + 2,

rkHIIA
3 (S◦) = rkHIIB

2 (S) + rkHIIB
4 (S) + 2,

rkHIIB
3 (S) = rkHIIA

2 (S◦) + rkHIIA
4 (S◦) + 2, and

rkHIIB
3 (S◦) = rkHIIA

2 (S) + rkHIIA
4 (S) + 2,

where S◦ denotes any mirror of S, for all S ∈ C.

Example 3.8.3. Let C be any mirror-closed class of smooth Calabi-Yau 3-folds.
Then ordinary homology defines a mirror-pair (HIIA

∗ = H∗,H
IIB
∗ = H∗), as we have

seen above.

It is conjectured in [Mor99] that the mirror of a conifold transition is again
a conifold transition, performed in the reverse direction. Thus it is reasonable to
consider mirror-closed classes C of Calabi-Yau 3-folds all of whose singular members
sit in a conifold transition.

Proposition 3.8.4. Let C be a mirror-closed class of possibly singular Calabi-Yau
3-folds such that all singular members of C arise in the course of a conifold transition.
Then any pair of homology theories (HIIA

∗ ,HIIB
∗ ) with HIIA

∗ IIA conifold calibrated and
HIIB
∗ IIB conifold calibrated is a mirror-pair.

Proof. If S ∈ C is nonsingular, the statement follows from axioms (CCA4),
(CCB4) and Example 3.8.3. Let S ∈ C be singular with conifold transition X ;

S ; Y. If S◦ is a mirror of S, then by assumption it sits in a conifold transition
Y ◦ ; S◦ ; X◦, where X◦ is a mirror of X and Y ◦ is a mirror of Y . According to
the table on page 162, the ordinary homology ranks of these spaces are of the form

X S Y Y ◦ S◦ X◦

b2 p p p+m P P P +M
b3 q + 2(n−m) q + (n−m) q Q+ 2(N −M) Q+ (N −M) Q
b4 p p+m p+m P P +M P +M

Since X and X◦ are smooth,

Q = b3(X◦) = b2(X) + b4(X) + 2 = 2p+ 2

and

q + 2(n−m) = b3(X) = b2(X◦) + b4(X◦) + 2 = 2(P +M) + 2.

Since Y and Y ◦ smooth,

q = b3(Y ) = b2(Y ◦) + b4(Y ◦) + 2 = 2P + 2

and

Q+ 2(N −M) = b3(Y ◦) = b2(Y ) + b4(Y ) + 2 = 2(p+m) + 2.

Thus, by axioms (CCA3), (CCB2) and (CCB1),

rkHIIA
3 (S◦) = Q = 2p+ 2 = rkHIIB

2 (S) + rkHIIB
4 (S) + 2,

and, by axioms (CCB3), (CCA2) and (CCA1),

rkHIIB
3 (S) = q + 2(n−m) = 2(P +M) + 2 = rkHIIA

2 (S◦) + rkHIIA
4 (S◦) + 2.

Furthermore, by axioms (CCA3), (CCB2) and (CCB1),

rkHIIA
3 (S) = q = 2P + 2 = rkHIIB

2 (S◦) + rkHIIB
4 (S◦) + 2,
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and, by axioms (CCB3), (CCA2) and (CCA1),

rkHIIB
3 (S◦) = Q+ 2(N −M) = 2(p+m) + 2 = rkHIIA

2 (S) + rkHIIA
4 (S) + 2.

�

Corollary 3.8.5. Intersection homology and the homology of intersection spaces
are a mirror-pair on any mirror-closed class of possibly singular Calabi-Yau 3-folds
all of whose singular members arise in the course of a conifold transition.

Proof. We have observed above that intersection homology is IIA conifold cal-
ibrated on such a class of spaces. By Proposition 3.7.4, the homology of intersection
spaces is IIB conifold calibrated on such a class. The statement follows by applying
Proposition 3.8.4. �

In [Hüb97], T. Hübsch asks for a homology theory SH∗ (“stringy homology”)
on 3-folds with only isolated singularities such that

(SH1) SH∗ satisfies Poincaré duality;
for singular S:
(SH2) SHr(S) ∼= Hr(S − Σ) for r < 3,
(SH3) SH3(S) is an extension of H3(S) by ker(H3(S − Σ)→ H3(S)),
(SH4) SHr(S) ∼= Hr(S) for r > 3; and
(SH5) SH∗ agrees with ordinary homology on nonsingular S.

(In fact, one may of course ask this more generally for n-folds.) Such a theory
would record both the type IIA and the type IIB massless D-branes simultaneously.
Intersection homology satisfies all of these axioms with the exception of axiom (SH3),
and is thus not a solution. Regarding (SH3), Hübsch notes further that “the pre-
cise nature of this extension is to be determined from the as yet unspecified general

cohomology theory.” Using the homology of intersection spaces, H̃∗(IS), we have
now provided an answer: By Theorem 3.7.7, the group H3(IS) satisfies axiom (SH3)
for any 3-fold S with isolated singularities and simply connected links. The pre-
cise nature of the extension is given in the proof of that theorem. However, setting

SH∗(S) = H̃∗(IS) does not satisfy axiom (SH2) (and thus, by Poincaré duality, does
not satisfy (SH4)), although is does satisfy (SH1), (SH3) and (SH5). The mirror-pair
(IH∗(S), H∗(IS)) does contain all the information that a putative theory SH∗(S) sat-
isfying (SH1)–(SH5) would contain and so may be regarded as a solution to Hübsch’
problem. In fact, one could set

SHr(S) =

{
IHr(S), r 6= 3,

Hr(IS), r = 3.

This SH∗ then satisfies all axioms (SH1)–(SH5).
Since the intersection space IS has been constructed not just for singular spaces

S with only isolated singularities, but for more general situations with nonisolated
singular strata as well (see Section 2.9), one thus obtains an extension of the sought
theories to these nonisolated scenarios.

An Ansatz for constructing SH∗, using the description of perverse sheaves due to
MacPherson-Vilonen [MV86], has been given by A. Rahman in [Rah07] for isolated
singularities.
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3.9. An Example

Let us return to the quintic Xε in P4 from the introduction (Section 3.1), and
consider the conifold transition

Xε ; S ; Y.

The conifold transition for this well-known quintic is described in [Hüb92], see also
[Pol00]. We have seen that S has n = 125 nodes. Any smooth quintic hypersurface
in P4 (is Calabi-Yau and) has Hodge numbers b1,1 = 1 and b2,1 = 101. Thus for ε 6= 0,

p = b2(Xε) = b1,1(Xε) = 1,

q + 2(n−m) = b3(Xε) = 2(1 + b2,1) = 204.

By [Sch86], b1,1(Y ) = 25 for the small resolution Y . Hence

p+m = b2(Y ) = b1,1(Y ) = 25,

and so m = 24. From

204 = q + 2(n−m) = q + 2(125− 24) = q + 202

we see that q = 2. So in this example the third homology of the intersection space
IS sees

rkH3(IS) = q + 2(n−m) = 204

independent cycles, of which 202 remain invisible to intersection homology because
the latter sees only

rk IH3(S) = q = 2

independent cycles. On the other hand, the second and fourth intersection homology
of S sees

rk IH2(S) + rk IH4(S) = 50

independent cycles, of which 48 remain invisible to the homology of the intersection
space because the latter sees only

rkH2(IS) + rkH4(IS) = 2

independent cycles. The above table for this example is:
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Type dim Xε S Y

2 1 1 25
Elem. Massless 3 204 103 2

4 1 25 25

24 24
2 (massless) (IIA 2-Branes,

massive)
D-Branes

101 101
3 (IIB 3-Branes, (massless)

massive)

2 1 25 25
Total Massless 3 204 103 2
IIA 4 1 25 25

2 1 1 25
Total Massless 3 204 204 2
IIB 4 1 25 25

2 1 1 25
rkH∗ 3 204 103 2

4 1 25 25

2 25
rk IH∗(S) 3 2

4 25

2 1
rkH∗(IS) 3 204

4 1
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Homotopy invariance of compression rigidity,
38

Homotopy pushout, 151

Homotopy retraction, 77

Hypersurface singularities, 107

ICW, 58

Interleaf category, 58

Intersection space

Euler characteristic of, 100

for isolated singularities, 92

for untwisted link bundle, 144

Intersection tangent bundle, 142

Intersection vector bundle, 141

Intersection G-bundle, 141

I p̄X

for isolated singularities, 92

for untwisted link bundles, 144

Iterated truncation, 52, 154

IX, 111

Jm-complex, 28

k-invariant, 2

Klein-Gordon equation, 158

L•, 135

L-class, 135

reduced, 136

Laplacian, 158

Lens space, 105

loc, 53

Localization at odd primes, 53

Lorentz gauge condition, 158

L•-orientation, 135

reduced, 136

Mapping torus, 81

Map(X,Y ), 70

Massless

D-branes, 158

Particles, 159

Maxwell equation, 158

M(ICW), 61

Milnor construction, 84

Minimal cell structure theory, 62

Mirror

space, 166

symmetry, 166

Mirror-closed class, 166

Mirror-pair of homology theories, 167

Moduli category, 61

Moduli space of complex structures, 157

Monoid, grouplike topological, 71

Moore space decomposition, 1

Moore-Postnikov tower of a map, 47

Morphism

of 3-diagrams, 151

of homological truncation structures, 21

of reflective diagrams, 89

n-compression rigid, 33

Representation, 80

Node, 50, 108, 157

Obstruction cocycle, 47

Obstruction group, 46

Obstruction theoretic criterion for rigidity,
44

Obstructions to compressing homotopies, 45,

47

Odd-primary homology truncation, 53

Parabolic subgroup, 59

Periods, 157

Perverse link, 86

Petersson-Weil metric, 157

(−)(odd), 53

Poincaré duality

in rational K-theory, 141

for isolated singularities, 93

for untwisted link bundles, 149

in rational L-homology, 136, 139

Pontrjagin class, 142

Postnikov decomposition, 1

Principal intersection G-bundle, 141

Projective spaces, 59

pron, 68

Quasifibration, 84

Realization, 151

Reflective diagram, 87

Dual of, 90

Ricci-flat metric, 155

Rigid, 33

Schubert

cells, 59

subvariety, 61

Segmented, 5

Self homotopy equivalences, 71

Semisimple Lie group, 59

Simple CW-complex, 43

Smale’s classification, 108

Small resolution, 157

Space-time, 155

Spin, 143

Stasheff’s classifying space, 84

Stiefel manifold bundle, 143

Stiefel-Whitney classes, 143

String, 155
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compression rigid, 41
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Subcategory, compression rigid, 41
Supernormal pseudomanifold, 91

Supersymmetric charges, 166

Supersymmetry, 166
Surgery theory, 142

Suspension of the torus, 100

Symmetric L-spectrum, 135

T-diagram, 88, 98

Tangent bundle element, 142
Target space, 155

t≥n, 65
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on the interleaf category, 64

t<n, 41

on the interleaf category, 64
t̃<n, 72
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Toric variety, 59
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Truncation
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fiberwise, 69, 81

over spheres, 85

iterated, 52, 154
Main Theorem, 42

odd-primary, 53

of homotopy equivalence, 50
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on the interleaf category, 64
Truncation structure, 9
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Virtual cell group, 15
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Weyl group, 59

Whitney embedding theorem, 156
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