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ABSTRACT. To a stratified singular space X, we associate new spaces I?X, its
perversity p-intersection spaces, such that when X is a closed, oriented pseu-
domanifold, the ordinary rational cohomology of I?X is Poincaré dual to the
ordinary rational homology of I9X if p and g are complementary perversities.
The homology of I?X is not isomorphic to intersection homology so that a new
duality theory for pseudomanifolds is obtained, which addresses certain needs in
string theory related to the existence of massless D-branes in the course of coni-
fold transitions and their faithful representation as cohomology classes. While
intersection homology accounts correctly for all massless D-branes in type ITA
string theory, the homology of intersection spaces accounts correctly for all mass-
less D-branes in type IIB string theory. In fact, for singular Calabi-Yau conifolds,
the two theories are mirrors of each other in the sense of mirror symmetry. The
new theory also allows for certain types of cap products that are known not to
exist for intersection homology. Using these products, we show that capping with
the symmetric L-homology fundamental class induces an isomorphism between
the rational symmetric L-cohomology of I™ X and the rational L-homology of
I"X. Perversity p-intersection vector bundles on X may be defined as actual
vector bundles on I?X. In the present monograph, the construction of I?X is
carried out for isolated singularities and, more generally, for two-strata spaces
with trivial link bundle. It is based on an in-depth and autonomous homotopy
theoretic analysis of spatial homology truncation, where an emphasis was placed
on investigating functoriality.
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Preface

The primary concern of the work presented here is Poincaré duality for spaces
that are not manifolds, but are still put together from manifolds that form the strata
of a stratification of the space. Goresky and MacPherson’s intersection homology
[GMB80], [GMS83], see also [BT84], [KWO06], [Ban07], associates to a stratified
pseudomanifold X chain complexes IC? (X; Q) depending on a perversity parameter p,
whose homology TH?(X;Q) = H,(IC?(X;Q)) satisfies generalized Poincaré duality
across complementary perversities when X is closed and oriented. L2?-cohomology
[Che80], [CheT9], [Che83] associates to a triangulated pseudomanifold X equipped
with a suitable conical Riemannian metric on the top stratum a differential complex
Q’(*Q) (X), the complex of differential L2-forms w on the top stratum of X such that dw

is L2 as well, whose cohomology H () (X) = H*(Q{,,(X)) satisfies Poincaré duality (at
least when X has no strata of odd codimension; in more general situations one must
choose certain boundary conditions). The linear dual of TH(X;R) is isomorphic
to H (*2)(X ), by integration. In the present work, we adopt the “spatial philosophy”
outlined in the announcement [Ban09], maintaining that a theory of Poincaré duality
for stratified spaces benefits from being implemented on the level of spaces, with
passage to coarser filters such as chain complexes, homology or homotopy groups
occurring as late as possible in the course of the development. Thus we pursue here
the following program. To a stratified pseudomanifold X, associate spaces

X

)

the intersection spaces of X, such that the ordinary homology H,(I?X;Q) satis-
fies generalized Poincaré duality when X is closed and oriented. If X has no odd-
codimensional strata and p is the middle perversity p = m, then we are thus assigning
to a singular pseudomanifold a (rational) Poincaré complex. The resulting homology
theory X ~» H, (I?X) is not isomorphic to intersection homology or L?-cohomology.
In fact, it solves a problem in type II string theory related to the existence of massless
D-branes, which is neither solved by ordinary homology nor by intersection homology.
We show that while TH™(X) is the correct theory in the realm of type ITA string
theory (giving the physically correct counts of massless particles), H, (I™X) is the
correct theory in the realm of type IIB string theory. In other words, the two theories
TH™(X), H,(I™X) form a mirror pair in the sense of mirror symmetry in algebraic
geometry. We will return to these considerations in more detail later in this preface.

The assignment X ~» I?X should satisfy the following requirements:

(1) H.(IPX;Q) should satisfy generalized Poincaré duality across complemen-
tary perversities,
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(2) H,(I?X;Q) should be a mirror of ITH™(X;Q) in the sense of mirror sym-
metry,

(3) X ~ IPX should be as “natural” as possible,

(4) X should be modified as little as possible (only near the singularities; the
homotopy type away from the singularities should be completely preserved),

(5) if X is a finite cell complex, then I X should again be a finite cell complex,
and

(6) X ~ IPX should be homotopy-theoretically tractable, so as to facilitate
computations.

Note that full naturality in (3) with respect to all continuous maps is too much
to expect, since a corresponding property cannot be achieved for intersection homol-
ogy either. In order to demonstrate (6), we have worked out numerous examples
throughout the text, giving concrete intersection spaces for pseudomanifolds ranging
from toy examples to complex algebraic 3-folds and Calabi-Yau conifolds arising in
mathematical physics. In the present monograph, we carry out the above program for
pseudomanifolds with isolated singularities as well as, more generally, for two-strata
spaces with arbitrary bottom stratum but trivial link bundle. In addition, we make
suggestions for how to proceed when there are more than two strata, or when the
link bundle is twisted. Future research will have to determine the ultimate domain of
pseudomanifolds for which an intersection space is definable. Throughout the general
development of the theory, we assume the links of singular strata to be simply con-
nected. In concrete applications, this assumption is frequently unnecessary, see also
the paragraph preceding Example 2.2.8. In the example, we discuss the intersection
space of a concrete space whose links are not simply connected. Our construction of
intersection spaces is of a homotopy-theoretic nature, resting on technology for spatial
homology truncation, which we develop in this book. This technology is completely
general, so that it may be of independent interest.

What are the purely mathematical advantages of introducing intersection spaces?
Algebraic Topology has developed a vast array of functors defined on spaces, many
of which do not factor through chain complexes. For instance, let E, be any gener-
alized homology theory, defined by a spectrum FE, such as K-theory, L-theory, stable
homotopy groups, bordism and so on. One may then study the composite assignment

X ~ IPE(X) := E,(I’X).

Section 2.7, for example, studies symmetric L-homology, where F, is given by Ran-
icki’s symmetric L-spectrum F = L®*. We show in Corollary 2.7.4 that capping with
the L°®-homology fundamental class of an n-dimensional oriented compact pseudo-
manifold X with isolated singularities indeed induces a Poincaré duality isomorphism
HY(I"X;L*) ® Q — H,(I"X;L*) ® Q.
K-theory is discussed in Section 2.8. A p-intersection vector bundle on X may be de-
fined as an actual vector bundle on I?X. More generally, given any structure group
G, one may define principal intersection G-bundles over X as homotopy classes of
maps IPX — BG. In Example 2.8.1, we show that there are infinitely many distinct
7-dimensional pseudomanifolds X, whose tangent builile elements in the I/(_\Q—theory
KO(X —Sing) of their nonsingular parts do not lift to KO(X), but do lift to KO(I"X),
where 7 is the upper middle perversity. So this framework allows one to formulate
the requirement that a pseudomanifold have a p-intersection tangent bundle, and by
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varying p, the severity of this requirement can be adjusted at will. Ultimately, one

may want to study the Postnikov tower of I? X and view it as a “p-intersection Post-
nikov tower” of X.

A further asset of the spatial philosophy is that cochain complexes will auto-
matically come equipped with internal multiplications, making them into differen-
tial graded algebras (DGAs). The Goresky-MacPherson intersection chain complexes
ICP(X) are generally not algebras, unless § is the zero-perversity, in which case
ICP(X ) is essentially the ordinary cochain complex of X. (The Goresky-MacPherson
intersection product raises perversities in general.) Similarly, the differential complex
Q’{Q)(X ) of L?-forms on X — Sing is not an algebra under wedge product of forms
because the product of two L2-functions need not be L? anymore (consider for ex-
ample r—1/3 for small r > 0). Using the intersection space framework, the ordinary
cochain complex C*(IPX) of I?X is a DGA, simply by employing the ordinary cup
product. For similar reasons, the cohomology of I?X is by default endowed with in-
ternal cohomology operations, which do not exist for intersection cohomology. These
structures, along with Massey triple products and other secondary and higher order
operations, remain to be investigated elsewhere. Operations in intersection cohomol-
ogy that weaken the perversity by a factor of two have been constructed in [Gor84].

In Section 2.6, we construct cap products of the type
(1) H™(I™X) @ Hy(X) 2 H;_,(I"X).

These products have their applications not only in formulating and proving duality
statements, but also in developing various characteristic class formulae, which may
lead to extensions of the results of [BCS03], [Ban06a]. An m-intersection vector
bundle on X has Chern classes in H¢¥**(I"™ X). Characteristic classes of pseudomani-
folds, such as the L-class, generally lie only in H,(X; Q) and do not lift to intersection
homology or to H,(I™X;Q), see for example [GMS80], [Ban06b]. Consequently, the
ordinary cap product H"(I™X) ® H;(I™X) — H;_.(I™X) is useless in multiplying
the Chern classes of the bundle and the characteristic classes of the pseudomanifold.
The above product (1) then enables one to carry out such a multiplication. The
product (1) seems counterintuitive from the point of view of intersection homology
because an analogous product

ITH"(X) ® H;(X) --» I[H;—(X)

on intersection homology cannot exist. The motivational Section 2.6.1 explains why
the desired product cannot exist for intersection homology but does exist for inter-
section space homology. The products themselves are constructed in Section 2.6.3.

Let us briefly indicate how intersection spaces are constructed. We are guided
initially by mimicking spatially what intersection homology does algebraically. By
Mayer-Vietoris sequences, the overall behavior of intersection homology is primarily
controlled by its behavior on cones. If L is a closed n-dimensional manifold, n > 0,
then

HT(L)7 ’I"<’I’L—]§('fl+1),

IH?(CO(}IG(L)) = {O otherwise
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where coone(L) denotes the open cone on L and we are using intersection homology
built from finite chains. Thus, intersection homology is a process of truncating the
homology of a space algebraically above some cut-off degree given by the perversity
and the dimension of the space. This is also apparent from Deligne’s formula for the
intersection chain sheaf. The task at hand is to implement this spatially. Let C be a
category of spaces, that is, a category with a functor ¢ : C — Top to the category Top
of topological spaces and continuous maps. (For instance, C might be a subcategory
of Top and ¢ the inclusion functor, but it might also be spaces endowed with extra
structure with ¢ the forgetful functor, etc.) Let p : Top — HoTop be the natural
projection functor to the homotopy category of spaces, sending a continuous map to
its homotopy class. Suppose then that we had a functor

t<r : C — HoTop,

where k is a positive integer, together with a natural transformation emby, : top — pi
(think of pi as the “identity functor”) such that

emby (L), : H,(tep(L)) — H,(pi(L))

is an isomorphism for r < k, while H,.(t<;(L)) = 0 for r > k, for all objects L in
C. We refer to such a functor as a spatial homology truncation functor. Let X be an
n-dimensional closed pseudomanifold with one isolated singular point. Such an X is
of the form
X = M Ugp=r, cone(L),

where L, a closed manifold of dimension n — 1, is the link of the singularity, and
M, a compact manifold with boundary OM = L, is the complement of a small open
cone-neighborhood of the singularity. Assume that L gives rise to an object L in C.
The intersection space I? X is defined to be the homotopy cofiber of the composition

ton(L) P pi(L) = L= OM < M,

where k = n — 1 —p(n), see Definition 2.2.3. In other words: we attach the cone on a
suitable spatial homology truncation of the link to the exterior of the singularity along
the boundary of the exterior. The two extreme cases of this construction arise when
k =1 and when k is larger than the dimension of the link. In the former case, t-1(L)
is a point (at least when L is path connected) and thus I? X is homotopy equivalent to
the nonsingular part X — Sing of X. In the latter case no actual truncation has to be
performed, t<;(L) = L, emby(L) is the identity map and thus I?X = X. If there are
several isolated singularities, then we perform spatial homology truncation on each of
the links. If the singularities are not isolated, a process of fiberwise spatial homology
truncation applied to the link bundle has to be used, see Section 2.9. If there are
more than two nested strata, then more elaborate homotopy colimit constructions
involving iterated truncation techniques can be used.

Theorem 2.2.5 establishes generalized Poincaré duality for the rational homol-
ogy of intersection spaces and simultaneously analyzes the relation to intersection
homology, both in the isolated singularity case. This relation is of a “reflective” na-
ture (which is also responsible for both theories being mirrors of each other in the
context of singular Calabi-Yau 3-folds). The requisite abstract language of reflective
diagrams is introduced in Section 2.1. Of particular interest here is to understand
what happens at the cut-off degree k, which is the middle dimension for the middle
perversity. The reflective diagram shows that while IH ,f (X) is generally smaller than
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both Hy (X — Sing) and Hy(X), being a quotient of the former and a subgroup of the
latter, H,(I?X), on the other hand, is generally bigger than both H(X — Sing) and
Hy(X), containing the former as a subgroup and mapping to the latter surjectively.
Section 3.9 contains an example of a singular quintic S (a conifold) in P* such that
H5(IS) has rank 204, but IH3(S) has only rank 2. Corollary 2.2.7 computes the
difference of the Euler characteristics of the two theories. As far as Witt groups are
concerned, both theories lead to equivalent intersection forms: We prove in Theorem
2.5.2 that for a pseudomanifold X of dimension n = 4m, the symmetric intersection
form on THY* (X) and the symmetric intersection form on Ha,, (I™X) determine the
same element in the Witt group of the rationals. In particular, the signature of the
two forms are equal. Definition 2.9.1 contains the construction of I? X for a space X
with a positive dimensional singular stratum with untwisted link bundle. Theorem
2.9.7 establishes generalized Poincaré duality in this context.

As our approach relies on the ability to perform spatial homology truncation,
Chapter 1 is devoted to a systematic investigation of this problem. The investiga-
tion and results are of a general nature and can be read and used independently of
any interest in intersection spaces. Throughout the development, we strive to remain
firmly on the plane of elementary homotopy theory, using only classical instruments,
working unstably, avoiding simplicial or model theoretic language, as such language
does not seem to yield any particular advantage here. Our spaces in this chapter will
be simply connected CW-complexes because, just as Hilton [Hil65] does, we wish to
avail ourselves of the Hurewicz and the Whitehead theorem. Spatial homology trun-
cation on the object level has been studied by several researchers: the Eckmann-Hilton
dual of the Postnikov decomposition is the homology decomposition (or Moore space
decomposition) of a space, see [Hil65], [BJCJI59], [Moo]. It seems that the problem
has not received much attention on the morphism level; see, however, [Bau88] for
a tower of categories. Consequently, we focus on aspects of functoriality, and this is
where homology truncation turns out to be harder than Postnikov truncation because
obstructions surface that do not arise in the Postnikov picture. Given a space X, let
pn(X) : X = P,(X) denote a stage-n Postnikov approximation for X. If f : X — Y is
any map, then there exists, uniquely up to homotopy, a map p,(f) : Po(X) = P,(Y)
such that

X Y

Pn(X) pn(Y)

P.(x) YL p(v)

homotopy commutes. In the introductory Section 1.1.1 we give an example that shows
that this property does not Eckmann-Hilton dualize to spatial homology truncation.
Thus a homology truncation functor in this naive sense cannot exist. Our solution pro-
poses to consider spaces endowed with an extra structure. Morphisms should preserve
this extra structure; one obtains a category CW,~5. What is this extra structure?
Hilton’s homology decomposition really depends on a choice of complement to the
group of n-cycles inside of the n-th chain group. Such a complement always exists
and pairs (space, choice of complement) are the objects of CW,,55; morphisms are
cellular maps that map the complement chosen for the domain to the complement
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chosen for the codomain. The Compression Theorem 1.1.32 shows that such mor-
phisms can always be compressed into spatial homology truncations. The upshot at
this stage is that we obtain a covariant assignment

t<n : CWTLD@ — HOCanl

of objects and morphisms into the rel (n — 1)-skeleton homotopy category of CW-
complexes together with a natural transformation emb,, from t.,, to the identity, such
that for every object (K,Y) of CW,,~g, where K is a simply connected CW-complex
and Y a complement as discussed above,

emby, (K, Y), : Hy(ten(K,Y)) — H,(K)

is an isomorphism for r < n and H,(t<,(K,Y)) = 0 for r > n, see the first part of
Theorem 1.1.41. (Note that we do not at this stage claim that ¢, is a functor on
all of CW,,~9.) This solves the first order problem of the existence of compressions
of maps. Immediately, the second order problem of the uniqueness of compressions
presents itself. Example 1.1.9 shows that even when domain and codomain of a map
f have unique homological n-truncations and f does have a homological n-truncation,
the homotopy class of that truncation may not be uniquely determined by f. The
obvious idea of imposing the above requirement of complement-preservation also on
homotopies and then just applying the Compression Theorem 1.1.32 to compress
the homotopy into spatial homology truncations does not work. We call a map n-
compression rigid, if its compression into n-truncations agrees with f on the (n — 1)-
skeleton and is unique up to rel (n — 1)-skeleton homotopy, see Definition 1.1.33 and
Proposition 1.1.34. Example 1.1.35 exposes a map that is not compression rigid, even
though its domain and codomain have unique n-truncations. As an instrument for
understanding compression rigidity, we introduce virtual cell groups V C,, of a space,
so named because they are homotopy groups which are not themselves cellular chain
groups, but they sit naturally between two actual cellular chain groups of certain
cylinders. The virtual cell groups come equipped with an endomorphism so that we
can formulate the concept of a 1-eigenclass (or eigenclass for short) for elements of
VC,. We show that a map is compression rigid if and only if the homotopies coming
from the homotopy commutativity of the transformation square associated to emb,,
can be chosen to be eigenclasses in VC,,. For 2-connected spaces, virtual cell groups
are computed in Proposition 1.1.18. An obstruction theory for compression rigidity
is set up in Section 1.2. Case studies of compression rigid categories are presented in
Section 1.3. The second part of Theorem 1.1.41 asserts that the covariant assignment
t<p 18 a functor on n-compression rigid subcategories of CW,,~9. The dependence of
the spatial homology truncation ¢, (K,Y) on Y is discussed by Proposition 1.1.25,
Scholium 1.1.26, Proposition 1.1.27 and Corollaries 1.1.30, 1.1.31. Proposition 1.1.25
gives a necessary and sufficient condition for ¢, (K,Y) and t,,(K,Y) to be homotopy
equivalent rel (n—1)-skeleton, where Y,Y are two choices of complements. Section 1.4
deals with the truncation of homotopy equivalences, Section 1.5 with the truncation
of inclusions, and Section 1.6 with iterated truncation. In Section 1.7, we investigate
spatial homology truncation followed by localization at odd primes. Theorem 1.7.3
establishes that this composite assignment t(fsd) is a functor on 2-connected spaces.
The key ingredients here are the compression rigidity obstruction theory together
with Proposition 1.2.8, which calculates a pertinent homotopy group and shows that
it is all 2-torsion.
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There are important classes of spaces where no complement Y has to be cho-
sen and the compression rigidity obstructions vanish. We study one such class in
detail, namely spaces with vanishing odd-dimensional homology. We refer to this
class as the interleaf category, ICW. It includes for instance simply connected 4-
manifolds, smooth compact toric varieties, homogeneous spaces arising as the quotient
of a complex simply connected semisimple Lie group by a parabolic subgroup (e.g.
flag manifolds, Grassmannians), and smooth Schubert varieties. A truncation functor
t<n : ICW — HoCW and cotruncation functor t>,, : ICW — HoCW are defined.
Mostly, but not exclusively, in the context of the interleaf category, we investigate
continuity properties of the homology truncation of homeomorphisms. We show in
Theorem 1.10.3 that truncation of cellular self-homeomorphisms of an interleaf space
is a continuous H-map into the grouplike topological monoid of self-homotopy equiv-
alences of the homology truncation of the space. In Section 1.11, we discuss fiberwise
homology truncation for mapping tori (general simply connected fiber), flat bundles
over spaces whose fundamental group G has a K(G,1) of dimension at most 2 (for
example flat bundles over closed surfaces other than RP?; again for general simply
connected fiber), and fiber bundles over a sphere of dimension greater than 1, with
interleaf fiber.

Since spatial homology truncation of a space L in general requires making a choice
of a certain type of subgroup Y in the n-th chain group of L in order to obtain an
object (L,Y) in CW,,~p, and since the construction of intersection spaces uses this
truncation on the links L of singularities, the homotopy type of the intersection space
IP X may well depend, to some extent, on choices. We show (Theorem 2.3.1) that the
rational homology of I? X is well-defined and independent of choices. Furthermore,
we give sufficient conditions, in terms of the homology of the links in X and the
homology of X — Sing, for the integral homology of I?X in the cut-off degree to be
independent of choices. Away from the cut-off degree, the integral homology is always
independent of choices. The conditions are often satisfied in algebraic geometry for
the middle perversity, for instance when X is a complex projective algebraic 3-fold
with isolated hypersurface singularities that are weighted homogeneous and “well-
formed”, see Theorem 2.3.7. This class of varieties includes in particular conifolds,
to be discussed below. Theorem 2.4.2 asserts that the homotopy type of I? X is well-
defined independent of choices when all the links are interleaf spaces.

It was mentioned before that the homology of intersection spaces addresses cer-
tain questions in type II string theory — let us expand on this. Our viewpoint is
informed by [GSWB8T7], [Str95] and [Hiib97]. In addition to the four dimensions
that model space-time, string theory requires six dimensions for a string to vibrate.
Due to supersymmetry considerations, these six dimensions must be a Calabi-Yau
space, but this still leaves a lot of freedom. It is thus important to have mechanisms
to move from one Calabi-Yau space to another. A topologist’s take on this might
be as follows, disregarding the Calabi-Yau property for a moment. Since any two 6-
manifolds are bordant (Q2§° = 0) and since, by Morse theory, any bordism is obtained
by performing a finite sequence of surgeries, surgery is not an unreasonable vessel to
travel between 6-manifolds. Note also that every 3-dimensional homology class in a
simply connected smooth 6-manifold can be represented, by the Whitney embedding
theorem, by an embedded 3-sphere with trivial normal bundle. Physicists’ conifold
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transition starts out with a nonsingular Calabi-Yau 3-fold, passes to a singular vari-
ety (the conifold) by a deformation of complex structure, and arrives at a different
nonsingular Calabi-Yau 3-fold by a small resolution of singularities. The deforma-
tion collapses embedded 3-spheres to isolated singular points, whose link is 52 x S2.
The resolution resolves the singular points by replacing each one with a CP'. As
we review in Section 3.6, massless particles in four dimensions should be recorded as
classes by good cohomology theories for Calabi-Yau varieties. In type ITA string the-
ory, there are charged twobranes present that wrap around the CP! 2-cycles and that
become massless when those 2-cycles are collapsed to points by the resolution map,
see Section 3.5. We show that intersection homology accounts for all of these mass-
less twobranes and thus is the physically correct homology theory for type IIA string
theory. However, in type IIB string theory, there are charged threebranes present
that wrap around the 3-spheres and that become massless when those 3-spheres are
collapsed to points by the deformation of complex structure. Neither the ordinary
homology of the conifold, nor its intersection homology (or L2-cohomology) accounts
for these massless threebranes. In Proposition 3.7.4 we prove that the homology of
the intersection space of the conifold yields the correct count of these threebranes.
From this point of view, the homology of intersection spaces appears to be a physi-
cally suitable homology theory in the IIB regime. The theory in particular answers a
question posed by [Hiib97] in this regard. Given a Calabi-Yau 3-fold M, the mirror
map associates to it another Calabi-Yau 3-fold W such that type IIB string theory
on R* x M corresponds to type IIA string theory on R* x W. If M and W are non-
singular, then bs(W) = (bz + bs)(M) + 2 and b3(M) = (by + bs) (W) + 2 for the Betti
numbers of ordinary homology. The preceding discussion suggests that if M and W
are singular, ' is a type IIA D-brane-complete homology theory with Poincaré
duality, and HB is a type IIB D-brane-complete homology theory with Poincaré
duality, then one should expect that

rk HIA (M) = rkHEB(W) 4 rk HIB (W) +
tkFEA W) =tk HEB(M) + 1k FCB (M) +
tkHYB(M) = tk3HAW) + rk HA W) + 2 and
tkHEB(W) = 1k HA (M) + rk HIA (M) +

Corollary 3.8.5 establishes that this is indeed the case for f}CEA(f) = IH.(—) and
HIB(—) = H,.(I-) when M and W are conifolds. Thus (IH.(-), H.(I-)) is a
mirror-pair in this sense. Intersection homology and the homology of intersection
spaces reveal themselves as the two sides of one coin.

Prerequisites. In Chapter 1, we assume that the reader is acquainted with the ele-
mentary homotopy theory of CW complexes, [Whi78], [Hil53], [Hat02]. In Chapter
2, a rudimentary knowledge of stratification theory, pseudomanifolds, and intersection
homology is useful. In addition to the references already mentioned in the beginning
of this preface, the reader may wish to consult [GM88], [Wei94], [Sch03]and [Pfl01].
A geometric understanding of intersection homology in terms of PL or singular chains
is sufficient. Sheaf-theoretic methods are neither used nor required in this book. Re-
garding Chapter 3, we have made an attempt to collect in Sections 3.1 — 3.6 all the
background material from string theory that we need for our predominantly math-
ematical arguments in Sections 3.7 —3.9. Specific competence in, say, quantum field
theory, is not required to read this chapter.
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Notation and Conventions: Our convention for the mapping cylinder Y Uy X x I
of amap f: X — Y is that the attaching is carried out at time 1, that is, the points
of X x {1} € X x I are attached to Y using f. For products in cohomology and
homology, we will use the conventions of Spanier’s book [Spa66]. In particular, for
an inclusion i : A C X of spaces and elements { € HP(X), x € H,(X, A), the formula
0x(ENz) = i*¢ N Oy holds for the connecting homomorphism 9, (no sign). For the
compatibility between cap- and cross-product, one has the sign

(€xm) N (zxy) = (DPPD(Ena) x (nNy),
where £ € HP(X),ne€ HI(Y), v € Hy,(X), and y € H,(Y).






CHAPTER 1

Homotopy Theory

1.1. The Spatial Homology Truncation Machine

1.1.1. Introduction. The Eckmann-Hilton dual of the Postnikov decomposi-
tion of a space is the homology decomposition (or Moore space decomposition) ([Zab76,
page 44], [Hil65], [BJCJI59], [Moo]) of a space. Let us give a brief review of this
decomposition, based on dualizing the Postnikov decomposition.

A Postnikov decomposition for a simply connected CW-complex X is a commu-
tative diagram

q4

P3(X)

p3
g3

X —2- Ppy(X)

P1
q2

such that pp, : 7. (X) — 7,.(P,(X)) is an isomorphism for r < n and 7, (P,(X)) =0
for r > n. Let F), be the homotopy fiber of ¢,. Then the exact sequence

T 1 (PaX) ™ 71 (Po1 X) = 1o (F) = mp (P X) 8 1.(Py1 X)

shows that F,, is an Eilenberg-MacLane space K(m,X,n). Constructing P,41(X)
inductively from P, (X) requires knowing the n-th k-invariant, which is a map of the
form k,, : P,(X) — Y,. The space P,,+1(X) is then the homotopy fiber of k,,. Thus
there is a homotopy fibration sequence

K(ﬂ'n—i-lX,?’L—F 1) — Pn+1(X) q"_Jri Pn(X) ﬁ> Yn

This means that K(m,+1X,n + 1) is homotopy equivalent to the loop space QY.
Consequently,

n X7 = 27
(V) =11 (QV) = 11 (K (g1 Xom+ 1)) = § i T=n
0, otherwise,

and we see that Y,, is a K(m,+1X,n 4+ 2). Thus the n-th k-invariant is a map
kn: Py(X) = K(mp1 X, n+2).

1
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Note that it induces the zero map on all homotopy groups, but is not necessarily
homotopic to the constant map. The original space X is weakly homotopy equivalent
to the inverse limit of the P, (X).

Applying the paradigm of Eckmann-Hilton duality , we arrive at the homology
decomposition principle from the Postnikov decomposition principle by changing

the direction of all arrows,

Ty to Hy,

loops 2 to suspensions 5,

fibrations to cofibrations and fibers to cofibers,
Eilenberg-MacLane spaces K (G, n) to Moore spaces M (G, n), and
inverse limits to direct limits.

A homology decomposition (or Moore space decomposition) for a simply connected
CW-complex X is a commutative diagram

i2

X§1 = pt
such that jn. : H-(X<,) = H,(X) is an isomorphism for » < n and H,(X<,) =0
for r > n. Let C,, be the homotopy cofiber of ¢,,. Then the exact sequence
Hy(X<n_1) ™ Ho(X<p) = Hp(Cp) = Hy 1 (X<pn_1) ™ Ho_y(X<p)

shows that C,, is a Moore space M (H,X,n). Constructing X<, +1 inductively from
X<y requires knowing the n-th k-invariant , which is a map of the form k, : Y,, —
X<n. The space X<j,41 is then the homotopy cofiber of k,,. Thus there is a homotopy
cofibration sequence

Y, s X, M Xy — M(Ho 1 X+ 1),

This means that M (H,+1X,n + 1) is homotopy equivalent to the suspension SY,,.
Consequently,

~ ~ ~ H,1X, r=n,
H,(Yn) & Hy41(SYn) = Hept(M(Hon Xon + 1) = ¢ 50 .
0, otherwise,

and we see that Y, is an M (H,,+1X,n). Thus the n-th k-invariant is a map
kn : M(Hn+1X, n) — Xgn.

It induces the zero map on all reduced homology groups, which is a nontrivial state-
ment to make in degree n:

kns + Hy (M (Hyp 1 X, n)) 2 Hyy iy (X) — Hy(X) 2 Hy(X<y).
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The original space X is homotopy equivalent to the direct limit of the X<,,.

The Eckmann-Hilton duality paradigm, while being a very valuable organiza-
tional principle, does have its natural limitations, as we shall now discuss. Postnikov
approximations possess rather good functorial properties: Let p,(X) : X — P, (X) be
a stage-n Postnikov approximation for X, that is, p,(X). : 7-(X) — (P, (X)) is an
isomorphism for » < n and 7,.(P,(X)) =0 for r > n. If Z is a space with 7,.(Z) =0
for r > n, then any map g : X — Z factors up to homotopy uniquely through P, (X),
see [ZabT76]. In particular, if f : X — Y is any map and p,(Y) : Y — P,(Y) is a
stage-n Postnikov approximation for Y, then, taking Z = P,(Y) and g = p,(Y) o f,
there exists, uniquely up to homotopy, a map p,(f) : P,(X) — P,(Y) such that

/

X Y

Pn(X) pn(Y)

homotopy commutes. One of the starting points for our development of the spa-
tial homology truncation machine presented in this book was the fact that the above
functorial property of Postnikov approximations does not dualize to homology decom-
positions. Let us discuss an example based on suggestions of [Zab76] that illustrates
this lack of functoriality for Moore space decompositions. Let X = S? Uy €2 be a
Moore space M(Z/2,2) and let Y = X V S3. If X<5 and Y<5 denote stage-2 Moore
approximations for X and Y, respectively, then X< = X and Y<; = X. We claim
that whatever maps i : X<o — X and j : Y<o — Y such that i, : H,.(X<2) = H,(X)
and j, : Hy(Y<2) — H,(Y) are isomorphisms for r < 2 one takes, there is always a
map f: X — Y that cannot be compressed into the stage-2 Moore approximations,
i.e. there is no map f<z : X<3 — Y<» such that

commutes up to homotopy. We shall employ the universal coefficient exact sequence
for homotopy groups with coefficients. If G is an abelian group and M (G, n) a Moore
space, then there is a short exact sequence

0 — Ext(G, 1, 1Y) —= [M(G,n),Y] -5 Hom(G, 7,Y) — 0,

where Y is any space and [—, —| denotes pointed homotopy classes of maps. The
map 7 is given by taking the induced homomorphism on 7, and using the Hurewicz
isomorphism. This universal coefficient sequence is natural in both variables. Hence,
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the following diagram commutes:

L<2

0 Ext(Z /s, m3Y<3) =+ [X<g, Yeo] —=+ Hom(Z/s, mY<2) 0
Eams(4) J 72 (§)»=id
Y Y Y
0 Ext(Z/q,13Y) —— [X<2,Y] —— Hom(Z/5, mY) 0
_k
id=EY 75 (4) i* 7o (i)* =id
0 Ext(Z/s,m3Y) —— [X,Y] —— Hom(Z/5, mY) 0

Here we will briefly write Eo(—) = Ext(Z/2, —) so that Ey(G) = G/2G, and EY (-) =
Ext(—,m3Y). By the Hurewicz theorem, mo(X) & Ho(X) =X Z/o, ma(Y) = Hy(Y) &
Z/o, and ma(i) : ma(X<2) = m2(X), as well as ma(j) : ma(Y<2) = m2(Y'), are isomor-
phisms, hence the identity. If a homomorphism ¢ : A — B of abelian groups is onto,
then Eo(¢) : Ea(A) = A/2A — B/2B = FE5(B) remains onto. By the Hurewicz
theorem, Hur : m3(Y) — H3(Y) = Z is onto. Consequently, the induced map
EQ(HHI‘) : E2(7T3Y) — EQ(HgY) = EQ(Z) = Z/2 is onto. Let f € EQ(HgY) be the gen-
erator. Choose a preimage x € Eq(m3Y), Ex(Hur)(x) = £ and set [f] = «(z) € [X,Y].
Suppose there existed a homotopy class [f<2] € [X<2, Y<2] such that j.[f<2] = i*[f].
Then

n<alf<ao] = m2(d)sn<2[f<2] = niclf<2] = ni*[f] = w2 (i) n[f] = m2(i) " ne(x) = 0.
Thus there is an element € € Ea(m3Y<2) such that t<2(€) = [f<2]. From
1Eyms(§)(€) = jut<a(€) = julf<a] = i*[f] = i*1(x) = LBV ma(i) ()

we conclude that Eoms(j)(e) = x since ¢ is injective. By naturality of the Hurewicz
map, the square

m3(J)

7T3Y§2 71'3Y

Hur Hur
Hs(j
0= HsYer 2290y
commutes and induces a commutative diagram upon application of Es(—):

Eams(j)

EQ(TFgYSQ) E2(7T3Y)

E3(Hur) E5(Hur)

Ez(H3(J)) E2 (H3Y)

0= EQ(H3Y§2)
It follows that
§ = Ex(Hur)(z) = Ex(Hur)Eams(j)(€) = E2Hs(j)E>(Hur)(e) = 0,
a contradiction. Therefore, no compression [f<s] of [f] exists. We will return to this
example at a later point, where an explicit geometric description of the map f will
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also be given.

From the point of view adopted in this monograph, the lack of functoriality of
Moore approximations is due to the wrong choice of morphisms between spaces. The
way in which we will approach the problem is to change the categorical setup: Instead
of considering CW-complexes and cellular maps between them, we will consider CW-
complexes endowed with extra structure and cellular maps that preserve that extra
structure. We will show that such morphisms can then be compressed into homology
truncations if the latter are constructed correctly. Every CW-complex can indeed be
endowed with the requisite extra structure so that this does not limit the class of
spaces which the truncation machine can process as an input. (However, there is no
way in general to associate the extra structure canonically with every space, although
this is possible for certain classes of spaces.) Given a cellular map, it is not always
possible to adjust the extra structure on the source and on the target of the map so
that the map preserves the structures. Thus the category theoretic setup automati-
cally, and in a natural way, singles out those continuous maps that can be compressed
into homologically truncated spaces.

Let n be a positive integer.

DEFINITION 1.1.1. A CW-complex K is called n-segmented if it contains a sub-
complex K., C K such that

(2) H (K<p)=0forr>n
and
(3) iy Hy(K<p) — H,(K) for r < n,

where i is the inclusion of K., into K.

Not every m-dimensional complex is n-segmented, but we shall see that every
n-dimensional complex K is homotopy equivalent to an n-segmented one, K/n. Let
K" denote the r-skeleton of a CW-complex K.

LEMMA 1.1.2. Let K be an n-dimensional CW-complex. If its group of n-cycles
has a basis of cells, then K is n-segmented.

PROOF. Let {z3} be n-cells of K forming a basis for the cycle group Z,(K). Let
{ya} be the rest of the n-cells, generating a subgroup Y C C,,(K). Set

Ken=K"'U(Jya C K.

The boundary operator Cp,(K<,) =Y — Cp—1(K<p) = Cp—1(K) is the restriction of
On: Cr(K)=Y & Z,(K) = C,_1(K) to Y, hence injective. Therefore, H, (K.,) =
0. Since the inclusion K., C K induces the identity Z,_1(K<n) = Z,—1(K) and
im9,|Y = im d,, the inclusion induces
Zn-1(K) Zp_1(K)
H,_1(K = = =H,_1(K).
n-1(K<n) im(9,|Y) im 9, 1 (K)

Clearly, H.(K<,) = H.(K) for r <n —2 and H,.(K.,) =0 for r > n. a

If K is any n-dimensional, n-segmented space, then it does not follow automati-
cally that its group of n-cycles Z,, (K) possesses a basis of cells. Nor is the subcomplex
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K_,, unique. As an example, consider the 3-sphere K = S with the CW-structure
S3 = 8% U; e} Uy e3. This complex is clearly 3-segmented; we may for instance take
K3 = 5%U; e} = D?. Neither €3 nor €3 lie in the kernel of the boundary operator,
only their difference does. Thus Z3(K), though nonempty, does not have a basis of
cells. The truncation K3 is not unique because the subcomplex S? U; e3 would work
just as well.

ProprosITION 1.1.3. Let K be an n-dimensional, n-segmented CW-complex and
suppose K -, C K is a subcomplex with properties (2) and (3) and such that (K.,)" "' =
K1, If the group of n-cycles of K has a basis of cells, then K., is unique, namely

K<n = Kn_l UUym

where {ya} is the set of n-cells of K that are not cycles.

PRrROOF. Let {z3} be n-cells of K forming a basis for the cycle group Z,(K). Let
{ya} be the rest of the n-cells of K. Let {e}} be the n-cells of K<,. Thus we have

K”*1UU62 =K., CK:K”*IUUyaUUZB.
v a B

The assertion follows once we have established that 1) none of the zg occur among
the el, and 2) every y, appears among the el. Suppose 1) were false so that there
existed a v with e} = z5 for some 3. Since K, is n-dimensional and H,(K<,) =0,
the cellular boundary operator 95 : C,(K<,) — Ch_1(K<,) is injective. With
i:Cp(Kep) = Cp(K) the inclusion, we have a commutative diagram

i

Cn(K<p) © > Ch(K)

o e

Cn— 1 (anl)
Thus for the above cycle-cell zg:

0 = On(2p) = Oni(zp) = Oy (25) # 0,

a contradiction. Therefore, {eZ } must be a subset of {y,}.
To establish 2), we observe first that imds = imd,: The identity 9, o i =
05 shows that im 9 C imd,. The inclusion K., C K induces an isomorphism

H, 1(K<p) = H, _1(K). But the inclusion restricted to (n — 1)-skeleta is the iden-
tity map, whence the identity map induces an isomorphism
Zn-1(K) =N Zn,l(K).

im O im o,

Now if G is an abelian group and A C B C G subgroups such that the identity map
induces an isomorphism G/A =G /B, then the injectivity implies B C A, so that
A = B. In particular, we conclude for our situation im 95 = imd,. Let Y C C,(K)
be the subgroup generated by the cells {y,}, giving rise to a decomposition C,,(K) =
Y @ Z,(K). The restriction 9,| : ¥ — C,,_1(K™ 1) is injective and has the same
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image as 0. Since by 1), {el}} C {ya}, we have im(i) C Y. Consequently, there is a
restricted diagram

il

Cn(K<n) <

[o%
3 o

imay =ima,

which shows that i| : C,(K<,) =, Y is an isomorphism. In particular, every cell
Yo € Y has a preimage in C,,(K~,,) and that preimage is some n-cell e} of K.,,. O

1.1.2. An Example. The example below, due to Peter Hilton, already illus-
trates all the relevant points and necessary techniques for spatial homology truncation
on the object level. Let K be the simply connected complex

K = 52 Uy 6? U6 eg.
Its homology is
Hy(K)=17Z/2, H3(K) =Z.

We claim that K is not 3-segmented. If it were 3-segmented, then there would exist
a subcomplex K3 such that

HQ(K<3) = Z/Q and H3(K<3) = O

The following table shows that no matter which subcomplex we try, each time either
the second or third homology is wrong.

Ko3 | Ho(K<3) | Hs( )
* 0
S? 7

Sz U4 6? Z/4
CE Us 6% Z/6
K 7/

NOOOON
A
w

We shall now describe a method to produce a 3-segmented space K/3 which is still
homotopy equivalent to K. The method is essentially an algebraic change of basis in
the third cellular chain group of K. The change of basis is then realized topologically
by 3-cell reattachment to yield the desired homotopy equivalence. Let C,(K) denote
the cellular chain complex of K. We equip C3(K) with the basis {e},e3}. The short
exact sequence
0 — ker @ — C5(K) 25 imd -0

splits since im & = 2Z C Ze? = Cy(K) is free abelian. In fact,

s:imd — C3(K)

2n  +—  (—n,n)
is an explicit splitting. Set
Y3(K) =ims =Z(-1,1)

and
Z3(K) =kerd = {(n,m) : 2n = —3m} = Z(3, -2),
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so that
C3(K) = Z3(K) @ Y3(K).

This is the change of basis we referred to earlier. The Hurewicz map identifies C5(K)
with 73 (K3, K?). Under this identification, the element (3, —2) € C3(K) corresponds
to an element ¢ € w3(K?, K?). Similarly, (—1,1) corresponds to an n € m3(K3, K?).
The connecting homomorphism

de
d:m3(K? K?) — my(K?) = my(S?) = 7

maps a 3-cell 2, thought of as an element [x(e?)] in w3(K3, K?) via its characteristic
map x(e3), to the degree of its attaching map. Thus

dlx(e1)] = 4, d[x(e3)] =6,

and

d¢ = d(3[x(e})] - 2[x(e3)]) = 3d[x(e})] - 2d[x(€3)] =3-4-2-6 =0,

which, of course, confirms that (3,—2) € Z3(K) = kerd. For the second new basis
element we obtain

dn = d(=[x(eD)] + [x(e2)]) = —dlx(e})] + dlx(e3)] = —4 +6 = 2.

To form K/3, take two new 3-cells z and y and attach them to K? = S2 using
representatives of d¢ and dn, respectively, as attaching maps:

K/3 = §? Ud¢=0 2 Udn=2 Y.

Note that the 2-skeleton remains unchanged, (K/3)? = K2. Let us describe a rather
explicit homotopy equivalence h’ (the letter h will be reserved for its homotopy in-
verse) from K to K /3, which realizes the change of basis geometrically. Algebraically,
the change of basis on the third cellular chain group is given by the map

0:m3(K3, K?) — m3(K/3,K?)
¢ = [x@@)]
n =[xl

We observe that the diagram

w5 (K3, K?) > my(K/3,K?)

mo(K?) === m((K/3)?)
commutes, for

db(¢) = d[x(2)] = 0 =d¢, db(n) = d[x(y)] = 2 = dn.

The images of the old basis elements are

(4) O[x(eD)] = 0(C+2n) = [x(2)] + 2[x(®)], O[x(€3)] = (¢ +3n) = [x(2)] + 3[x(v)].
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On the other hand, the 0[x(e?)] are represented by commutative diagrams

il
—_

oD? K? =52

DS

! K/3

Let g1 = x(e})|pes be the attaching map for ef in K (a map of degree 4), and let
g2 = x(€3)]geg be the attaching map for ef in K (a map of degree 6). Since df = d,
the attaching map g; is homotopic to f/|. This is confirmed by the degree calculation

deg(filops) =0-1+2-2=4=deg(g1),
and
deg(fzlops) =0-1+2-3 =6 = deg(g2),
using (4) and the degrees of the attaching maps for z and y. By the homotopy

extension property , there exists, for i = 1,2, a representative f; : D® — K/3 for
0x(e3)] that extends g;. Defining

h:K-— K/3
by
h'(x) = z, forze K2,
W(x(ed)(x) = fi(x), forxeei,
W(x(e3)(x)) = fa(z), forazeed.

yields a homotopy equivalence, since h’ induces a chain-isomorphism. (It induces 6
on the third chain group.)

Let us verify that K/3 is 3-segmented. Defining K3 to be the subcomplex
Koz =S5*Uyy C K/3,
we obtain for the homology:
Hy(K<3) =0, Hy(K<3) =7Z/2, H3(K<3) =0.

The desired homological truncation has thus been correctly implemented. In fact,
K /3 is 3-dimensional and its group of 3-cycles has a basis of cells (namely the cell z),
so we could have concluded from Lemma 1.1.2 that K/3 is 3-segmented. Moreover,
Proposition 1.1.3 tells us that K3 is unique.

1.1.3. General Spatial Homology Truncation on the Object Level. Func-
torial spatial homology truncation in the low dimensions n = 1,2 is discussed in
Section 1.1.5. In dimensions n > 3, we shall employ the concept of a homological
n-truncation structure. Let n > 3 be an integer.

DEFINITION 1.1.4. A (homological) n-truncation structure is a quadruple (K, K/n,
h, K.,), where
(1) K is a simply connected CW-complex,
(2) K/n is an n-dimensional CW-complex with (K/n)"~! = K"~! and such
that the group of n-cycles of K/n has a basis of cells,
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(3) h: K/n — K™ is the identity on K"~ ! and a cellular homotopy equivalence
rel K™~1, and

(4) K<p, C K/n is a subcomplex with properties (2) and (3) with respect to
K/n and such that (K.,)"" ! = K" %

The first component space K of an n-truncation structure is required to be simply
connected because the theory employs the Hurewicz theorem for n > 3. Since the
(n—1)-skeleton of the n-segmentation K/n of K agrees with the (n—1)-skeleton of K
and 7 (K" 1) = 7 (K) as n — 1 > 2, it follows that K/n is simply connected as well.
The same observation applies to the truncation K.,,. Note that by Lemma 1.1.2, K/n
is n-segmented, so that K., does, in fact, exist. Since by Proposition 1.1.3, K_,, is
uniquely determined by K/n, it is technically not necessary to include it explicitly
as the fourth component into an n-truncation structure. Nevertheless, we find it
convenient to do so, as this will automatically fix notation for the n-truncation space.
It will also be advantageous when we work with morphisms between n-truncation
structures later on. If (K, K/n, h, K.,) is an n-truncation structure and r < n, then

H (K<) = H.(K/n) hg H.(K™) ]% H.(K),
where i : K., C K/n and j : K™ C K are the inclusions (while H,(K.,) = 0 for
r > n, of course). Let us recall the following consequence of the homotopy extension
property:

PROPOSITION 1.1.5. Suppose (X, A) and (Y, A) satisfy the homotopy extension
property and f' : X — Y is a homotopy equivalence with f'|4 = 14. Then f’ is a
homotopy equivalence rel A, that is, there exists a homotopy inverse f for f' such
that fla=1a, ff' =1 rel A and f'f ~1 rel A.

For a proof see [Hat02, Proposition 0.19], page 16.

ProproOSITION 1.1.6. Given any integer n > 3, every simply connected C'W-
complez K can be completed to an n-truncation structure (K, K/n,h, K,).

PROOF. The proof is based on methods due to Hilton [Hil65], and is suggested
by the example in Section 1.1.2. Let {el} be the n-cells of K so that

K" =EK""ul Jer.
v

As suggested in the example, we shall carry out a “homotopy-element-to-cell” con-
version procedure initiated by an algebraic change of basis in the n-th cellular chain
group of K. The change of basis is then realized topologically to yield the desired
homotopy equivalence. Let C,(K) denote the cellular chain complex of K. We equip
Cpn(K) with the basis {el}. The short exact sequence

0 — ker 9, — C,,(K) On, imog,, — 0

splits since im 9,, C Cp,—1(K) is free abelian. Let s : im9,, — C,,(K) be a splitting.
Set Y =ims and let Z,(K) = ker ,, be the cycle group so that

Co(K)=Z,(K)a®Y.

Since n > 3, the simple connectivity of K implies the simple connectivity of K™~1.
Thus the Hurewicz map identifies C,,(K) with 7, (K", K"~ !). Choose elements
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CsyMa € mp(K™ K™ 1) such that {¢s} is a basis of Z,(K) and {n,} is a basis of
Y. The connecting homomorphism

d:mp (K", K" — 1, (K" 1)

maps an n-cell e”, thought of as an element [x(e™)] in 7, (K™, K™~!) (that is, thought
of as the homotopy class of its characteristic map), to the class of its attaching map.
Let

bg : S" 7t — K1
be choices of representatives for the homotopy classes d(z and let

g : SV — K1

be choices of representatives for the homotopy classes dn,,.

To form K/n, take new n-cells z3 and y, and attach them to K"~!, using the
attaching maps a, for the y, and the bg for the zs:

K/n:=K"! UUyaUUz[g.
[ bg

Let us construct a homotopy equivalence A’ from K™ to K/n, which realizes the
change of basis geometrically. Algebraically, the change of basis on the n-th cellular
chain group is given by the isomorphism
0:m (K", K'Y — m,(K/n, K" 1)
G = Ix(zs)]
Na [X(yoc)]'
We observe that the diagram

(K™ K1) o (K fn, K1)

ﬂ,n_l(anl)

Wn—l(Knil)

commutes, for

d0(Cp) = dx(2p)) = [bg] = dCp, dO(1a) = d[x(Ya)] = [aa] = dna-

The images 0[x(e})] of the old basis elements are represented by commutative dia-
grams

oD™ f’*‘ Kn—l

DTL

K/n

!
Sy

Let g, = x(e)| : del — K™ ! be the attaching maps for e in K. The map g, is
homotopic to f; | because

l95] = dlx(e)] = dO[x(e7)] = d[f}] = [f;]]-
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By the homotopy extension property, there exists, for every v, a representative f, :
D™ — K/n for 0[x(el})] that extends g,. Defining

B K" — K/n

by

B (x) = x, forxe K" 1

W(x(ey)(x) = fy(z), forzeel,
yields a map, since X(e:}'”aeq =g, = fy\aeg- It is a homotopy equivalence, since it
induces a chain-isomorphism. (It induces 6 on the n-th chain group.) Note that K/n
is simply connected since its (n — 1)-skeleton is K"~! and 71 (K"~ !) — m(K/n) as
well as 71 (K" ™1) — 71(K) are isomorphisms as n — 1 > 2.

Let us verify that the cycle group Z,,(K/n) possesses a basis of cells. The com-
mutativity of the diagram

Cn(K/n)

can be established in various ways. It follows, for instance, from the commutativity
of the diagram

R <

/n
- (K fn, K1) 20 € (K /)

O 7IFVL—1(1(7171) a/m

Y Y Y

Cn—l(Kn_l) Cn—l(Kn_l) Cn—l(Kn_l)

Here hn,hén and h,,_, are Hurewicz homomorphisms. Since n > 3, h, and h{ln
are isomorphisms, and if n > 4, then h,_; is an isomorphism as well. If n = 3,
then Co(K?) cannot in general be identified with mo (K2, K'). For example, if m (K*)
contains two noncommuting elements then mo(K?2, K') will not be abelian because
the homomorphism 7o (K2, K1) — 71 (K") is surjective as K? is simply connected.
Alternatively, one can argue that 6 is part of a chain map induced by the continuous
map k', and that map is the identity on K"~ 1. If ¢ € Z,(K), then 87/1"9( =0, =0,s0
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0¢ € Z,(K/n) and 02, (K) C Z,(K/n). Conversely, for z € Z,(K/n), let ( = 071(2).
Then

OnC = 0m0¢ = 0,"(2) =0
so that ¢ € Z,(K) and z = 0¢ € 67, (K). Therefore, 02, (K) = Z,(K/n) and there is
a restriction 4| : Z,(K) = Z,(K/n). This restriction sends the basis {(g} of Z,,(K)

to {6(¢s)}, which must thus be a basis of Z,,(K/n). Now 6((g) = zg and the zg are
n-cells of K/n. Hence, Z, (K /n) has a basis of cells.

As noted before, Lemma 1.1.2 implies that K /n is n-segmented and by Proposi-
tion 1.1.3, the required subcomplex K., of K/n is uniquely determined. Explicitly,

Ko, = K"ty Uya-

Finally, being CW pairs, (K", K" !) and (K/n, K" !) satisfy the homotopy
extension property. Applying Proposition 1.1.5 to A’ : (K™, K"™1) — (K/n, K™ 1),
which is indeed the identity on K"~!, we get a homotopy inverse h : K/n — K™ such
that hh’ and h'h are homotopic to the respective identity maps rel K™~ !. O

REMARK 1.1.7. Since K is simply connected, one may up to homotopy equiva-
lence assume that its 1-skeleton is a O-cell. It follows then that for n = 3, we may
always assume that in the 3-segmentation of a space, the cycle-cells zg are wedged
on, that is, K/3 has the form

K/3:K2UUya\/\/zﬁ.

Indeed, in this situation K? is a wedge of 2-spheres and ma(K?, K') & mo(K?) =
Hy(K?) = Cy(K), so the factorization

C3(K) == m3(K*, K?)

Y

O3 7T2(K2)

=~ | incl,

Y

Y
Co(K) == ma(K* K')
shows that already d(s = 0. Thus for the representatives bg we could take constant
maps. This remark applies to higher n as well if K is such that
im(d : m (K", K™™' = w1 (K™ 1) Nker(m, 1 (K71 = m (K71 K%)= 0.

ExaMPLE 1.1.8. Suppose K is such that the boundary map on the n-th cellular
chain group of K vanishes. Then C,,(K) = Z,,(K) and Y = 0. Thus in this situation,
the complementary space Y is unique and no choice has to be made. We have

K/n:K"_lLJUzg,
B
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since there are no cells y,. It follows, as expected, that
K<n — Kn_l,

the (n — 1)-skeleton of K. If K in fact has only even-dimensional cells, then all
boundary maps in the cellular chain complex vanish and hence K, = K"~ for any
n. We shall return to this scenario in Section 1.9 on the interleaf category.

1.1.4. Virtual Cell Groups and Eigenclasses. In order to obtain functori-
ality for spatial homology truncation on suitable cellular maps f : K — L, one must
deal successfully with roughly two major issues: First, the map f must be compress-
ible into a truncated map f., : Ko, — L<,. Second, if g : L — P is another
compressible map with truncation g« : L«, — P<,, then ¢gf ought to be compress-
ible with (gf)<, homotopic to g<, o f<n. The second issue is harder and involves
certain homotopy groups VC,,(A) associated to a homological n-truncation structure

A.

EXAMPLE 1.1.9. Let us exhibit an example of a map f : K — L, where K and L
are simply connected 4-segmented CW-complexes (K = K/4, L = L/4) with unique
4-truncation subcomplexes K4 C K, L4 C L, such that there are two nonhomotopic
maps fea, fly: Kca = Loy with

(5) K <2OK_,

| e

Lk

homotopy commutative. The example thus demonstrates that in general, contrary to
Postnikov truncation, the diagram (5) may not uniquely determine the homological
compression of a map f. Let K = S3 and let L be the suspension of 3-dimensional
real projective space RP3. Clearly, K.y = S® = K is the unique subcomplex that
truncates the homology of K above degree 3. The space L has the cell structure

L=25%U, e U, et
and its homology is
Hy(L)=Z, Hi(L) =0, Hy(L) 2 Z/5, H3(L) =0, Hy(L) = Z.

The cycle group Z4(L) = C4(L) = Ze* has a basis of cells. Hence L is 4-segmented
by Lemma 1.1.2. Necessarily, Y;(L) = 0. The 4-truncation is Loy = L3 = 5% Uy €3,
unique by Proposition 1.1.3. The interesting feature is that while the attaching map
b:S% = 0e* — Ly is sufficiently trivial to produce a trivial cellular chain boundary
map C4(L) — C3(L), one can show that nevertheless [0] # 0 € m3(L<4) = Z/4. Since
the 4-cell in L is attached by b, we have

ZL*[b] =0, irs :’7'('3(L<4) — 7T3(L).

Set
fea=b: Ky =5? — Ly,

let f., be the constant map K4 — L4, and let f: K — L be the composition
<4

K=t 1% L.
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By definition,

1=

L<—"L«

=T

L<—)L<4

commutes. The square

homotopy commutes because
f=rirb~const =i fL,.

Lastly, f<s4 and f., are not homotopic, for [fca] = [b] # 0 = [fL,] in m3(L<4). This
finishes the construction of the example. Since the maps f.4 and f., do not agree on
the 3-skeleton, this example is not rel 3-skeleton. A much deeper example is Example
1.1.35, which shows that even when one requires the homological n-truncation of a
map f to agree with f on the nose on the (n—1)-skeleton, and requires all homotopies
to be rel (n — 1)-skeleton, the truncation may not be unique.

DEFINITION 1.1.10. Let n > 3 be an integer. The n-th virtual cell group VCy,(A)
of an n-truncation structure A = (L, L/n, h, L<,) is the homotopy group
VCh(A) = Tpy1(L/nx I, Loy, x OTUL™ ! x I).
If an n-truncation structure A has been fixed for a space L then we shall also write
VC,(L).
The choice of terminology arises from the fact that V' C,, (L) naturally sits between
two actual cellular chain groups: The inclusion of pairs
(Lan X I,Lep x OTUL™ ' x I) C(L/nx I, Loy x OTUL™ ! x 1)
induces a map ¢,
Cns1(Len x 1) 21 (Lapy x [, Loy x ATUL™ ! x 1) — VC, (L),
where the first isomorphism derives from the fact that L.,, x 2TUL"~! x I is precisely
the n-skeleton of L., x I: Since L is simply connected, L. and L., have the same
(n — 1)-skeleton, and n — 1 > 2, we have L.,, simply connected. Thus the cylinder
L., x I and its n-skeleton are simply connected, again using n > 3. Therefore, the

Hurewicz map is an isomorphism. Similar remarks apply to the cylinder L/n x I.
The inclusion of the pairs

(L/nxI,Ley x OTUL" * xI)C (L/nxI,L/nxdlUL" ! x1I)
induces a map 1,
VCu(L) — mpy1(L/n x I,L/n x 0T U L™ x I) = Cpyq(L/n x I).

The virtual cell group of L comes equipped with an important endomorphism Ej, €
End(VC,(L)). To construct it, we observe first that

Vo : Cpyp1(Len X I) — Cryq(L/n x 1)
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is the canonical inclusion

B ZIx(ya x D] = B Zix(ya x 1)) © @ Zlx(25 x 1),
« [e3 B8

where the y, are the n-cells of L., and the zz are the rest of the n-cells in L/n,
constituting a basis of the cycle group Z,,(L/n). (Note that thus ¢ is injective.) Let

p:Cppi(L/nxI) — Cpyp1(Lep x I)

be the projection

PO Aalx(a x DI+ palx(zs x D) =Y AalxWa x 1],
« B «
and set
E,=¢opoty:VC,(L) — VC,(L).

DEFINITION 1.1.11. An element x € VC, (L) is called an eigenclass if x €
ker(Ep, — 1).

In other words, z is an eigenclass iff x = Y A\a@[X(ya % I)], where ¢(z) dictates
the coefficients .

LeMMA 1.1.12. If x € VC, (L) is an eigenclass, then x is not torsion.

PROOF. Suppose kx = 0, k € Z, k > 1. From = = ¢py(x), it follows that
¢(k - p(x)) = kx = 0. By the injectivity of ¢, k - pp(z) = 0, so that py(x) €
Chrt1(L<n x I) is torsion if not zero. But C,,+1(L<, X I) is free abelian, so pi)(z) = 0.
This implies = = ¢pip(z) = ¢(0) = 0. O

EXAMPLE 1.1.13. Let us work out the case L = CP?, complex projective space
with the usual CW-structure, and n = 4. This space is already 4-segmented, so
that L/4 = CP?. The single 4-cell is a cycle. Therefore, there are no cells y, and
L.y = L3 = L? = §?. The virtual cell group VC4(CP?) is nontrivial, in fact, contains
an infinite cyclic subgroup. To see this, we note that

VC,4(CP?) = m5(CP? x I, 5% x I) = n5(CP?, 5%)
and consider the exact homotopy group sequence of the pair (CP?, S?):
7T5(52) — 7T5((CP2) — 7T5((CP2, 52)

Using the fiber bundle S — S5 — CP?, we find 75(CP?) = 75(S°) = Z. Since
75(S?) = Z/,, the left map is the zero map. Consequently, the right-hand map
injects an infinite cyclic subgroup into 75 (CP?, S?).

As for the maps ¢ and v, we have

0=C5(52 x I) 223 VO (CP?) % C5(CP2 x I) 2 Z.

It follows that the endomorphism FEg¢p2 is zero and none of the nontrivial elements of
VC4(CP?) are eigenclasses.

EXAMPLE 1.1.14. We work out L = S3 U, €, that is, the Moore space obtained
by attaching a 4-cell to the 3-sphere by a map of degree 2, again for n = 4. Here the
4-cell is not a cycle. Thus there are no cells 2, e* is a cell y,, and there are no other
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Yo We conclude that Loy = L/4 = L. To analyze VC4(L) and the action of Fr,, we
consider the diagram

Cs(Leg x I) <2 VOU(L) —2 C5(L/4 x 1)

Zlx(e* x I)] T Zlx(et x T)]

Let A=L/nx0IUL" ! xTand B= L., xdIUL" ! x I. The map 4 fits into
the exact homotopy sequence of the triple (L/n x I, A, B):

i1 (A, B) — VOu(L) -5 Cpir(L/n x I) —s 7, (A, B).

In the present situation, A = B, so 75(4,B) = m4(A,B) = 0 and thus ¢ is an
isomorphism. In particular, VCy(L) 2 Z. If ¢1p(1) = m, then

P(1) = Pey(1) = ¢(m).
Therefore, m = 1 and so ¢ is the identity. The projection p is the identity as well.

Thus the endomorphism Ej = ¢pyp = ¢ = 1 is the identity. It follows that every
element of VCy(L) is an eigenclass.

The concept of eigenclasses leads to the concept of an eigenhomotopy. If H :
K x I — L is a homotopy, then we may regard it as a map H' : K x I — L x I
by setting H'(k,t) = (H(k,t),t). (Caution: If H is cellular, then H’ need not be
cellular.) For any cell e in a CW-complex, x(e) denotes its characteristic map.

DEerFINITION 1.1.15. Let K be a simply connected n-dimensional CW-complex
and A = (L,L/n,h, L.y,) an n-truncation structure. Let H : K x I — L/n be a
cellular homotopy rel K"~! such that H(K x 8I) C L, C L/n. The homotopy H
is called an eigenhomotopy if H,[x(y x I)] is an eigenclass in VC,,(A) for every n-cell
y of K. Here H. is the induced map on homotopy groups,

H. :Ch(KxI) 271 (KxI,KxdIUK" ' xI) — VCyh(A).

Note that H' does in fact map K x 8 U K"~ x I into the subcomplex L, x I U
L™=t x I because H'(K x 0I) C L., x OI and for k € K" ! and t € I we have
H(k,t) = H(k,0) as H is el K"~! and

H(k,0) € HK"'x0l)c H(K x )" Y c L
(since H is cellular), whence
H'(k,t) = (H(k,0),t) € L' x I.

Eigenhomotopies will be used later on (Definition 1.1.33) in defining compression
rigid maps.

ExaAMPLE 1.1.16. Suppose K is a space whose cellular boundary operator in
degree 4 vanishes. For instance, K might not have any 3-cells. In this situation, every
homotopy H : K<y x I — CP?/4 = CP? with H(K.4 x ) C CP%, = 5% is an
eigenhomotopy, even though VC,;(CP?) has no nontrivial eigenclasses according to
Example 1.1.13. The reason is that by Example 1.1.8, K4 = K3 and thus C5(K 4 x
I) = C5(K3 x I) = 0. Therefore, H_. is the zero map.
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EXAMPLE 1.1.17. Every cellular homotopy H : K x I — S U, e* which is rel K?
is an eigenhomotopy for n = 4, as follows from Example 1.1.14.

PROPOSITION 1.1.18. Let n > 3 be an integer and A = (L,L/n,h,L<y) an n-
truncation structure such that L/n has finitely many n-cells. Let G be the abelian
group

G=Z""®(Z/5),
where b = b, (L™) is the n-th Betti number of L™ and c is the number of n-cells of
L/n. Then
1) VC,(A) maps onto G, and
2) If Hy(L"1) = 0, then VC,(A) = G.
The free abelian part Z¢=° in G corresponds to the cells of type yo, in L/n, the torsion
part (Z/2)? in G corresponds to the cells of type zg in L/n.

PROOF. Since L/n has finitely many n-cells, we can write
L/n=L"1'UyU---UyeqUz U---Uz,

where {z1,...,24} is a basis for Z,(L/n) and y1,...,yc—q are the n-cells of L., C
L/n. As L/n is n-dimensional, we have H,,(L/n) = Z, (L/n). The homotopy equiva-
lence h induces an isomorphism H,(L/n) = H,(L™). It follows that a = b. We shall
use the following consequence of the homotopy excision theorem; see [Hat02], page
364, Proposition 4.28: If a CW-pair (X, A) is r-connected and A is s-connected, with
r,s > 0, then the map m;(X, A) — m;(X/A) induced by the quotient map X — X/A
is an isomorphism for ¢ < r+ s and a surjection for i = r+s+1. A CW-pair (X, A) is
r-connected if all the cells in X — A have dimension greater than r. The complement
(L/n x I) — (L, x @I U L™ ! x I) contains cells of dimension n + 1, namely the
y; x (0,1) and the z; x (0, 1), as well as cells of dimension n, namely the z; x {0} and
z; x {1}. Thus the CW-pair (L/n x I, Loy, x OTUL™ ! x I) is r = (n — 1)-connected.
The subspace P = L., x 0I UL""! x I is s = 1-connected, being the n-skeleton of
the simply connected space L, x I (n > 3). Thus,asn+1<r+s+1=n+1,

VOu(A) = mpi1(L/n x I, P) — mni1((L/n x I)/P)

is surjective. We shall show that m,+1((L/n x I)/P) = G. Let us investigate the
homotopy type of the quotient space

LinxI L”flxIUUE;l{ijIUUlezixI
P L=t x TuJoZ? '

1Y x OI

The boundary of an (n + 1)-cell y; x I is attached to L"~! x I Uy; x dI, which is
being collapsed to a point. Thus every y; x I becomes an (n + 1)-sphere S}”l in the
quotient. The boundary of an n-cell z; x {t}, t € {0,1}, is attached to L"~* x {t},
which is being collapsed to a point. Thus every z; x {t} becomes an n-sphere S x {t}
in the quotient. The boundary of an (n+1)-cell z; x I is attached to L™~ x TUz; x 91,
but, as we have seen, z; x 01 is not collapsed to a point, rather to spheres S x 01.
Consequently, every z; x I becomes (S x I)/(* x I) in the quotient, where * is the
base point in the sphere. The space (SI* x I)/(x x I) is homotopy equivalent to S,
since * x I is contractible, so (S x I)/(x x I) ~ S x I ~ S™. Therefore,

C
j=

c—b b

L/nxI nal n
— ~ STV A\ ST,
VI
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and we need to show that
m(\V/ SPTv\/ Sh) =G

In order to do so, we use the natural decomposition
Tt (X VY) Z 1,01 (X) @ Mg 1 (V) @ o (X X Y, X VYY)

together with the fact that for a p-connected X and a g-connected Y, mp,12(X xY, XV
Y) vanishes when n+2 <p+¢g+1. Let X = \/j SJT-‘H, a p = n-connected space, and
Y =V, S aq= (n—1)-connected space. Asn+2<p+q+1=2n (recall n > 3),
we have 7, 2(X XY, X VY) =0 and

o1 (V STV S 2 (\/ 557 @ mnia (V7).

By the Hurewicz theorem,
c—b

7Tn+1(\/ S;L+1) = Hn+1(v S}“"l) >~ 770

j=1

For the n-spheres, we have the formula

b
7Tn+1(\/ S;n) = @WTL-‘-l(S?)?
i=1

since 7y, 42(ST x (S5 V-V .SP'),V,; SI") =0, as follows from the (n — 1)-connectivity
of Sf and S Vv --- Vv S}, observing that n +2 < 2(n — 1) + 1 (again using n > 3),
together with an induction on b. As n > 3, we have

Tnt1(S)") = Z/>.

This establishes statement 1). To prove statement 2), we assume Hy(L" ') = 0. The
homeomorphism

c—b
P
[rE— \/ (S} x {0} v S x {1})
j=1

implies
Hy(P,L" ' x I) = Hy(P/(L" ! x I)) = 0.
From the exact sequence
0= Hy(L" N = Hy(L"* x I) — Ho(P) — Ho(P,L" ' xI)=0

of the pair (P,L" ! x I) we conclude that Hy(P) = 0. Since P is simply connected,
it follows from the Hurewicz theorem that P is s = 2-connected. Thus, as n 4+ 1 <
r+s=mn-1)+2,

VCh(A) =mps1(L/n x I, P) — w1 ((L/n x I)/P)
is an isomorphism. O

If Hy(L™~1) is not zero in Proposition 1.1.18 then V' C,,(A) need not be isomorphic
to G. Consider as an example the space L = CP? with its standard 4-truncation
structure A = (CP2%,CP?,id, S?). Note that Ho(L" ') = Hy(S?) =2 Z # 0. The
fourth Betti number b = by(CP?) = 1 and the number of 4-cells of L/4 = CP? is
¢=1. Thus G = Z/5, and Proposition 1.1.18 asserts that V Cy(CP?) maps onto Z/.
However, according to Example 1.1.13, VCy(CP?) contains Z. Thus VCy(CP?) 2 G.
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ExaMpPLE 1.1.19. In Example 1.1.14, we have seen that VC4(A) = Z for the
4-truncation structure A = (S® Uy e, 5% Uy e,id, S® Uy e*). This is confirmed by
Proposition 1.1.18: As b = by(S3 Uz e?) = 0 and ¢ = 1, we have G = Z. Since
Ho(L" 1Y) = Ho(L3) = Hy(S?) = 0, the proposition implies VCO4(A) =2 G = Z.

1.1.5. Functoriality in Low Dimensions. Let CW be the category of CW-
complexes and cellular maps, let CW? be the full subcategory of path connected CW-
complexes and let CW'! be the full subcategory of simply connected CW-complexes.
Let HoCW denote the category of CW-complexes and homotopy classes of cellular
maps. Let HOCW,, denote the category of CW-complexes and rel n-skeleton homo-
topy classes of cellular maps.

Dimension n = 1: It is straightforward to define a covariant truncation functor

ten =ter : CWY — HoCW

together with a natural transformation
emby 1 teg — teoo,

where tcoo : CWY — HoCW is the natural “inclusion-followed-by-quotient” functor
given by t<oo(K) = K for objects K and t<o(f) = [f] for morphisms f, such that for
all objects K, emby, : Hyo(t<1K) — Ho(t<ooK) is an isomorphism and H,.(t<1 K) =0
for » > 1. The details are as follows: For a path connected CW-complex K, set
t<1(K) = kO, where k% is a O-cell of K. Let emby(K) : t.1(K) =k? -t o(K) =K
be the inclusion of £ in K. Then emb;, is an isomorphism on Hy as K is path
connected. Clearly H,.(t<1K) = 0 for r > 1. Let f : K — L be a cellular map
between objects of CW°. The morphism to1(f) : t<1(K) = k° — 1° = t1(L)
is the homotopy class of the unique map from a point to a point. In particular,
t<1(idg) = [idgo] and for a cellular map g : L — P we have t.1(gf) = t<1(g)ot<1(f),
so that t.q is indeed a functor. To show that emb; is a natural transformation, we
need to see that

emb; (K)
_—

t1(K) teoo(K)

t<1(f) t<oo(f)

mb, (L
toa(D) Ly (D),
that is

e+ K

(]

R

commutes in HOCW. This is where we need the functor t-; to have values only in
HoCW, not in CW, because the square need certainly not commute in CW. (The
points k° and [° do not know anything about f, so {° need not be the image of k°
under f.) Since L is path connected, there is a path w : I — L from [° = w(0) to
f(k°) = w(1). Then H : {k°} x I — L, H(k°,t) = w(t), defines a homotopy from
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Dimension n = 2: We will define a covariant truncation functor

ten =tes : CW! — HoCW
together with a natural transformation
embg : t<2 — t<oo7

where t. oo : CW! — HoCW is as above (only restricted to simply connected spaces),
such that for all objects K, embo, : H,(t<2K) — H,(t<xK) is an isomorphism for
r=0,1, and H,.(t<2K) = 0 for r > 2. For a simply connected CW-complex K, set
teo(K) = k°, where k¥ is a O-cell of K. Let embo(K) : to(K) =k = too(K) = K
be the inclusion as in the case n = 1. It follows that embs, is an isomorphism both
on Hy as K is path connected and on H; as Hy (k%) = 0 = Hy(K), while trivially
H,(t<2K) =0 for r > 2. On a cellular map f, t<2(f) is defined as in the case n = 1.
As in the case n = 1, this yields a functor and emb, is a natural transformation.

1.1.6. Functoriality in Dimensions n > 3. Let n > 3 be an integer.
DEFINITION 1.1.20. A morphism
(K7 K/n7 hKa K<n) — (L7 L/’I’L, hLa L<n)

of homological n-truncation structures is a commutative diagram

hx

K < IK DKTL‘ K/’}’L‘l—KDK<n

f fl f/n f<n

hr

L~ [ Lin~" L.,

in CW. The composition of two morphisms of n-truncation structures is defined in the
obvious way. Let CW~_,, denote the resulting category of n-truncation structures.

Commutativity on the nose is rarely achieved in practice. More important is thus
the associated rel (n — 1)-skeleton homotopy category HoOCW+_,, whose objects
are m-truncation structures as before, but whose morphisms are now commutative
diagrams

Ko bxl e IR K/n < lix] K-,
I < Ul I <] L/n < [iz] Len
in HoOCW,,_1, where [—] denotes the rel (n — 1)-skeleton homotopy class of a cellular

map. Thus a morphism F' : (K, K/n,hix,K<,) — (L,L/n,hy,L<,) in HOCW+_,
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is a quadruple F = ([f], [f"],[f/n], [f<n]) represented by a diagram

hi

K« 9% gn . K/n+* K_,

f f” f/n f<n

L% In. hr L/n‘ZL Lo,

with fjx =~ jpf™ rel K" Y hp(f/n) ~ f"hg rel K" 1 and (f/n)ix ~ irfon
rel K"~1. (The map f™ is not required to be the restriction of f to K™.) Two
morphisms ([f], [f"],[f/n],[f<n]) and ([g], [9"],[9/n]. [9<s]) are equal iff f ~ g rel
K=l fm~gnrel K" f/n~g/nrel K" and fo, ~ g<, rel K" 1. Note that
it is necessary to record the four components of the quadruple ([f], [f"], [f/n], [f<n])s
since not even [f"], for example, is determined by [f]: Consider the n-truncation
structures (K, K/n,hx, K<,) = (8" = e’ Ue™, S™,idgn,e?) and (L, L/n,hy,Loy,) =
(¥ Uem Uy et 8™ idgn,e%). Let f : K — L be the map S™ 2, 8" <5 [ and
let g : K — L be the constant map to €®. Then f ~ g rel K"~ ! = €%, but f* =
flgn : K™ = S™ 2, 8" = L" is not homotopic to ¢g" = g|p» = const,, : K™ — L™.
However, [f/n] is determined uniquely by [f"]: Let b : L™ — L/n be a rel L"1
homotopy inverse for hr,. Then the requirement [hp] o [f/n] = [f"] o [hxk] implies the
formula

[f/n] = [I] o [f"] o [h].
This formula determines [f/n], since if b} : L™ — L/n is another rel L™~ homotopy
inverse for hy, then [h}] = [h}] o [hr] o [R]] = [W]].

LEMMA 1.1.21. A morphism F = ([f],[f"], [f/n], [f<n]) : (K, K/n,hx,K<pn) —
(L,L/n,hr,Lcy) in HOCW—_,, is an isomorphism if, and only if, f, f™, f/n and
fen are homotopy equivalences rel K™ 1.

PROOF. Suppose there exists a morphism G : (L, L/n,hr,L<y) = (K, K/n,hi, K<)
such that Go F' =id and F oG = id in HOCW+,,. With G = ([¢], [9"]. [9/7], [9<n]),

([dk], idgn], [idg ), idi ., ]) = id = GoF = ([gof], [g"o "], [(g/n)o(f /n)], [9<nof<n])
implies go f ~idg rel K™™', g"o f* ~idgn rel K" ', g/no f/n ~idg,, rel K",
and gy, © fop ~ idg_, rel K"~1. Similarly, homotopies f o g ~ idy, rel L™}, etc.
are obtained from F oG =id.

Conversely, assume that f, f*, f/n and f-, are homotopy equivalences rel K"~ 1.
Let g,9™, g/n and g<, be homotopy inverses rel (n — 1)-skeleta for f, f™, f/n and
f<n, respectively, and set G = ([g], [¢"], [9/7n], [9<n])- Then G is indeed a morphism
in HoOCW+,,, for in the diagram

L . JL Ln - hr L/TL . ir S L<n

g g’ g/n g<n

hi

JooIK

K/n <% K_,

we have homotopy commutativity, rel L*~!, in all three squares: Since jrf™ ~ fix
rel K™ 1 we have gjrf"g" ~ gfjxg™ rel L™ and so gjr ~ jrg™ rel L', Since
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frhy =~ hp(f/n) rel K"=1 we have ¢" f"hi(g/n) ~ g"hr(f/n)(g/n) rel L"~! and
so hx(g/n) ~ g"hy rel L™t Finally, since (f/n)ix =~ irf<n rel K"l we have
(g/n)(f/n)ixgen =~ (g/n)irfengen rel L™ 1 and so ixgen, =~ (g/n)ir rel L"1L.
Clearly, GG is an inverse for F' in HoOCW~_,, O

DEFINITION 1.1.22. The category CW,~g of n-boundary-split CW-complezes
consists of the following objects and morphisms: Objects are pairs (K,Y), where
K is a simply connected CW-complex and Y C C,(K) is a subgroup of the n-th
cellular chain group of K that arises as the image Y = s(im 9) of some splitting s :
imd — C,(K) of the boundary map 9 : Cp,(K) = im9(C Cp,—1(K)). (Given K, such
a splitting always exists, since im 9 is free abelian.) A morphism (K,Yx) — (L,Yr)
is a cellular map f : K — L such that f.(Yx) C Y. The composition of morphisms
is defined, since for a second morphism (L,Yr) — (P,Yp), given by a cellular map
g: L — P with g.(Y7) C Yp, we have (go f)«(Yk) = ¢« (f«(Yk)) C 9.(YL) C Yp.

EXAMPLE 1.1.23. This example expands on the theme of Example 1.1.8. Suppose
K is homotopy equivalent to a space L whose n-th cellular boundary map is zero. Let
f: K — L be a homotopy equivalence with homotopy inverse g : L — K. Further,
choose a homotopy H from gf to the identity. Then H induces a canonical choice
Yk so that (K,Yx) € CW,~9: We have an induced diagram

Cn+1 (K)

K
Ont1

Cn-1(K)

where gy, fn, are the chain maps induced by g, f, respectively, and {s,} is the chain
homotopy induced by H. Applying X to the equation

8§+13n + Sn,18§ =id —gn fn,
we obtain

OF s 10K — O

because X 0K | = 0 and 0% g, = g,—10% = 0. Thus

5 =5, 1| :im0X — C,(K)
is a splitting for X on its image, giving Yx = s,_1|(im 9X).

We shall construct a covariant assignment
T<n * Cwnga — HOCWD<n

of objects and morphisms. We will see later that the assignment is a functor on
subcategories of CW,,~5 whose morphisms have n-compression rigid image under
T<n (see Definition 1.1.33). Let (K,Yk) be an object of CW,~g. By Proposition
1.1.6, (K,Yx) can be completed to an n-truncation structure (K, K/n,hg,K.,) in
CW-_,, such that hx.ig«Cpn(K<n) = Yk, where ig, : Cp(K<p) — Cn(K/n) is the
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monomorphism induced by the inclusion ix : K., < K/n. Choose such a completion
and set

| (K, Vi) = (K, K/n, hic, K<), |

We will see in Scholium 1.1.26 below that the rel (n — 1)-skeleton homotopy type of
K, does not depend on the choice of n-truncation structure completion of (K, Yi).
If the n-skeleton of K already has a cell-basis for its n-cycle group (which implies that
it is n-segmented, Lemma 1.1.2) and Yk is the canonical subgroup, that is, generated
by those n-cells that are not cycles, then we will assume that we have chosen

T<7L(K7 YK) = (K7 KnaidK"7K<n)7

ie. K/n = K" and hg = idgn~. In this case K., is uniquely determined by K,
Proposition 1.1.3. However, even if K™ has a cell-basis for its n-cycle group, the
subspace Yy is not unique: The complex K? = (82 Uy €3) V S is 3-segmented,
C3(K3) = Ze3 © ZS3, Z3(K?) = ZS3, im 03 = 2S?. Any m € Z defines a splitting
s :imds — C3(K3) by s(25%) = e® + mS3. Thus the possible choices for Yx are
parametrized by m, Y (m) = Z(e* + mS3) C C3(K3).

REMARK 1.1.24. Knowing that hx is a homotopy equivalence which restricts
to the identity on the (n — 1)-skeleton implies that the chain map hg, induced by
hx on the cellular chain complexes is in fact a chain isomorphism, not just a chain
equivalence. This can be seen as follows: Let K"~ ! be an (n — 1)-dimensional CW-
complex and let {&1}, {7} be two collections of n-cells indexed by the same set {a}.
Let X" = K" tuJg&® and Y™ = K"~ 1 U(Jn"? be n-dimensional CW-complexes
obtained from K"~! by attaching the cells €% and 0%, respectively. Suppose f :
X — Y is a cellular homotopy equivalence which is the identity on K™ !. Then
fu 1 Cp(X) = Cr(Y) is the identity for r < n and the zero map between zero groups
for r > n. So in order to show that f, is a chain isomorphism, it remains to show this
in degree = n. The map of pairs f : (X, K"!) — (Y, K"~1) induces a commutative
ladder on homology exact sequences,

Hy(K"™Y) — Hp(X) — Hu(X, K1) — Hpoa (K" — Hyo1(X)
fy=id = | fx fa fy=id =\ f-

Hy(K"7Y) — Hy(Y) — Ho(Y, K1) — Hpr(K") — Hya(Y)
By the 5-Lemma,

Co(X) = Ho(X, K™Y L5 HL,(V, K" 1) = O (Y)
is an isomorphism.

Given a fixed space K, let us proceed to investigate the homotopy theoretic de-
pendence of the truncated space K, where 7., (K,Y) = (K,K/n,hx,K,), on
different choices of Y.

PROPOSITION 1.1.25. Let (K,Y),(K,Y) be two completions of a simply con-
nected CW-complex K to objects in CW, 5. Let (K, K/n,hx,K<p) = 7<n(K,Y)
and (K, K/n, hig, K <) = T<n(K,Y). Then K, and K -,, are cellularly homotopy
equivalent rel (n — 1)-skeleton if and only if d(Y) = d(Y), where d : 7, (K™, K"~1) —
Tn_1(K"1) is the boundary homomorphism.
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PROOF. Let f: Kop — K<, be a cellular homotopy equivalence rel K™~1. The
induced chain map f, : Cn(K<,) — Cn(K<,) in degree n is an isomorphism by
Remark 1.1.24. In particular

By the naturality of both the Hurewicz isomorphism and the homotopy boundary
homomorphism, the square

fx —
Cn(K<n) ~ Cn(K<n)
71—71(]:(<n: Kn_l) ﬂ-’n(F<’nﬂ Kn_l)
den E(n
anl(Knil) ﬂ, anl(Knil)

commutes, so that

(7) a<’nf=0< =dc<n.

By the construction of 7—,,, we have

(8) hixtxCp(Kep) =Y

and

9) RicsteCh (?<n) =Y,

where i : K., < K/n and 7 : K., < K/n are the subspace inclusions. The
commutative diagram

T

Rk«
On(K<n) Cn(K/n) = Ch (Kn)
Tn(Kepn, K*71) (K /n, K" 1) T (K™, K1)
den d/n d
7T7L—1(Kn_l) i 7T7L—1(Kn_1) hK*:id' 7T7L—1(Kn_l)

shows that
(10) dohgy 0l =den.
Similarly,

(11) dohgs 0ty = den,
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where de, : Tp(K <, K"1) — 1,1 (K™ !). We conclude
dY) = dhrsis(CaK-p) by (8)
é<n(CnK<n) by (10)
é<n.f*(CiK<n) by (
dSTL(CTLK<l) by (6)
dhg 1. (Cp K <) by (11)
= d(Y) by (9).

Conversely, assume d(Y) = d(Y). In the first step, we will construct an isomor-
phism 6 : C,(K<,,) = C,(K ) such that

Cn(K<n)

1 (anl)
commutes. In the second step, we will realize 6 by a continuous map. We claim that
d<n and d., are injective. Indeed, the chain boundary

On : Cn(Kep) — Cro1(K<p)
is injective since
ker 9, = H,(K<,) =0,
and factors as

Cr(K<p) —= s 7,y (K1)

On incl,

Hur
Cn—l(K<n) ~ 7'rn—l([(n_lv Kn—?),

which implies that d<y, is injective. The same argument applied to the chain boundary
operator of K, yields the injectivity of d<,. Equations (8) — (11) above still hold
in the present context (as they do not involve the homotopy equivalence f). Thus

Since d.,, is an isomorphism onto its image, there is an inverse
Ay den(CoR ) =5 Cu R <.
We define 6 to be the composition
den, - _
Cn(K<n) 4;’ d<n(CnK<n) = d<n(CnK<n)

R
ul

Cn(K<p).
In order to realize 6 topologically, we proceed as in the proof of Proposition 1.1.6.
Let {yo} be the n-cells of K., and let x(ya) : Yo — K<, be their characteristic
maps. Let aq = X(¥a)| : Oya — K" ! be the corresponding attaching maps. The
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homotopy classes {[x(ya)]} form a basis for m,(K,, K" ') = C,(K<,). Choose
representatives

14l

aya _Jal Kn—l

Yo =57

for the images 0[x (Y« )] € Tn (K <n, K"1). The attaching map a,, is homotopic to f/|
because

[a0] = den[X(Ya)] = denb]X(Ya)] = d<n[fL] = [f4]].

By the homotopy extension property, there exists, for every «, a representative f, :
Yo — Koy for 0]x(ya)] that extends aq, foloy, = Go. Defining

f:K<n —>F<n

by
f(z) = xz, foraxe K" 1,
f(X(ya)(x)) = foz(x)a for z € ya,

yields a map, since x(Ya)|oy, = da = faloy,- It is a homotopy equivalence, since it
induces a chain-isomorphism. (It induces 6 on the n-th chain group.) It is moreover
a homotopy equivalence rel K"~ by Proposition 1.1.5. O

Taking Y =Y in the preceding proof, we obtain in particular:

ScHoLIUM 1.1.26. If (K, K/n,h, K.,,) and (K, K /n, h, K -,,) are two n-truncation
structure completions of an object (K,Y) in CW 55 such that

hyirCr(K<pn) =Y = hyiz, Cn(K <)
then K<, and K <,, are homotopy equivalent rel K™~ !,

Thus, up to rel (n—1)-skeleton homotopy equivalence, the definition of 7, (K, Yk )
given above is independent of choices. Some applications of Proposition 1.1.25 follow.

PROPOSITION 1.1.27. In the following statement, assume K' = pt when n = 3.
If the skeletal inclusion K"=2 C K"~ induces the zero map

T (K" -5 (K™

then the rel (n — 1)-skeleton homotopy type of K, is independent of the choice of Y,
where (K, K/n,hig, Kepn) = 7<n(K,Y).

PROOF. The exact sequence
T (K™2) -2 (K9 2 (KL K2 = Oy (K)
shows that incl, is injective so that the restriction

incl, : m,_1(K""') — imincl,
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is an isomorphism. We have thus the following factorization of the homotopy bound-
ary homomorphism d:

Cn(K)

Tne1 (Kn—l)
On =] incl:1

im 9,, = im(incl, od) = imincl,

If (K,Y),(K,Y) € ObCW,,~p, then 9, by definition maps both Y and Y onto im 8.
Hence, o o
d(Y) = incl; ' 8,(Y) = incl; ' im 9, = incl; ' 0,(Y) = d(Y).
By Proposition 1.1.25, K,, ~ K ., rel K"~! where (K, K /n,hi, K<) = 7<n(K,Y).
O

ExAaMPLES 1.1.28. Let p be an odd prime and ¢ a positive integer.

1. Suppose the (n — 2)-skeleton of K has the form K"=2 = S"=3 Ue"~2 where
e"~2 is attached to S™~3 by a map of degree p?. Then the assumption of Proposition

1.1.27 is satisfied as m,_1(S" 3 Ue""2) = 0, see [Hil53].

2. Suppose the (n — 1)-skeleton of K has the form K"~ = $"=2 Uem~ !, where
e" ! is attached to S™"~2 by a map of degree p?. Then the assumption of Proposition

1.1.27 is satisfied as m,_1 (K"~ 1) = 0.

3. (n > 6.) Suppose the (n — 1)-skeleton of K has the form K"~! = §"3 U

e" ! where e"~! is attached to S"~3 by an essential map. Then 7, (K" 2) =
Tn_1(S"3) =Z/ (since n — 3 > 3) and m,_; (K"~ 1) = Z, [Hil53]. Thus the map
T 1(K" ) =2y — Z =7, 1(K"1)
is trivial.
Let us recall the definition of a J,,-complex due to J. H. C. Whitehead, [Whi49].

DEeFINITION 1.1.29. A CW-complex K is a J,,-complez, if the skeletal inclusions
induce zero maps 7,.(K"!) = 7.(K") forall r = 2,...,m.

The space S3 Uz e?, for example, is a Js-complex. If K is a simply connected .J,,-
complex, then the Hurewicz map 7,.(K) — H,(K) is an isomorphism for » < m (and
a surjection in degree r = m + 1). We obtain the following corollary to Proposition
1.1.27:

COROLLARY 1.1.30. If K is a J,_1-complez, then the rel (n — 1)-skeleton ho-
motopy type of K, is independent of the choice of Y, where (K,K/n,hi,K.,) =
T<n(K7Y).

For the value n = 3, the proposition implies:

COROLLARY 1.1.31. Forn =3 and K' = pt, the rel 2-skeleton homotopy type of
K3 is independent of the choice of Y, where (K, K/3,hi, K<3) = 7<3(K,Y).

PROOF. For n = 3, K" 2 is a point and so m2(K') = 0. The conclusion follows
from Proposition 1.1.27. ]
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In order to define 7.,, on morphisms, we prove the existence of morphism com-
pletions:

THEOREM 1.1.32. (Compression Theorem.) Any morphism [ : (K,Yk) —
(L,YL) in CW 5y can be completed to a morphism 7<n(K,Yk) = T<n(L, Y1) in
HOCWD<n,

PROOF. The map f: K — L is cellular and f,(Yx) C Y. With
T<n(Ka YK) = (Ka K/n7 hK7K<n)7 T<1’L(L7YL> = (L,L/nahLaL<n)7

our task is to complete the diagram

K LR M KK,

f l l l
Vo

L < S LM «——— L/n +—— L,

by filling in the three dotted arrows in such a way that all three squares commute up
to homotopy rel K™~ !. Since f is cellular, it restricts to a map between the n-skeleta.
This defines f* = f|: K™ — L™. Choose a cellular homotopy inverse h} : L™ — L/n
for hy, such that b/ is the identity on L"~! and hphl ~ id rel L™, b} hy =~ id rel
L™ 1. Set
f/n="hpoflohkg: K/n— L/n.

Then the middle square commutes up to homotopy rel K™~!. It remains to be shown
that the map (f/n)ix : K<p, — L/n can be deformed into the subcomplex L., rel
K™~!. By definition,

K/n=K"! UUyaUUzB, Kep=K"! UUya,

[e% B «
L/n=r"""ulJu, Uz Lan=L"""Ul ¥,
v g v

where the zz are m-cells constituting a basis for the cycle group Z,(K/n), the yq
are the remaining n-cells of K/n, the z; constitute a basis for Z,,(L/n) and the y/,
are the remaining n-cells of L/n. The various characteristic maps form bases for the
homotopy groups rel (n — 1)-skeleton:

(K /n, K*1) = D Zx(ya)) & D Zix(25)],
o 8

mn(L/n, L") = D Z[x(y))] @ D ZIx(z5))-
o1 o

Set

Cs = hic«[x(28)], Mo = hrce[x(ya)l,

(s = hoalx(#5)], m = hea[x()))-
Since hg, and hr, are chain maps, the elements (g and (§ are cycles, i.e. (g € Z,(K)
and (5 € Z,(L). By definition of 7., (K, Yk ), the 1y lie in Y. The 77; liein Y7,. As
both hg. and hy, are isomorphisms, {7} is a basis for Y, {(g} is a basis for Z, (K),
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{n}} is a basis for Yz, and {5} is a basis for Z,,(L). The situation is summarized in
the following commutative diagram.

Cp < [x(zp)]
{na?} {¢s} N — [X(Ya)]
Ve @ Zn(K) D. Zx(ya)] © Bp Zlx(25)] +— D, Z[x(¥a)]
(K™, K1) < f* T (K /n, K1) < (K, K1)
£l (F/n)-
(L™, L") < hi 7 (L/n, L") ina Tp(Lan, L")
Y, © Zn(L) ~—; — D, ZIx(¥,)] & Ds Z[x(25)] ~— D, Z[x(¥5)]
{n4} {¢5) Cs < [x(z5)]
5+ [x(¥5)]

(We have hp. o (f/n). = fl« o hix. because hy o f/n ~ hyohl o flohx ~ flohk
by a homotopy rel K"~1.) The commutative square

e XWall, - gen—1

Yo Xye) > K<n

represents the element [y (yq)] € mn(K<p, K"™1), and

[x(¥a)loya] = " [X(ya)] = &/ hic(na) = dita

holds. Since f.(Yx) C Yr, we can write f[.(na) = >_, A0 for some integers ..
Thus,

(f/n)sinsx(¥a)] = W flehrsiraX(Ya)l = M, fle(Ma)
2oy AR hi WA = 220 A Ix(Wh)] = 22, Ay [x(¥5)]
in (22, A Ix(@W5))),

whence (f/n)«ix+[X(Ya)] is in the image of ir.. Hence, by exactness of the sequence

To(Lan, L") 225 1 (L/n, LYY 25 70 (L0, Ley)
associated to the triple (L/n, L, L"),
Jx(f/n)wirce[X(ya)] =0 € T (L/n, Ley).
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This element is explicitly represented by the composition

aya X (Ya)l K1 K1 (f/m)| -1 c J Lo,

f/

(¥a) i
Yo e, Ko, . K/TL
This means that the composition

"~ L/n L/n.

X(Ya) f/n

Yo ) K < K/n

L/n
is homotopic, rel dy,, to a map into L., (see [Bre93], Theorem 5.8 in Chapter VII,
p.448). Consequently there exist homotopies
H* :yo,xI — L/n
such that
(@) H(=0)=(f/n)oix o x(ya),

(11)  H%(yo X {1}) C Ly,
(t5i) H*(x,t) = (f/nox(ya)|)(x), forall x € dy,, t € I.

In order to assemble these homotopies to a homotopy
H:K.,xI— L/n
rel K"~! such that
H(—,0)=(f/n)ix, HK<p x {1}) C Lep,

set

H(z,t) = (irj(f/n)])(x)
for x € K™ ! and

H(x(ya)(x),t) = H*(z,t)
for € y,. Then H is indeed a map because for = € Jy,,

H(x,t) = (f/nox(ya))(x) = (irojo f/nox(ya))(z),

by (iii) above. In other words, H is the unique map determined by the universal
property of the pushout:

L x(ya)loxids
_—

L, Oya x I Kn=1x T
N
N\
i A
L, Yo x 1 Lo )i KepxI
RN

L/n,

where A(z,t) = (iLj(f/n)|)(z) for (z,t) € K™™' x I and B(z,t) = H%(z,t) for
T € Yo, t € I, observing that for x € Oy, t € I,

Ax(ya) (@), t) = iri(f/m)x(ya)(@)
= (f/n)x(ya)(x)
= H(x,t) by (i)
= B(z,t).
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Defining
f<n = H(_7 1)7

we obtain the desired morphism, represented by

K LK KK,

f fl f/n f<n
hL 7;L

L < > Ln L/n < > L<n.

O

At this point, it is instructive to return to the example discussed in the intro-
duction 1.1.1. There we constructed a (homotopy class of a) map f : K — L with
K = 52Uy e® a Moore space M (Z/2,2) and L = KV S? that could not be compressed
toamap fez: Kcg — Lcg. Inlight of Theorem 1.1.32, this must mean that f cannot
be promoted to a morphism f : (K,Yx) — (L,Yr) in CW35p, no matter which Y
and Y7, one takes. Let us prove directly that this is indeed the case, by giving an
explicit geometric description of f. The cofibration sequence

521252—>K—cone() 3322233
where ¢ collapses the 2-skeleton S2 of K to a point, induces an exact sequence
m3(L) == (L) = [K, L]

and the cokernel of Yi is Ext(Z/5,m3L). Let g : S3 < K V S® = L be the inclusion
which is the identity onto the second wedge summand. Then the composition
K555 L

is homotopic to f. To see this, we only have to verify that Fs(Hur)[g] = £, where
EQ(—) = Ext(Z/2,—), Hur : w3(L) — Hs3(L) = Z is the Hurewicz map so that

(Hur) E2(7T3L) — EQ(H3L) = Z/Q, and § S EQ(HgL) is the generator. Let
[S3] € H3(L) denote the preferred generator of Hz(L). Then £ is the residue class of
[S3] modulo 2. The map E;(Hur) sends the residue class of [g] in 73(L)/273(L) to
the residue class of ¢.[S%], [S?] € H3(S3) the fundamental class, in H3(L)/2H3(L).
Since g is the identity on the second wedge summand, we have indeed g.[S?] = [S?].
Given this geometric description of f, its action on chains is easily obtained: C5(K) =
Ze3, where €3, is the 3-cell of K and C3(L) = Ze} & Z[S?], where €} is the 3-cell in
L contained in K C L, and where we wrote [S3] for the other 3-cell of L, contained
in the 3-sphere in L. Then f, : C3(K) — C3(L) is given by

fel€k) = gutulel) = g.[S°] = [$°].

The boundary operator 9 : C3(K) — Co(K) = Ze? is multiplication by 2. Thus
Z3(K) = ker 0K = 0 and Yx = C3(K) is uniquely determined. For 8% : C5(L) —
Ca(L) we have 9% (e3) = 2¢? and 0L[S®] = 0. Hence Z3(L) = ker 0% = Z[S3] and in
the decomposition C3(L) = Z3(L) @Yy, Yy, is any subgroup of the form Z(e} +m[S?])
with m € Z. We conclude that since

f(Yi) = £.C5(K) = Z[S®] = Zs(L),
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there is no admissible Y7, such that f.(Yx) C Y and f does not give rise to a mor-
phism in CW3+5.

DEFINITION 1.1.33. Let (K, K/n,hk, K<) and (L, L/n, hr, L<,) be n-truncation
structures. A morphism ([f], [f"], [f/n], [f<n]) : (K, K/n,hx, K<) = (L, L/n,hy, L<y)
in HoOCW+_,, is called n-compression rigid if for any two cellular maps g1, g2 :
K., — L., such that

K/n % K_,
f/n gi

Lin~" L.,

homotopy commutes rel K"~! for i = 1,2, the homotopy H : K., xI — L/n between
irg1 and irgs can be chosen to be an eigenhomotopy (still rel K™~1).

The property of nm-compression rigidity is indeed a well-defined property of a
morphism in HoCW-_,,, for it does not depend on the choice of representative:
Suppose that ([f], [f"],[f/n], [f<n]) = (lg],[9"], [9/7], [9<n]) and this morphism is n-
compression rigid with respect to f/n. Given ¢1,92 : K<y, — Lo, with ipgq ~
(g/n)ig ~ irgs rel K" 1 we use f/n ~ g/n rel K"~! and therefore (f/n)ix =~
(g/n)irg rel K"=1 to obtain homotopies irg1 ~ (f/n)ix ~ irgs rel K"~ 1. By n-
compression rigidity with respect to f/n, the homotopy between irg; and ipgs can
be chosen to be an eigenhomotopy. Hence, the morphism is n-compression rigid with
respect to g/n.

On the other hand, compression rigidity is not expected to be a property of [f]
alone because [f] = [g] does not imply [f/n] = [g/n], as noted before.

An obstruction theory for deciding compression rigidity in practice is provided in
Section 1.2.

Morphisms f : (K,Yx) — (L,Yr) in CW 54 are required to satisfy f.(Yx) C Y.
This ensures that f can be pushed down to a map f., : K., — L., between n-
truncations. If one wants any two such maps K_,, — L.,, both truncating f, to be
homotopic, which is necessary to obtain functoriality, then one needs an additional
condition — a higher order analog of the previous condition — to ensure that homo-
topies can be pushed down to the truncated spaces. Unfortunately, it turns out to be
subtler than just requiring “H.(Yx ;) C Y7 x;” and then applying Theorem 1.1.32 in
degree n+1 to H instead of f. The difficulty is related to the fact that the n-skeleton
of a cylinder K x I, where K is an n-dimensional complex, is not K™~ ! x I, but
K" 1 x TUK" x 0I. Rather, the eigenhomotopy property is precisely the condition
needed. The following proposition shows that two truncation versions of a map are
homotopic if, and only if, the map being truncated is compression rigid.

PROPOSITION 1.1.34. Let (K, K/n,hx,K<,) and (L, L/n,hy, L<y,) be n-truncation
structures and F = ([f]v [fn]v [f/n]v [f<n]) : (K7 K/TL, h’Ka K<n) - (La L/n7 hLv L<7l)
a morphism in HoOCW-_.,,. Then any two cellular maps g1,92 : K<, — Loy such
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that

K/n 4# K<'IL
f/n gi

Lin~* L.,
homotopy commutes rel K™~ ' for i = 1,2 are homotopic rel K™~ ' if, and only if, F
s m-compression rigid.

PROOF. Assume that F' is n-compression rigid. We have ip g1 ~ (f/n)ix ~irgs
rel K"~1. By n-compression rigidity, the homotopy H : K-, x I — L/n between
ir.g1 and i7go can be taken to be an eigenhomotopy rel K»~!. Define H' : K, x I —
L/n x I by H'(k,t) = (H(k,t),t). By cellularity, g; sends K"~ to L"~!. Thus H’
restricts to a map

H/|Kn_1><1 = 91|K"—1 X 1d[ = g2|Kn_1 X ld[ . anl w | —s Lnil < I
Furthermore, H' (K<, x 0I) C L., x OI via g1 U go. Hence, setting

A=K, xI, Ay=K_ , xO0IUK" ! x1,
B =L/nxI, B=LoynxI, By=LenxdIUL" " x1I,

we have a map of pairs
H' (A,Ao) — (B/,Bo).

Let y = y” be an n-cell of K, with characteristic map x(y) : y — K<, and attaching
map X (y)|ay : Oy — K" 1. The characteristic map x(y x I) of the (n + 1)-cell y x I
of K., x I is then

yx I x(yxI)=x(y)xids - Koy x I

Iy x1I)=(0y)x I Uy x ol » K" 1 x TUK_, x 01

x(y)|xidr Ux(y)xidar

and represents an element [y(y X I)] € mn11(A4, Ap). Applying the induced map
H., : mpy1(4, Ag) = may1(B’, By), we obtain an eigenclass z, = H.[x(y x I)] €
i1 (B, By) = VOu(L). Thus

To = EL(IQ) = ¢p¢(%)
The long exact homotopy sequence of the triple (B’, B, By) yields the exact sequence
Cpi1(Lan x I) -2 VOO (L) - msr (B, B).
Since z,, is in the image of ¢, we have ¢(z,) = 0. This means that the composition

yx I g w1 W s T

is homotopic, rel d(y x I), to a map HS into L., X I. This map HY 1y x [ —
L., x I is equal to H'| o (x(y)| x id;) when restricted to (0y) x I and is equal to
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(91 U g2) o (x(y) x idpr) when restricted to y x 9. Let us assemble these HS to a
homotopy H< : K, x I = L,. For x € K™ 1, set

H<(z,t) = g1(x) = ga(2).
For x € y, set
H<(X(y2)(1’),t) = 7T1H§(l’,t),

where 71 : Lo, X I — L, is the first-factor projection. Then H< is indeed a map
because for z € 0y,,

H<(X(yo)loya (x),t) = mH5(x,t) =m0 H ox(ya x I)(z,1)
T H' (X(ya)(2),t) = H(X(ya)(2),t)
= 91(X(¥a)(T))-

In other words, H< is the unique map determined by the universal property of the
pushout:

Ux(ya)loxids

L, 0ya x | —————> Kn=1 x|

i AN
\\
UX(yO)XidI

N 4
uaanI%K<nXI ;

N

L<’I’L7

where A(xz,t) = g1(x) for (z,t) € K" ! x I and B(x,t) = mHZ(x,t) for @ € y,,
t € I, observing that for x € Jy,, t € I,

A(X(ya)(x)’t) = (ya)(x))
= ( (Ya)(x), ) (since x(ya)(z) € K"1)
= mH (x(ya)(2),1)
= 7T1H (l’,t)

= B(z1).

For t = 0 we have H<(z,0) = gi(z) when z € K" ! and H<(x(ya)(z),0) =
mHS (2,0) = g1(x(Ya)(x)) when z € y,. Thus H<(—,0) = g1, and similarly
H<(—,1) = go. The map H< is the desired homotopy rel K"~ ! between g; and
g2-

Let us now prove the converse direction. We assume that whenever g; and g5 are
cellular maps such that iz gy ~ (f/n)ix =~ ipge rel K™"~!then in fact g; ~ go rel K"~ 1.
We have to show that F' is n-compression rigid. Let g1, g2 be maps as above and let
H:K_,xI— L., beahomotopy rel K"~! between g; and g,. The associated map
H :K.p xI— Loy xTisamap of pairs H' : (A, Ag) — (B, Bp) which induces on
homotopy groups a homomorphism H%E : Crg1(KenxI) = Cpg1(LenxI). Regarding
H' as amap (4, Ag) — (B, By), it induces a homomorphism H} : Cp41(K<p X I) —
VCy(L) such that H; = ¢H),. Let

i P ZIx(Ya x D] = P ZIx(ya x D] & @ Zlx (25 x 1)
« @ B

be the canonical inclusion so that pj = id and ¥¢ = j. We will show that x =
H.[x(yq x I)] is an eigenclass. Let us calculate the action of the endomorphism Ep,
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on x:

Ep(z) = opy(x)
opYdH Yy [X (Yo x I)]
¢pj Hly[X (Yo x T)]
PH L X (Yo % 1)]
H[X(ya x T)]

= X.

Hence x is an eigenclass as claimed. O

ExAMPLE 1.1.35. We exhibit an example of a map f : K — L, where K and L are
simply connected 5-segmented CW-complexes (K = K/5, L = L/5) with unique 5-
truncation subcomplexes K5 C K, L5 C L, such that there are two nonhomotopic
maps g1, g2 : K<5 — L.s, which are equal on the 4-skeleton K* of K and such that

K&>K<5

L ﬁ)L<5

homotopy commutes rel K4, i = 1,2. This, then, furnishes an example of a map that
is not compression rigid. Let

K:S4U4657 L253U264U65,

where the 5-cell in L is attached to 52 by an essential map de® — S3. The complex
K is a Moore space M(Z/4,4) and the 4-skeleton S3 Uy e of L is a Moore space
M(Z/2,3). The cycle group Zs(K) is zero and Y5(K) = Cs5(K) = Ze® is unique. The
space K is 5-segmented with 5-truncation K.5 = K, unique by Proposition 1.1.3.
The cycle group Zs5(L) = C5(L) = Ze® has a basis of cells. Hence L is 5-segmented
by Lemma 1.1.2. Necessarily, Y5(L) = 0. The 5-truncation is L.5 = L* = §3 Uy e*,
unique by Proposition 1.1.3. By classical homotopy theoretic arguments,

7'('5(53 UQ 64) = Z/4
and
71'5(53 Uo 64 U 65) = Z/Q @Z

Since L is 2-connected, we may apply Proposition 1.2.8 to obtain ng(L, L<s) = Z /2,
using Hs(L) = Z. The exact sequence of the pair,

WG(L,L<5) — 7T5(L<5) ﬂ) 7T5(L),

then shows that the kernel of iy, is either zero or isomorphic to Z/2. Since every
homomorphism Z/4 — Z/2 ® Z has a nontrivial kernel, ker iy, is isomorphic to Z/s.
Write Z/4 = {0,1,2,3}. The only subgroup of Z/, isomorphic to Z/2 is {0,2}. We
deduce that kerip, = {0,2} C m5(L<s). Let h : S° — L5 be a map representing
2 = [h]. Let coll : K = S* Uy €% — S% be the map that collapses S* to a point, which
then becomes the basepoint sy of S°. The Puppe cofibration sequence

S+ Ly 5% s cone(d) = K <28 65 = §(5%) -5 55 = §(5%)
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induces the exact rows of the commutative diagram
4=0 coll,
m5(L<s) — m5(L<s)— [K, L<5]
\Lim« J/iL* iiL*
4 coll,
75(L) (L) K, L.
Since the element 2 = [h] € 7w5(L<s) is not divisible by 4 (none of the nontrivial

elements of 7m5(L<5) are), it is by exactness not in the kernel of coll,. Thus
[h o coll] = coll,[h] # 0 € [K, L<s).

Asip.[h] = 0 € 75(L), there exists a base point preserving homotopy H : S% x I — L
from Hy = iph to the constant map Hi, which sends every point to the base point [
of Les C L. Thus H(sg,t) = o for all t € I. Define a homotopy G : K5 x I — L by

G(z,t) = H(coll(z),t), x € Ko5, t € 1.

It is a homotopy from
G(z,0) = H(coll(x),0) = iphcoll(z)
to the constant map
G(z,1) = H(coll(x),1) = lp.

It is rel K*, as for z € K* =S4,

G(z,t) = H(coll(x),t) = H(sg,t) =l
forall t € I. Let g1 : K5 — L5 be the composition

coll

K<5 =K —
and let f : K — L be the composition

K=Ky % L5 L

By construction,

K== K
fl |»
L T)L<5
commutes. Taking gs : K5 — L5 to be the constant map to [y, the square
K—= K
fi |»
L <i—L)L<5

homotopy commutes rel K*, as via the rel K4 homotopy G,

f=iphcoll g const;, = 1i15,g2.

Thus g; and go are both valid homological 5-truncations of f, agreeing with f on the

4-skeleton. However, ¢g; and go are not homotopic, since

[91] = [hocoll] # 0 = [go] € [K<5, L<s].
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PROPOSITION 1.1.36. (Homotopy Invariance of Compression Rigidity.) Let

(K, K /n,hie, K <n) —= (K, K/, her, KL,)

F F’

1R

(L,L/n,hp,L<y) — (L', L'/n,hr, L,,)

be a commutative square in HOCW 5, with U,V isomorphisms. If F is n-compression
rigid, then F' is n-compression rigid.

PRrROOF. The morphism F has the form F = ([f],[f"], [f/n], [f<n]), and F’ has
the form F' = ([f'), [f"™], [f/n], [f-,]). Suppose g} : KLy = Lieys i = 1,2, are two
cellular maps such that the squares

(12) '/ 9i

Qp
Ll/n % L/<n

commute up to homotopy rel (K’)"~!. We have to show that g ~ g5 rel (K')"~!. The
morphism U has components U = ([u], [u™], [u/n], [u<y]), and V has components V =
([v], [v"], [v/n], [v<n]). The cellular maps u, u™, u/n, u<, are all homotopy equivalences
rel K™~ ! and the cellular maps v,v™,v/n, v, are all homotopy equivalences rel L™ 1,
see Lemma 1.1.21. Let u’,,v.,,v"/n be rel (n — 1)-skeleta homotopy inverses for
Ucn, Ve, V/M, Tespectively. Set

/ / -
9i = VepGiian : Kapn —> Ly, 1 =1,2.

Since V' is a morphism and [v'/n], [v,,] are the third and fourth component of the
inverse V! (see Lemma 1.1.21), the diagram

L'/n <L3 L.,
(13) v /n |~ ~ v,

Lin~"% L,

homotopy commutes rel (L’)"~!. Since U is a morphism, the diagram

(14) u/n |~ ~ | Uucn

%
[(//n<LD K/<n
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homotopy commutes rel K"~'. From F'U = VF, we get a rel K"~! homotopy
commutative diagram

K/n —— K'/n

u/n

f/n £/

~

L/n

L'/n

v/n
which implies

(15) W' /n)(f'/n)(u/n) = (V' /n)(v/n)(f/n) ~ f/n
rel K*~1. Therefore,

iV, Giten
(v'/n)ir giucn

(by (
(@' /n)(f' [n)ikucn  (by (
E (by (

iLg;
o' n)(f'/n)(u/n)ik
f/n)ix (by (

i=1,2, rel K" 1. Since F is n-compression rigid, Proposition 1.1.34 implies g1 ~ g2
rel K" 1 ie. v_, glucy, ~ v, ghucy, rel K"~ Hence,

11 R

91 = VanVep Glantic, =~ VapVl, Grlicntle, = gy
rel (K')"~! whence F’ is n-compression rigid by Proposition 1.1.34. O
COROLLARY 1.1.37. (Inversion Invariance of Compression Rigidity.) Let F :

(K,K/n,hg,K<p) = (L,L/n,hp, L<y) be an isomorphism in HOCW - ,,. If F is
n-compression rigid, then F~1 is n-compression rigid as well.

PRrROOF. In Proposition 1.1.36, take U = F, V = F~! and F/ = F~ 1. |
Let f: (K,Yx) — (L,YL) be a morphism in CW,,~g. If f is the identity, set

Ten(f) =1dr_, (k. vie) = ([idk], [dxn], [dx/nl; idk_,]),
where 74, (K,Yg) = (K,K/n,hk, K<y). If not, proceed as follows: By Theorem
1.1.32, f can be completed to a morphism
(LU L/l [f<n]) £ <n (K YR) — Tn(L, Y1)
in HoCW+_,, such that
(1) f* = flg» and

(2) f/n=h} o f"ohg, where b, : L™ — L/n is a homotopy inverse rel L"~*
for hyp,.

Choose such a completion and set

[r<n(f) = (U1 1F7L [ /), [ <))

The truncation 7, is now defined on objects and morphisms. For a morphism
F = ([f, [/, [f/n]; [f<n]) in HOCW5_,,, we shall also write F" for the second
component [f"] of F, F/n for the third component [f/n] of F, and F., for the
fourth component [f<,] of F.
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LEMMA 1.1.38. If f : (K, Yk) — (L, Yy) and g : (L,Y) — (P,Yp) are morphisms
i CW, 5o, then

T<n(g9)/noT<n(f)/n=T<n(go f)/n.

PROOF Let (K, [(/77/7 hK7K<’I’L) = T<n(K, YK)7 ([/7 l//?’?,7 hL7L<TL) = T<n(L, }/L>7
and (P, P/n,hp,P<y) = T<n(P,Yp). Let h, > be homotopy inverses rel (n — 1)-
skeleta for hr,hp, respectively. Set h = gf. By definition of 7.,, on morphisms, we
have

T<n(f> = ([f]? [f‘K”}’ [h/L o flK"' o hK]? [f<n])7
7<n(9) = (lg], [9ln], [Wp © glzn © hi], [9<nl),

and
T<n(h) = ([Al; [hl ], [Wp 0 Bl 0 hic], [h<nl]),

where R/ is some homotopy inverse rel P"~! for hp. The maps h’» and h’ need

not be equal, but they are homotopic rel P"~1, so that [h/s] = [h'5]. The assertion is
established by the following calculation on rel (n — 1)-skeleta homotopy classes:
T<n(g)/noTen(f)/n = [hpoglpn ohr]o[h] o flkn o hi]

= [hpoglenlolhr o hp]o[flxn o hk]

= [h’ oglrn o flgn o hi]

= [Pp]e[(gf)lxn o hk]

= [Wp] o [h]kn o hi]

= 7<n(h)/n.

O

THEOREM 1.1.39. Let f : (K,Yx) — (L,YL) and g : (L,YL) — (P,Yp) be
morphisms in CW 55 such that 7<,(g o f) is n-compression rigid. Then
T<n(go f) = T<n(g) © T<n(f)
in HoOCW- .

PrROOF. Set h =gf. If
T<n(f) = (LU U /n] [F<nl)s 7<n(9) = (9], [9"], [9/7], [9<n])

and
T<n(h) = ([A], [2"]; [h/n], [h<n])
then
T<n(9) o T<n(f) = (lgl o [f], [g"] o [f"], lg/n] o [f /1], [9<n] © [f<n]),
and thus
T<n(go f) = T<n(g) © T<n(f)

iff

(1) lgle[f] = [n], (2) [g"]o[r"] = [n"],

(3) lg/nle[f/n]l=I[h/n], (4) [g<n]o[fan] = [hen].

Equality holds in (1) by definition, and follows in (2) from
h" = (9f)lkn =g

Ln o flgn = g™ o f™.
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Equality in (3) holds by Lemma 1.1.38. Using the two homotopy commutative dia-
grams

K/n % K_, Lin~"* L.,
f/n f<n ‘]/" g<n
Lin <" L., P/n 2 P,

where both homotopies may be assumed to be rel (n — 1)-skeleta, we obtain

(h/n)lK = (g/n)(f/n)zK = (g/n)iLf<n =~ in<7Lf<7L
rel K"~! where the first homotopy comes from (3). Also,

i
K/n <L:) K<n
h/n h<n

P/n ‘l—PD Py
commutes up to homotopy rel K™~!, whence
iphen >~ (h/n)ix ~ipgenfen
rel K"~1. By Proposition 1.1.34, h,, =~ g f<n rel K™~ 1 since ([h], [h"], [h/n], [h<n])

is n-compression rigid. This establishes equality (4). 0

Let us call a subcategory C C CW,,~g (n-)compression rigid, if the image under
T<n Of every morphism in C is n-compression rigid. We have seen in Proposition
1.1.34 that the truncation f., is homotopy-theoretically well-defined precisely for
n-compression rigid morphismes.

COROLLARY 1.1.40. Let C C CW,~y be any compression rigid subcategory.
Then the assignment Ty, is a covariant functor 7, : C — HoCW-_,,.

Recall that HoCW,,_; denotes the category whose objects are CW-complexes
and whose morphisms are rel (n — 1)-skeleton homotopy classes of cellular maps. Let

Py : HoCW-_,, — HoCW,,_;

be the functor given by projection to the fourth component, that is, for an object
(K,K/n,h, Kcp) in HOCW— ., Py(K,K/n,h,K.,) = K<, and for a morphism
([f]v [fn]7 [f/n]7 [f<n]) in HOCWD<n7 P4([f]7 [fn]7 [f/n]v [f<nD = [f<n] Let

tcoo : CW, 59 — HoCW,,_;
be the natural projection functor, that is, t<.(K,Yx) = K for an object (K, Yk)
in CW,,55, and t<o(f) = [f] for a morphism f : (K,Yx) — (L,Yr) in CW 4.
Define a covariant assignment of objects and morphisms

]t<n =Pyorop: CW, 5y — HoCW,,_; \

By Corollary 1.1.40, t.,, is a functor on all n-compression rigid subcategories of
CW,,59. The assignment t., comes with a natural transformation

emb,, : toy — teoo,
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which we shall now describe. Let (K,Y) be an object of CW,,55. Applying 7<,, we
obtain an n-truncation structure 7., (K,Y) = (K, K/n,h, K,,). Let

emb, (K, Y) : tcn(K,)Y) =Koy — K =t (K,Y)
be the rel K»~! homotopy class of the composition
Kep s K/n -5 K" K.

This is a natural transformation: Given a morphism f : (K,Yx) — (L,Yz) in

CW.59, we apply 7y to obtain 7« (f) = ([f], [f"], [f/n], [f<n]) so that t<,(f) =
[f<n]. Then the required commutativity in HoOCW,,_; of the square

ben (K, Vi) ) (K V)
t<n(f) t<oo(f)
t<n(L,YL) M’ t<oo(L;YL)
follows from the commutativity in HoCW,_; of the diagram
Ken lik] K/n [hx] Kn bkl K
ten(f)=[f<nl [f/n] ("] [fl=t<oo (f)

L<n [ZL] o L/n [hL] - L7 []L] . I
where 7., (K,Yx) = (K,K/n,hg, K<) and 7<,(L,Yy) = (L, L/n,hy, L<y). We
have proved:

THEOREM 1.1.41. Let n > 3 be an integer. There is a covariant assignment
ten : CW, 59 — HoCW,,_1 of objects and morphisms together with a natural
transformation emb,, : t<, — t<oo such that for an object (K,Y) of CW,~g, one
has H,(t<n(K,Y)) =0 forr > n, and

oy

emby, (K, Y), : Hy(ten(K,Y)) — H.(K)

is an isomorphism for r < n. The assignment t—, is a functor on all n-compression
rigid subcategories of CW 55 .

For the degrees n < 3, the functor t.,, has been constructed in Section 1.1.5.
REMARK 1.1.42. (Effect on Cohomology.) If r > n, then
H (t«n(K,Y)) 2 Hom(H, (t<n(K,Y)),Z) ® Ext(H,_1(t<n(K,Y)),Z) = 0.
For the borderline case r = n,
H"(t<n(K,Y)) 2 Hom(H, (t<n(K,Y)),Z) ® Ext(H,—1(t<n(K,Y)),Z)
>~ Ext(H,-1(K),Z)

(this is the torsion subgroup of H,,_1(K) if H,,_1(K) is finitely generated), while for
r<mn,

H"(t<n(K,Y)) = Hom(H,(t<n(K.,Y)),Z) ® Ext(Hy—1(t<n(K,Y)),Z)
=~ Hom(H,(K),Z) & Ext(H, 1 (K),Z)
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Thus, t<,(K,Y) is only up to degree-(n — 1)-torsion a spatial cohomology truncation.
In particular, over the rationals, t.,,(K,Y") is a valid spatial cohomology truncation.

1.2. Compression Rigidity Obstruction Theory

The Compression Theorem 1.1.32 asserts that every cellular map f that preserves
chosen direct sum complements of the n-cycle groups, that is, every morphism in
the category CW, 55 of n-boundary-split CW-complexes, possesses a homological
truncation t<,(f). We have also seen that f does not in general determine the
homotopy class t<, (f) uniquely, not even when the domain and codomain of f are n-
segmented with unique n-truncating subcomplexes. We called f n-compression rigid
if it determines a unique homotopy class t-,(f). Compression rigidity was defined
in terms of eigenhomotopies in Definition 1.1.33, and then characterized as being
equivalent to the above uniqueness property in Proposition 1.1.34. On compression
rigid categories, spatial homology truncation is a functor (Theorem 1.1.41). It is
in practice not always easy to decide directly from Definition 1.1.33 or Proposition
1.1.34, whether a given map is compression rigid. The present section addresses this
by systematically identifying obstruction cocycles. A characterization of the notion
of compression rigidity in terms of obstruction cocycles is provided by Theorem 1.2.2.
Regarding the question as to when a given homotopy H can be compressed into an n-
truncation, we shall see in Proposition 1.2.6 that for a homotopy H : K<, x I — L/n,
the obstruction cocycle lies in C" (K, x I; w11 (L/n, L<y,)). The homotopy group
Tn+1(L/n, L<y,) thus plays a key role and is studied in Proposition 1.2.8. Some simple
sufficient conditions for compression rigidity are deduced from the general obstruction
theory.

1.2.1. Existence of Compressed Homotopies. In order to fix notation, let
us begin by recalling some basic obstruction theory.

LEMMA 1.2.1. Let X and Y be CW-complexes with X of dimension n and Y
n-simple (i.e. w1 (Y) acts trivially on m,(Y), for example Y simply connected). Let
91,92 + X — Y be two maps such that gi|xn-1 = go|xn-1. Then g1 and g are
homotopic rel X"~ ' if, and only if, a single obstruction cocycle

w(gr,g2) € C"THX X I;mn (Y))

vanishes. The obstruction cocycle is natural, that is, if f :Y — Y’ is a map into an
n-simple CW-complex Y, then

few(g1,92) = w(fgn, fg2) € O"FHX x [;ma(Y)),
where

Jer Cn+1(X x Iimn(Y)) — On+1(X X I; 7T7L(Y,))
composes a cochain with the induced map fi : (V) = 7, (Y7).

PROOF. The n-skeleton of Z = X x I is given by Z" = X x 0IU X" ' x I C Z.
Set
g = (91 X {O} Ugae X {1}) U (gl|anl X ld]) 7" —Y.
Let e"*! be an (n + 1)-cell in Z with attaching map
x(e™t)|: 8" = gem Tt — 2.

Composing with g defines a map

entt
g Xl g 9,y
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Define
w(gr,92) (") = [g o x(e" )] € mu ().
(Since Y is n-simple, any map of an oriented n-sphere into Y represents a well-defined
element of m,,(Y").) Then the core theorem of obstruction theory asserts that g extends
to amap Z = Z"*! — Y if, and only if, w(g1, g2) = 0.
For amap f:Y — Y’ we have
frw(gr, g2)(e™™) = filgox(e"™)]

= [fogox(e"™)]]

= w(fgi, fga)(e™™) € ma(Y)
because

fg=((fg1) x {0} U (fg2) x {1}) U ((fg1)[xn— x idp).
]

THEOREM 1.2.2. Let (K,Yk) and (L,Yr,) be objects of CW .59 with 7« (K, Yk) =
(K,K/n,hg,K<n) and 7« (L,Yy) = (L,L/n,hy, L<y). Letiy : Lep < L/n denote
the subcomplex inclusion. A morphism ([f],[f"], [f/n], [f<n]) : (K, K/n,hx, K<pn) —
(L,L/n,hr,L<y) in HOCW S, is n-compression rigid if, and only if, the following
statement holds: For every f., : K<, — L, such that

i+w(fan, fon) =0 € O™ (K x I;mn(L/n))
one actually has
w(f<na f/<n) =0¢€ Cm+1(K<n x I 7Tn(L<n))'

PROOF. In order to prove the only if-direction, suppose that ([f], [f"], [f/n], [f<n])
is n-compression rigid. Let fL, : K., — L., be a map such that

irsw(fan, fln) =0 € C*"H Koy x I;my(L/n)).
By Lemma 1.2.1,
Z.L"“’L)(f<na f/<n) = w(iLf<n7 ZLfl<n)’
and the latter cocycle is the obstruction for finding a homotopy rel K"~ ! between

ir.f<n and ir fL,. As this cocycle vanishes, there is a homotopy i1, f<,, >~ ir fL, rel
K"~ Since

K/n 4L K<n
f/n fen

homotopy commutes rel K"~ !, we also have a homotopy commutative diagram

K/n % K_,
f/n fim
Lin "% L,

rel K"~!. Thus, by Proposition 1.1.34, f<y ~ fL,, rel K™ ! Hence the obstruction
w(f<n, fL,,) vanishes.
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To prove the if-direction, assume that iy, w(f<p, f-,) = 0 implies w(f<p, fL,) =0
for all fL,,. By Proposition 1.1.34, n-compression rigidity of ([f], [f"],[f/n],[f<nr])
follows once we have shown that whenever f. , f”  are such that iy fL,, ~ (f/n)ix
rel K"' and irf”, ~ (f/n)ix rel K" ' one can conclude f., ~ fZ rel K" '
If irfl, ~ (f/n)ix ~ irf’, rel K™™' then (f/n)ix =~ irf<n rel K"~ implies
w(ipfen,infl,) = 0 and w(ipfen,infl,) = 0. Thus ir.w(fen, fL,) = 0 and
irsw(fen, f2,) = 0, which implies w(f<n, fL,) = 0 and w(f<n, fZ,) = 0. Conse-

quently, there exist homotopies fL, ~ fo, ~ fZ, rel K"~1. O

COROLLARY 1.2.3. A morphism ([f],[f™],[f/n], [f<n]) : (K, K/n,hx,K<p) —
(L,L/n,hr,L<y) in HOCW 5, is n-compression rigid if ip. : mpn(L<n) = mn(L/n)
18 injective.

PRrROOF. If ir, : mp(Len) — mp(L/n) is injective then
Hom(Chy1 (K x I)yigs) : O N(K oy x I (Ley)) — C"PH Koy, x Iy, (L/0))

is injective as well. O

1.2.2. Compression of a given Homotopy. Let n > 3 be an integer. In
investigating the n-compression rigidity of a morphism

([f]a [fn]v [f/n]a [f<n]) : (Ka K/TL, hK>K<n) - (LvL/n7hL>L<n)

it may sometimes be useful to know whether a particular homotopy can be compressed
into the truncated spaces. We will here determine the obstructions to deforming, rel
Ko, x 0IUK" ! x I, a given rel K"~ homotopy H : K., x I — L/n from izg;
to ir,g2 to a homotopy K., x I — L.,. The resulting homotopy would then be rel
K" 1 and from g; to go.

We begin by turning the inclusion L., < L/n into a fibration, that is, we choose
a homotopy equivalence A : L.,, — £, and a fibration p : £,, — L/n such that

A
L<n
\ 9
L/n

commutes. We may take A to be an inclusion such that £, deformation retracts
onto L.,. In particular, there is a homotopy inverse X" for A such that MA =idz_,,
see [Whi78], Theorem 1.7.30. Let F denote the fiber of p and let

go = (91 X {O} Ugg X {1}) U (91|Kn—1p1) : K<n X GIUK"*I X I —> L<n,

Lo

where p; : K™ ! x I — K" ! is the first factor projection. We need to solve the
relative lifting problem

Kep x OTUK™ 1 x [ 2% £_.
v

-
-

9.

\

L/n
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For if a solution H exists, then H.,, = X o H satisfies
Hon(k,0) = g1(k), Hen(k,1) = ga(k) for k € K<,
because
Hep(k,0) = NH(K,0) = N Ago(k, 0) = go(k,0) = g1(k)

(similarly for ¢t = 1) and Ho,(k,t) = g1(k) for k € K" and all t € I, since for
= [(nfl7

H<n(kat) = )‘//\QO(k,t) = gO(kvt) = gl(k)
for all t. Thus H_,, is the sought compression of H.

LEMMA 1.2.4. The homotopy fiber F of i : Lo, < L/n is (n — 2)-connected. It
is not (n — 1)-connected unless i is the identity.

PRrROOF. The CW pair (L/n, L<y) is (n — 1)-connected and the subcomplex L,
is 1-connected. Thus the quotient map induces an isomorphism

mj(L/n, Len) = mj((L/n)/Len) 2 m;(\/ S§)
8

forj < (n—1)+1=n.For0<j<n,mj(\VzS55) = H;(\Vz55) =0 by the Hurewicz
theorem. Therefore,

7, (F) & w1 (L/n,Ley) =0

when k <n—2. For k=n—1,

'/Tn—l(F) = 7Tn(L/n7L<n) = 7Tn(\/ Sg) = Hn(\/ Sg) 7é 0
B B

unless there are no cells zg, in which case 7 is the identity. O

LEMMA 1.2.5. The group G = H*Y (K, xI, K, xOIUK" "' x I; 7, F) vanishes
unless k =n. Fork=n, G = C" Y (K., x I;7,F).

PROOF. The complex A = K., x 0 U K"~ x I is the n-skeleton (K., x I)™ of
Ko x I = (K., x I)""!. By the universal coefficient theorem,

G= HOIn(Hk+1(K<n X I,A),T(kF) D EXt(Hk(K<n x I, A),ﬂ'kF).

The group H;(K<y, x I, A) is zero for j # n+ 1 and isomorphic to the cellular chain
group Cpy1(Kep X I) for j =n+1. Thus G =0 for k & {n,n+ 1}. For k = n + 1,
G 2 Ext(Cpy1(Kepn xI), mn1F) = 0, since Cp41(K<p xI) is free abelian. For k = n,
G = Hom(Cpy1(K<p x I),m, F) = C"" Y (K, x I;m, F). O
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To solve the relative lifting problem, we consider the Moore-Postnikov tower of
principal fibrations of the map p:

Y

Zn—i—l _— K(Wn+1F,n + 2)

Koy x OIUK™ x T 29 ¢, .- Z, - K(mpF,n+1)

Kenx 1 ul e Lin=Zy1 — K(1p_1F,n)

By Lemma 1.2.4, the Moore-Postnikov factorization begins with Z,,_;. The compo-
sition across the bottom of the diagram gives a primary obstruction

W1 € H'(Kepy x I, Koy x OTUK™ ! x I, 1 F).

According to Lemma 1.2.5, this group is zero and the primary obstruction vanishes,
so that a lift of H to Z,, exists. The obstruction to lifting further to Z,; is a class

Wy € H"" N Koy x I, Koy x OTUK™ ! x I; 7w, F).

This cohomology group is nonzero by Lemma 1.2.5 and Proposition 1.2.8 below, unless
L., = L/n is the identity or K., has no n-cells, i.e. K"~ < K_, is the identity.
If w, = 0, then the rest of the obstructions are classes

wp € H¥Y Ky x I, Ko x OTUK" ™ x I;m, F),

k > n. But these all vanish by Lemma 1.2.5. Observing that 7, (F) = 7, 11(L/n, L<p),
we have shown:

PROPOSITION 1.2.6. The homotopy H : K<, Xx I — L/n can be compressed into
L., rel K"~ ' if, and only if, a single obstruction

wn(H) € C" PN (Ko x I;pi1(L/n, Loy))
vanishes.

COROLLARY 1.2.7. A morphism F : (K, K/n,hx,K<,) = (L,L/n,hr,Ly,) in
HoCW+_,, is n-compression rigid, if

(1) 9y =0: Cp(K) — Cy(K),

(2) Oy : Cr(L) — Cp—1(L) is injective.
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PRrROOF. (1): Since 9, = 0, we have C,,(K) = Z,(K) and Yx = 0. Thus K/n
has no cells y, and K., = K" !. Consequently, K., x I has no (n + 1)-cells,
Cnt1(K<p, x I) = 0 and w,(H) = 0 for every H. By Proposition 1.2.6, f is n-
compression rigid.

(2): If 0, : Cr(L) — Cp_1(L) is injective, then Z,(L) = 0 and Cp,(L) = Y.
Thus L/n has no cells zg and

L/n=L""UJta = Len.
(e}

We conclude that m,41(L/n,Ley) = 0 and w,(H) = 0 for every H also in this
situation. 0

The coefficient homotopy group 7,+1(L/n, L<,) in the obstruction group can
only be zero if L., < L/n is the identity. In fact:

PRrROPOSITION 1.2.8. Let (L,L/n,h,L.,) be an n-truncation structure, n > 3,
such that H,(L"™) has finite rank b. Then m,41(L/n, L<y,) maps onto (Z/2)®, and if
Hy(L) =0, then

Tnt1(L/n, Lepn) = (Z/2)b-

PROOF. The n-segmentation L/n has the form

Lin=L""UJyaUz1U-- Uz,
«

where {z1,...,2} is a basis of n-cells for Z,(L/n) = H,(L/n) = H,(L™). The
CW vpair (L/n,L<y,) is 7 = (n — 1)-connected, since all cells in L/n — L., have
dimension n > r. The complex L., is s = 1l-connected as n > 3. Thus, asn+1 <
r+s+1=(n—-1)4+2, the quotient map L/n — (L/n)/L<, induces a surjection
Tp+1(L/n, Len) = mpy1((L/n)/Ley). As Loy, = LU, Yo, we have (L/n)/L<y, &
SV -+ V.5, where the sphere S corresponds to the cell z;, j =1,...,b. Thus, from
the proof of Proposition 1.1.18 (concerning virtual cell groups),

Tn1(L/n)/Lap) = Tnia (ST V-V SP) 22 (Z/2)".

If Hy(L) = 0, then Hy(L<p) = Ho(L) = 0 and since L, is simply connected, it
follows from the Hurewicz theorem that L., is s = 2-connected. Therefore, as now
n+1 < r+4+s = (n—1)+42, the quotient map induces an isomorphism 7,41 (L/n, L<,) =
Tuit (L/n)/Ln).

1.3. Case Studies of Compression Rigid Categories

ProPOSITION 1.3.1. A morphism
F= ([f]v [fn]a [f/?’l], [f<n]) : (Ka K/n7 hK7K<n) — (La L/na hLaL<n)
in HoCW~_,, is n-compression rigid if either n = 3 and L' = pt, orn > 4 and
im(m, (L™, L") — 1, (L") Nker(m, 1 (L1 — w1 (L™, L772)) = 0,

(The latter condition is in particular satisfied when m,_1(L""?) =0.)
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PRrROOF. Let ¢1,92 : K<, = L., be two cellular maps such that the square

K/n % K_,
fin 9i

L/n 47;% L<n

commutes up to homotopy rel K™~! for i = 1,2. By Remark 1.1.7, the n-segmented
space L/n can be written as a wedge sum

L/n =Ly V\/ Sk
B
The essential ingredient that facilitates the proof is the canonical retraction

r:L/n— Loy, rip, =1,
which maps the spheres Sg to a point. Then

irg1 =~ (f/n)ix ~irgs
rel K"~! and thus
g1 =TriLgr ~ripgs = g2
rel K", By Proposition 1.1.34, F is n-compression rigid. |

PRrROPOSITION 1.3.2. Let K be a simply connected CW-complex having precisely
one n-cell. Then any morphism F : (K,K/n,hix,K.,) = (K,K/n,hx, K<) in
HoCW-_,, is n-compression rigid.

PROOF. Any homomorphism Z — G, where G is a torsion-free abelian group, is
either zero or injective. Thus the boundary operator 9, : Cp,(K) = Ze™ — Cy—1(K)
is either zero or injective. By Corollary 1.2.7, F' is n-compression rigid. O

PropPOSITION 1.3.3. If M is a closed, simply connected n-manifold with one n-
cell, then any morphism F : (M, M/n,hyr, M<y,) — (L, L/n,hy, L<y) in HOCW S .,
18 m-compression rigid.

PROOF. Since M is simply connected, it is orientable and thus H,,(M) = Z. On
the other hand H,(M) = Z,(M). The boundary operator 0, : C,,(M) = Ze™ —
Cp—1(M) is either zero or injective. If it were injective, we would reach the contra-
diction 0 = Z,(M) = H,(M) =2 Z. Thus 9, = 0 and F is n-compression rigid by
Corollary 1.2.7. O

ProprosiTION 1.3.4. If M and N are closed, simply connected 4-manifolds, each
having one 4-cell, then for any n > 3, any morphism F : (M, M/n,hy, M<,) —
(N,N/n,hy,N<yp) in HoOCW 5, is n-compression rigid.

PRrROOF. For n > 5, there is of course nothing to show since then M = M_,,
N = N_,. For n = 4 the assertion follows from Proposition 1.3.3. Let n = 3. Since
N is orientable, Poincaré duality implies H3(/N) = 0. Consequently, the sequence

Cy(N) 25 O3(N) 25 0y(V)

is exact. By the proof of Proposition 1.3.3, 94 = 0. By exactness, 05 is injective. By
Corollary 1.2.7 (2), F' is 3-compression rigid. a
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Let CWj5_, be the full subcategory of CW, -5 whose objects are those pairs
(K,Y) for which the cellular boundary map 9,, : C,,(K) — C,,_1(K) vanishes. By
Corollary 1.2.7 (1), CWj_, is an n-compression rigid category. For objects in this
category, the cellular subgroup Y is uniquely determined, namely Y = 0. Many spaces
that arise in the intended fields of application for the truncation machine are objects
of CWj_,:

PRrROPOSITION 1.3.5. Let X be a complex algebraic 3-fold. Then the link of an
isolated node in X is an object of CWy_ for all n.

PROOF. Such a link is homeomorphic to 52 x 3. O

1.4. Truncation of Homotopy Equivalences

The following proposition asserts that the truncation of a homotopy equivalence
is again a homotopy equivalence without requiring any compression rigidity assump-
tions.

ProOPOSITION 1.4.1. Let f: (K,Yk) — (L,Yr) be a morphism in CW 5 with
f: K — L a homotopy equivalence. Then

t<n(f) : t<n(K7 YK) — t<n(LaYL)
is an isomorphism in HoCW, that is, represented by a homotopy equivalence.

PrROOF. We will use the natural transformation emb,, : to, — t<o from The-
orem 1.1.41. The induced maps emb, (K, Yk ). : Hy(t<n(K,Yk)) — H.(K) and
emb,, (L, YL)x : Hy-(t<n(L,Y1)) = H,-(L) are isomorphisms for » < n. The commuta-
tive diagram

tn (K, Vie) S0 BY) pe 4 (K, V)

ten(f) t<oo(f)=[f]

t<n (L, YL) emb,, (L,YL)

induces a commutative diagram on homology:

emb,, (K,Yk )«
Hy(ton (K, Yic)) S22 tETI0y

L=t (L,YL)

H,.(K)

t<n(f)* = f*

emb,, (L,YL )«
Hy(ten(L,Yy)) 2on Y0 gy ()

If r < m, then emb,, (K, Yk). and emb,, (L, Y7, ). are isomorphisms, whence t,(f). is
an isomorphism. If r > n, then both H,(t<,(K,Yx)) and H,(t<,(L,YL)) are zero
so that t<,(f)« is an isomorphism in this range as well. Thus ¢, (f) is represented
by a map between simply connected CW-complexes which is an H,-isomorphism and
hence a homotopy equivalence by Whitehead’s theorem. (]

Caveat: In the situation of Proposition 1.4.1, one may not infer that 7., (f) =
(If), 1f"], If /n), [f<n]) is an isomorphism in HOCW_,,. For one thing, f was only
assumed to be a homotopy equivalence, not a homotopy equivalence rel K™~ 1. Even
if we made the assumption that f be a homotopy equivalence rel K™~!, it does not
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in general follow that f™ is an equivalence. For example, let f : D"*! — D"*! be
the map obtained by radially extending a map of degree 2 from dD"+! to 9D"1!,
(Here, D"*1 has the CW-structure D" = e®Ue™ Uy e"*1.) The (n — 1)-skeleton of
D™+ is a point and f is a homotopy equivalence rel this point. However, f* = f| :
0Dt — 9D™*! is not an equivalence, since it has degree 2. Thus it is interesting to
observe that, while the intermediary components f™ and f/n of a morphism do not
preserve the property of being an equivalence, this property is preserved by the final
component f.,.

1.5. Truncation of Inclusions

In view of the fact that, up to homotopy equivalence, every map is an inclusion,
it is worthwhile to investigate when an inclusion can be compressed into the spatial
homology truncations of its domain and codomain. Here, we are starting with a
“naked” inclusion map, not a morphism in CW,~5 whose underlying map is an
inclusion. The goal is to state conditions under which an inclusion can be promoted
to a morphism in CW,,55. The desired compression is then obtained by applying
t<n to the morphism.

PrOPOSITION 1.5.1. Let K be a simply connected CW-complex and L C K a sim-
ply connected subcomplex. If H,_1(L) is free abelian, then the subcomplex-inclusion
f: L — K is compressible into spatial homology n-truncations of L and K.

PROOF. Let B,_;(L) =imdF and B,_;(K) = im dX be the (r — 1)-dimensional
boundaries in L and K, respectively. Let s : B,_1 — C,(L) be a splitting of
oL . C,(L) - B,_1(L), 0ks = id. Let u : B,_o — C,_1(L) be a splitting of
oL ||:Cp_1(L) = Bn_2(L). The image of u determines a decomposition C,,_(L) =
Zn—1(L)®Yy—1 with Y,,_y = im(u). If H,_1(L) is free then the short exact sequence

0— anl(L) — anl(L) — anl(L) —0
splits and Z,,_1(L) = Bp_1(L)® H, H = H,,_1(L). Thus C,,_1(L) = Bp_1(L)® P
with P=H®Y,,_1. Let R C C,,_1(K) be the subgroup generated by all (n — 1)-cells
of K — L. It follows that

Cp-1(K)=Cp1(L)® R=B,1(L) ® PO R.
If A® B and A’ are subgroups of some abelian group and A C A’ then the formula
(A B)nA'=Aa (BnA)
is available. It implies that

anl(K) = anl(L> 3] (P + R) N anl(K)
- Bn—l(L) S Qa

since Bp_1(L) C B,-1(K), and where @ = (P + R) N B,_1(K). Since @ is free
abelian as a subgroup of the free abelian group C,,_1(K), we can choose a basis {¢, }
for Q. Since Q C B,_1(K), every g, is a boundary, ¢, = 0K (ka), ka € Cn(K).
Define a map t: Q — C,(K) by

t(z AaiGa;) = Z Aa;ka-

Let 0 : B,,—1(K) = Cy(K) be the map given by
o(l+q) = s(l) +t(q), L € Bua(L), ¢ €Q.
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Then o splits 0X| : C,,(K) — B,,_1(K) because

O o(l+ 3 Aata,) = 0y s(l) + 055 t(32; Aaida,)
af{s(l) + 875 21 )‘041’ koéi

l + 21 )\Qia’r{,((kai)

=1 + Zz )\aiqai'

Set Yz, = im(s) and Yx = im(o) so that C, (L) = Z,(L)® Yy, Cr(K) = Z,(K) & Yk.
Ify e Y, say y = s(l), ] € Bp,_1(L), then o(l) = s(I) = y so that y € Y. Hence,
the chain map f. : Cp(L) — C,(K) induced by the inclusion f : L — K maps
f+(YL) C Yk . This means that with these choices of Yz, and Yk, f can be regarded
as a morphism f : (L,Yy) — (K,Yk) in CW,55. Thus t.,(f) is defined and yields
the desired truncation t<,,(f) : t<n(L,YL) = t<n(K, Yig). O

1.6. Iterated Truncation

When you follow a truncation by a truncation in a lower degree, the resulting
space is homotopy equivalent (rel relevant skeleton) to the result of truncating right
away only in the lower degree.

PrOPOSITION 1.6.1. Let n > m > 3 be integers, K a simply connected CW-
complex and (K,Y,) € ObCW 55, (K,Y,,) € ObCW,,,~9. Then

t<m(t<n(K7 Yn)u Ym) = t<m(Ka Ym)
in HoCW,,,_1.

PROOF. In the pair (K,Y,,), the second component Y, is a subgroup Y,, C C,,(K),
and in the pair (K,Y,,), Y, C Cp(K). Carrying out the inner truncation, we obtain a
space t<n(K7 Yn) = K<n7 where 7-<n(Ka Yn) = (K7 K/’I’L, hn7K<n)a hn*zn*cn(K<n) =
Y, hn : K/n — K™ rel K" i, : K., < K/n. Since

Cr(K<n) = Cm((K<n)n_1) = Cm(Kn_l) = Cn(K)

as m < n, the pair (K.,,Yy) is indeed an object of CW,,,~9. Thus the outer trun-
cation t«p, (K<p, Yo ) is defined and yields a space t < (K<pn, Yin) = (K<pn)<m, where
T<m(K<n,Ym) N: (K<naK<n/mahnm7 (K<n)<m)a hnm*inm*om((K<n)<m) = Y,
hnm : K<n/m — (K<n)m = K™ rel Kmil, ’an . (K<n)<m — K<n/m

The right-hand side truncation yields t<,,(K,Y;,) = K<, where 7, (K,Y,,) =
(K, K/m, b, Ken)y hansimsCon(Kem) = Yo, hn @ K/m — K™ rel K™ i, -
Ko — K/m. Since (K.,)™ = K™, we may regard h,, as a homotopy equivalence
Bom : K/m — (K<,)™ rel K™=, Thus the quadruple (K., K/m, by, K<p,) is an
m-truncation structure completion of the pair (K<, Y;,). So both

(K<n7 K<n/m7 hm,s (K<n)<m) and (K<n7 K/m7 N, K<m)
are m-truncation structure completions of (K.,,Y;,) € ObCW,, 55 satisfying
hnm*inm*Cm((K<n)<m) = Ym - hm*im*cm(K<m)~

By Scholium 1.1.26, (K<) <m and K.,, are homotopy equivalent rel K™~!. Conse-
quently,

t<m(t<n(K» Yn)7 Ym) = t<m(K<n7 Ym) = (K<n)<m ~ K<m = t<m(K7 Ym)
rel K™ 1, O
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1.7. Localization at Odd Primes

Recall that CW! denotes the category of simply connected CW-complexes and
cellular maps. Let G(oqq) = G ®Z[%] denote the localization of an abelian group G at
odd primes. Let (—)(odq) CW! — CW! be the (Bousfield-Kan) localization functor
at odd primes and let loc :id — (—)(Odd) be the localization natural transformation.
The functor assigns to a simply connected CW-complex X a simply connected CW-
complex X(,qq) and to a map f : X — Y a map fodd) : X(odd) = Y(odd) such
that

loc

X ——— X(oda)

f f(oaa)

loc

Y

Y(oda)
commutes. The localization map induces natural isomorphisms

T2 (X) (0dd) = T2 (X(oda))s He(X3Z[3]) = Hi(X)(0ad) = Hi (X (0da))-
This localization preserves homotopy fibrations and cofibrations.

LEMMA 1.7.1. A homotopy between two maps f,g: X = Y induces a homotopy
between the localized maps f(oad)> 9(oda) * X(odd) = Y(odd)-

PrOOF. Let H : X x I — Y be a homotopy between f = Hy and g = H;. The
map f(oqq) is an extension of locof : X — Y(,q4) t0 X(oaq) and g(oqq) is an extension
of locog : X — Y{(oaa) t0 X(oda):

locof loco
X Yeda), X 2 Y(oda)-
loc D loc &
K o
X(odd) X(odd)

By [FHTO1, Theorem 9.7.(ii), p. 109], the homotopy locoH : X x I — Y(4q44) extends
to a homotopy X(oady X I = Y(oaq) from f(oaq) t0 grodd)- O

Thus, (=) (oda) CW! — CW! induces a functor on the corresponding homotopy
categories, (—)(odd) : HoCW' — HoCW!: If [f] : X — Y is a homotopy class
represented by a cellular map f: X — Y, then [f](oaa) := [f(oda)] is well-defined. We
define the odd-primary spatial homology truncation

#°99 CW,59 — HoCW!

to be the composition
(odd)
ten = (*)(odd) Otcen.

Explicitly, t(fsd) assigns to an object (K, Yk) in CW,,~s the localization

t(<ogd) (K,Yk) = (t<n(K,YK))(0dd) = (K<n)(o0dd)>
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where 7., (K, Yg) = (K, K/n,hg, K.,), and to a morphism f : (K,Yx) — (L,Y7)
the homotopy class

(odd)

t<n (f) = (t<nf)(odd) = [f<n](odd) = [f<n(odd)]a

where 7, (f) = ([f], [/"], [f/n], [f<n])- (Thus, this definition forgets that the original
homotopy classes were rel (n — 1)-skeleta.)

PRrROPOSITION 1.7.2. Let f : (K,Yx) — (L,Yr) and g : (L,YL) — (P,Yp) be
morphisms in CW ,55. If Hy(P) =0 and H,(P™) has finite rank, then
1&g 0 £) =15 (9) o1&V ()
in HoCW.
PrOOF. Set h = gf. If

T<n<f) = ([f]a [fn]’ [f/n]’ [f<n])7 T<n(g) = ([9]7 [gnL [g/n]7 [g<n])
and
T<n(h) = ([h]v [hn]v [h/n]v [h<n])

then g/no f/n ~ h/nrel K"! by Lemma 1.1.38. As in the proof of Theorem 1.1.39,
we obtain homotopies

iphen ~ (h/n)lK ~ipg<nf<n

rel K"~1. Let H : K., x I — P/n be a homotopy rel K"~! between iph., and
ipg<nf<n. Composition with the localization loc : P/n — P/n(,qq) yields a homotopy
locoH : Kcp X1 = P/noaa rel K™ 1 between loc 0iph,, and loc 0ipgcp f<pn. Using
the commutative diagram

1
P<n — P<n(odd)

ip 1P (odd)

P/’I’L ﬂ’ P/’I’L(odd)7

loc oH is a homotopy rel K"~ ! between iP(odd) ©10¢ hey and ip(oaq) ©10c g fon- By
the obstruction theory Lemma 1.2.1,

ip(odd)sw(loc hop,10C 9o fon) = W(ip(odd) ©10C hcn,ip(odd) ©10C g<n f<n) =

0€ C"™ (Ken x I;mn(P/n(oaa)))-

By Proposition 1.2.8, 7,11 (P/n, P<,) is all 2-torsion, whence its odd-primary localiza-
tion vanishes. Since (—)(o44) preserves homotopy fibrations, 7,4 1(P/n(odd), P<n(odd)) =
Tnt1(P/1, P<n)(0aa) = 0. Thus the exactness of

Tnt1(P/N(0dd)s P<n(odd)) — Tn(Pc<n(oda)) gy Tn(P/N(oda))
implies that ip(oqq)« is injective and hence

w(lochep,loc gen fen) =0 € C" T (Ko X I; T (Pep(oday))-
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By Lemma 1.2.1, there exists a homotopy G : K<, X I — Py (0aq) rel K" ! between
loc h,, and loc g« f<y. Consider the commutative diagrams

h<n
K<n P<n

h < n(odd)

K<n(odd) P<n(odd)

and

g<nf<n
Ken » Py

9<n(odd) f<n(oda)
K<n(odd) P<n

By [FHTO1, Theorem 9.7.(ii), p. 109], G extends to a homotopy between hy(oda)
and g<n(odd)f<n(odd)» Thus

9 (g 1) = 192V (h) = [henioan)] = [G<noaq] © [fen(oda)] = ton?(g) 0 20V (f).

O

(odd)-

Let
04 cW 55 — HoCW!

be the natural localization-followed-by-projection functor, that is, t(é)fod) (K, Yg) =

K (oaq) for an object (K,Yr) in CW,5p, and t(é)g;l)(f) = [f(oda)] for a morphism
[ (K, Yk) — (L,YL) in CW,,55. (Here, [f(oqaq)] denotes the absolute homotopy
class of f(oad), not the homotopy class rel some subspace.) Let CW?@@ be the full
subcategory of CW,,~g having as objects all those pairs (K,Y) where K has vanishing
second homology, i.e. is 2-connected, and H,,(K™) has finite rank.

THEOREM 1.7.3. Let n > 3 be an integer. There is an odd-primary spatial ho-

mology truncation functor t(<02d) : CW?Da — HoCW! together with a natural
transformation embg)dd) : t(é)gd) — t(é)god) such that for an object (K,Y) of szoav

one has Hr(t(fsd) (K,Y)) =0 forr>mn, and

embCl B, (190 (K, V) =5 H,(K;Z[])
is an isomorphism for r < n.

PrROOF. The assignment t(é’sd) is a functor by Proposition 1.7.2. The natural

transformation
embglOdd) : t(é’sd) — t(fgod)

is defined by localizing emb,,:

emb(® (K, Yic) = (emb, (K, Yi))(oaq) : t eV (K, Vi) — 199V (K, Yi),
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where emb,, (K, Yk) : t<n(K,Yrx) — K. Given a morphism f: (K,Yx) — (L,Y) in
CW?DQ, the square

tn (K, Yie) S22 BY) pe 4 (K, V)

ten(f) [f]=t<oo(f)

emb,, (L,YL)
[

t<n(L;YL) L:t<OO(L7YL)

commutes in HoCW,,_1, hence in HoCW!. So its localization

(emby, (
(t<n (K, YK))(0dd)

K,YK))(odd) K( aa)
(o]

(t<n(f))(oada) [foaa)]

(emb,, (L,YL)) (o

(t<n(L,YL))(0da) L)
commutes in HoCW?. Consequently, embsLOdd) is a natural transformation. Given
an object (K,Y) in CW2-,, let (K,K/n,h,K<,) = 7<n(K,Y). By definition of
emb,, (K,Y), the diagram

> L(oda)

emb,, (K,Y)

t<n(Ka Y) = K<n K= t<oo(K7 Y)

lix] [ix]

[h] . K

K/n
commutes in HoOCW,,_1, hence in HoCW!. Thus its localization

emb(® (K Y)

K <n(0da) K (oaq)
[Pk (odd)] [Jx (0da)]
[h(oda)) n
K/ (oaa) K(oaa)

commutes in HoOCW'! and the induced map on homology,
embC (K, Y) 1 H, (190 (K, Y)) = H, (K (oaa)),

factors as

h(odd)=

HT‘(K<’VL(Odd)) Kﬂ)* HT(K/n(odd)) — H’F(K(Tz)dd)

) JK (odd)*

H,. (K (odq))-

For r < n, this is an isomorphism, since then each of the three maps
Ho(K<n) 25 H(K/n) 25 H(K™) 2% H,(K)

is an isomorphism, whence each of the three maps

i ®id o
Ho(K<n)oday — —"" H.(K/n)(oaa)

h.®id(oaa Ik« ®id(oaa
(o )Hr (odd)

(K™)(0da) H,-(K)(oda)
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is an isomorphism and the localization diagram

1K (odd)* R(odd)« JK (odd)*

Hy (K < (0dd)) H,.(K/n(aa)) HT(K(Tde)) H, (K (odq))
i ®id (o By ®id(o Gr«®ideo
Hy (K <n)odd) =+ Hr(K/n)oaa) =2+ Ho(K")oaa) ==+ Hr(K)(oaa)

commutes. For r > n,

H,(t5V (K, Y)) = H,(K<n)(odd) = O(oda) = 0.

1.8. Summary

Let us summarize spatial homology truncation as developed in the previous sec-
tions by displaying all assignments and functors constructed, together with all relevant
categories, in one picture:

CWQC CWlC Cw()( CW
forget forget T
Wiy OW,0y
E : . quot
: IREEN
t<n HOCWD<n f Rigid
0 v W
HoCW! ¢ HoCW? ,C >~ HoCW,,_;
\L forget l/ forget forget
HoCW?——— HoCW ¢ HoCW’——— HoCW

Arrows of the form < signify “full subcategory”. The forgetful functor CW,~5 —
CW! sends an object (K,Y) to the simply connected space K and forgets the ad-
ditional structure Y. This functor is surjective on objects and faithful, but not full.
Dashed arrows mean assignments of objects and morphisms that need not be func-
tors, whereas all fully drawn arrows are functors. The functor CW — HoCW,,_; is
the natural quotient functor that is the identity on objects and sends a cellular map
to its rel (n — 1)-skeleton homotopy class. The category Rigid is any n-compression
rigid subcategory of CW,,5g, which need not be full. The arrow Rigid - CW -5
is the inclusion functor. The forgetful functor HoCW,,_; — HoCW is the identity
on objects and sends a homotopy class rel (n — 1)-skeleton to the absolute homo-
topy class of a representative map and thus forgets that the original class was rel
(n —1)-skeleton. This functor is full but not faithful. The same holds for the functors
HoCW’ | — HoCW/, j =0,1,2,....
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1.9. The Interleaf Category

Many important spaces in topology and algebraic geometry have no odd-dimensional
homology, see Examples 1.9.4 below. For such spaces, functorial spatial homology
truncation simplifies considerably. On the theory side, the simplification arises as fol-
lows: To define general spatial homology truncation, we used intermediate auxiliary
structures, the n-truncation structures. For spaces that lack odd-dimensional homol-
ogy, these structures can be replaced by a much simpler structure (see Definition
1.9.6). Again every such space can be embedded in such a structure, see Proposition
1.9.7, which is the analogon of Proposition 1.1.6 for the general theory. On the ap-
plication side, the crucial simplification is that the truncation functor t., will not
require that in truncating a given continuous map, the map preserve additional struc-
ture on the domain and codomain of the map. Recall that in general, ¢, is defined
on the category CW,, 59, meaning that a map must preserve chosen subgroups “Y”.
We have seen that such a condition is generally necessary on maps, for otherwise no
truncation exists. So what we will see in this section is that arbitrary continuous maps
between spaces with trivial odd-dimensional homology can be functorially truncated.
In particular the compression rigidity obstructions arising in the general theory will
not arise for maps between such spaces.

DEFINITION 1.9.1. Let ICW be the full subcategory of CW whose objects are
simply connected CW-complexes K with finitely generated even-dimensional homol-
ogy and vanishing odd-dimensional homology for any coefficient group. We call ICW
the interleaf category.

EXAMPLE 1.9.2. The space K = 52 U, €2 is simply connected and has vanishing
integral homology in odd dimensions. However, Hs(K;Z/2) = Z/2 # 0.

LEMMA 1.9.3. Let X be a space whose odd-dimensional homology vanishes for any
coefficient group. Then the even-dimensional integral homology of X is torsion-free.

PRrROOF. Taking the coefficient group Q/Z, we have
Tor(Hak(X), Q/Z) = Hap11(X) ® Q/Z & Tor(Hap(X), Q/Z) = Hor41(X;Q/Z) = 0.
Thus Hay(X) is torsion-free, since the group Tor(Hax(X), Q/Z) is isomorphic to the
torsion subgroup of Hoy(X). O

ExXAMPLES 1.9.4.
(1) Any simply connected closed 4-manifold is in ICW. Indeed, such a manifold is
homotopy equivalent to a CW-complex of the form

k
\/ 522 Uy 64,
i=1

where the homotopy class of the attaching map f : S% — \/f:1 S2 may be viewed as
a symmetric k X k matrix with integer entries, as 71'3(\/2621 S2) = M (k), with M (k)
the additive group of such matrices.

(2) Any simply connected closed 6-manifold with vanishing integral middle homology
group is in ICW. If G is any coefficient group, then Hy(M;G) =2 Hi(M) ® G &
Tor(HoM, G) = 0, since Ho(M) = Z. By Poincaré duality,

0= H3(M) = H3(M) = Hom(H3sM,Z) ® Ext(HyM,7Z),
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so that Hy(M) is free. This implies that Tor(HoM,G) = 0 and hence H3(M;G) =
Hs(M) ® G® Tor(HaM, G) = 0. Finally, by G-coefficient Poincaré duality,

Hs(M;G) = HY(M;G) = Hom(H, M, G) ® Ext(HyM,G) = Ext(Z,G) = 0.

(3) Complex projective spaces are in ICW. This class will be vastly generalized in
example (5).

(4) Any smooth, compact toric variety X is in ICW: Danilov’s Theorem 10.8. in
[Dan78| implies that H*(X;Z) is torsion-free and the map A*(X) — H*(X;Z)
given by composing the canonical map from Chow groups to homology, A*(X) =
Ap—k(X) = Hop—ok(X;Z), where n is the complex dimension of X, with Poincaré
duality Hop ox(X;7Z) = H?*(X;7Z), is an isomorphism. Since the odd-dimensional
cohomology of X is not in the image of this map, this asserts in particular that
H°¥(X;Z) = 0. By Poincaré duality, Heyen(X;Z) is free and Hoqq(X;Z) = 0.
These two statements allow us to deduce from the universal coefficient theorem
that Hoqq(X;G) = 0 for any coefficient group G. If we only wanted to establish
Hyqa(X;2Z) = 0, then it would of course have been enough to know that the canon-
ical, degree-doubling map A,(X) — H,.(X;Z) is onto. One may then immediately
reduce to the case of projective toric varieties because every complete fan A has a pro-
jective subdivision A’; the corresponding proper birational morphism X (A’) — X (A)
induces a surjection H,(X(A');Z) — H.(X(A);Z) (use the Umkehrmap) and the di-
agram

A.(X(A) — H.(X(A);Z)

A.(X(A)) — H.(X(A);Z)

commutes, see [DanT8].

(5) Let G be a complex, simply connected, semisimple Lie group and P C G a
connected parabolic subgroup. Then the homogeneous space G/P is in ICW. It is
simply connected, since the fibration P — G — G/P induces an exact sequence

1= 11 (Q) = m1(G/P) — 10(P) — m0(G) = 0,

which shows that 71 (G/P) — mo(P) is a bijection. According to [BGGT73], there
exist elements s, (P) € Hay)(G/P;Z) (“Schubert classes,” given geometrically by
Schubert cells), indexed by w ranging over a certain subset of the Weyl group of G,
that form a basis for H.(G/P;Z). (For w in the Weyl group, {(w) denotes the length of
w when written as a reduced word in certain specified generators of the Weyl group.)
In particular Heyen (G/P;Z) is free and Hoqqa(G/P;Z) = 0. Thus Hoqq(G/P;G) =0
for any coefficient group G.

The linear groups SL(n,C), n > 2, and the subgroups Sp(2n,C) C SL(2n,C) of
transformations preserving the alternating bilinear form

T1Yn+1 + -+ TnY2n — Tp+1Y1 — - — T2nlYn
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on C?" x C?" are examples of complex, simply connected, semisimple Lie groups. A
parabolic subgroup is a closed subgroup that contains a Borel group B. For G =
SL(n,C), B is the group of all upper-triangular matrices in SL(n,C). In this case,
G/B is the complete flag manifold

G/B={0cV,C---CV,_; CC"}

of flags of subspaces V; with dimV; = i. For G = Sp(2n,C), the Borel subgroups B
are the subgroups preserving a half-flag of isotropic subspaces and the quotient G/B
is the variety of all such flags. Any parabolic subgroup P may be described as the
subgroup that preserves some partial flag. Thus (partial) flag manifolds are in ICW.
A special case is that of a maximal parabolic subgroup, preserving a single subspace V.
The corresponding quotient SL(n,C)/P is a Grassmannian G(k,n) of k-dimensional
subspaces of C". For G = Sp(2n,C), one obtains Lagrangian Grassmannians of
isotropic k-dimensional subspaces, 1 < k < n. So Grassmannians are objects in
ICW.

The interleaf category is closed under forming fibrations.

ProprosITION 1.9.5. Let F, E, B be CW-complexes that fit into a fibration F' —
E — B with base B, total space E and fiber F'. If B and F are objects in the interleaf
category ICW, then so is E.

PRrROOF. Assume B, F € ObICW. Since B and F are in particular simply con-

nected, the exactness of

m(F) = m(E) = m(B)
implies that E is simply connected as well. With G any coefficient group, we will
first show that Hoqa(E;G) = 0. In degree 1, we have H1(E;G) = H1(E) @ G &
Tor(Hy(E),G) = 0 since E is simply connected. In higher degrees, the claim follows
from the spectral sequence of the fibration: Since the base is simply connected,

B, = Hy(B: Hy(F;G))
and the latter term vanishes when p is odd (as B is in ICW) or ¢ is odd (as F' is in
ICW). Since the differential d* has bidegree (—2,1), either its domain E  is zero
or else p and g are both even and its codomain E§—2,q+1 is zero because ¢ + 1 is odd.
Thus d?> = 0 and E? = E3. It follows by induction that all differentials d" are zero,
r > 2, using that d” has bidegree (—r,r — 1) and one of these two numbers must be
odd. Thus

Ez,q = Ez?;,q = 2ES.
On the other hand, E* is isomorphic to the bigraded module GH,(E; G) associated
to the filtration F,H,(E;G) = im(H,.(E,;G) — H.(E;G)), where E, C E is the
preimage of the p-skeleton of B under the fibration. We conclude that

im(Hp14(Ep; G) = Hprg(E; Q)

im(Hpq(Ep-1;G) = Hpiq(E;G))
Let n > 3 be odd. The restricted fibration F' — E,, — B™ induces an exact sequence
m(F) = m (E,) — m(B"), which shows that E,, is simply connected since n > 3
implies 7 (B™) = m1(B) = 1. Using the homotopy lifting property, we can deduce
that the pair (F, E,) is n-connected from the fact that (B, B™) is n-connected. Thus
H,(E,E,) =0 for i <n;in particular, H,(E,;G) — H,(E;G) is surjective and

Ho(B; G) = im(Hy (En; G) — Ho(E; G)).

Hy(B; Hy(F; G)) =
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Then
0 = Hy(B: Ho(F: G)) = im(H,(E,;G) — H,(E;Q))
s O T T M (Hy (Bn—1; G) — Ho(E; G))’
whence
im(H,(E,;G) = H,(F;G)) = im(H,(En,—1;G) = H,(E;Q)).
From
0= H, (B H,(F:G)) = im(H,(E,-1;G) —» H,(E;G))
T R Y T M (H,y (Ep—2; G) — Ho(E; Q)
we find

im(H,(Fn-1;G) = H,(E;G)) = im(H,(Fn,—2;G) = H,(E;Q)).

Continuing in this manner, observing that for p + ¢ = n, one of p or ¢ must be odd
and thus H,(B; Hy(F;G)) = 0, we arrive at

H,(E;G) =0.

To see that the even homology of F is finitely generated, one may for instance
argue as follows. By Lemma 1.9.3, the homology of B and F' is torsion-free, hence
free, since H,(B) and H.(F) are finitely generated. Thus all groups E2 = EX* are
free abelian and

H.(E)= P El, = P Hy(B)® Hy(F).
p+g=n ptg=n
This formula implies that H,(F) is finitely generated. |

A multitude of spaces in algebraic geometry arise via fibrations that way. Let us
give but one example. Let X be a smooth Schubert subvariety, “defined by inclusions”
in the sense of [GRO02], inside of

G/P={0CVy, CVg, C---CVy CC"},

where G = GL(n,C) and P is the subgroup that stabilizes the standard partial flag
with Vg, spanned by the first d; standard basis vectors in C™. Then, according to
[GRO2], X is fibered by Grassmannians. Since Grassmannians are in ICW, Propo-
sition 1.9.5 shows that all such smooth Schubert varieties X are in ICW.

DEFINITION 1.9.6. The moduli category M(ICW) of ICW consists of the follow-
ing objects and morphisms: Objects are homotopy classes [hg] of cellular homotopy
equivalences hg : K — E(K), where K is an object of ICW and E(K) is a CW-
complex that has only even-dimensional cells. Morphisms are commutative diagrams

K k)

I [h:]

E(L)
in HoCW . Composition is defined in the obvious way.

PROPOSITION 1.9.7. Any object of the interleaf category can be completed to an
object of the moduli category M(ICW).
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PRrROOF. Let K be an object of ICW. By Lemma 1.9.3, Ho,(K) is torsion-free.
Choose a decomposition of every homology group Hai(K) as a direct sum of infinite
cyclic groups with specified generators g. Then, by minimal cell structure theory
(which is applicable because K is simply connected; see e.g. [Hat02]), there is a
CW-complex E(K) and a cellular homotopy equivalence h’ : E(K) — K such that
each cell of E(K) is a generator 2k-cell ef]k, which is a cycle in cellular homology
mapped by f to a cellular cycle representing the specified generator g of one of the
cyclic summands of Hog(K). (There are no relator (2k + 1)-cells since no g has finite
order.) Thus E(K) has only even-dimensional cells. Let [hx] be the inverse of [h/]

in HoCW. O

REMARK 1.9.8. Since objects K in ICW have finitely generated homology, the
space E(K) is a finite CW-complex.

With the help of this proposition, we construct a functor

M :ICW — M(ICW).
Given an object K in ICW  use Proposition 1.9.7 to choose, once and for all, a cellular
homotopy equivalence hi : K — FE(K) representing an object [hx]| in M(ICW). In
addition, choose, once and for all, a cellular homotopy inverse h’ : E(K) — K for
hi. (If K already has only cells of even dimension, then we take hx and b/, to be
the identity maps.) Set
M(K) = [hr].

Let f : K — L be a cellular map. If f is the identity map, set E(f) = [idgx)]-
Otherwise, set

E(f)=M(L)o[flo M(K)™': E(K) — E(L).

Define
K @. BE(K)
M(f)= (] E(f)
I MLL) B(L)

This is a morphism in M(ICW) as E(f)o M(K) = M(L)o[flo M(K) o M(K) =
M(L) o [f]. We have M (idx) = idps(x) and for a composition

K-Lrp-%p
we compute
E(g) o E(f) =

I
S8R
=555

This shows that
M(gf) = M(g)M(f),
so that M is indeed a covariant functor. Next, we shall construct a preliminary

truncation functor
T<p : M(ICW) — HoCW
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for any integer n. If n < 0, then we define T, on objects to be the empty space,
which is the initial object of HOCW. On morphisms, T, is defined as the unique
morphism from the initial object. We will henceforth assume that n is positive. On
a class of a homotopy equivalence h : K — E(K), we set

Tenlh) = E(K)",
the (n — 1)-skeleton of E(K). If E is any space without odd-dimensional cells, then

H.(FE) = C,(E), the cellular chain group in degree r, since all cellular boundary maps
are zero. Thus for r < n,

H,(T<n[h]) = Co(BE(K)"™) = CH(E(K)) = Hy(E(K))
while for r > n,
HT(T<n[h]) = CT(E(K)H_I) =0.
This shows that T, implements spatial homology truncation on K. Let F : [h1] —
[h2] be a morphism in the moduli category, that is, F' is a diagram

K 2 p(K)
er
L ", B

Choose a cellular representative fy for the homotopy class er and put

n—1
Ten(F) = [B(K)"™ " B(L)")
The following lemma shows that this is well-defined.

LEMMA 1.9.9. Let fo, f1 : E(K) — E(L) be two cellular maps. If fo ~ f1, then
P
PRrROOF. Let H : E(K) x I — E(L) be a cellular homotopy with H(—,0) = fo
and H(—,1) = f;. We will distinguish two cases according to whether n is even or
odd. Suppose n is even. Since H is cellular, it restricts to a map H| : (E(K) x
"=t — E(L)"~! between (n — 1)-skeleta. The (n — 1)-skeleton of E(K) x I contains
E(K)"=2 x I, so that further restriction yields

H|:E(K)"?x1— B(L)" .
Since n — 1 is odd, we have E(K)"~! = E(K)"~2. Thus
H|:BE(K)" ' xI— B(L)"*

is a homotopy from fg_l to f{ 1.

Now assume n is odd. In this case, we restrict H to the n-skeleton to get H] :
(E(K) x I)™ — E(L)", and, by restricting further,

H|: E(K)" ' xI— E(L)".
Since n is odd, we have E(L)" = E(L)"~!. Thus
H|:E(K)" ' xI— E(L)"!

is a homotopy from f&'~* to f*~*. a
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We have T<,(idj)) = idg.,p). Furthermore, if G : [hy] — [hs] is another mor-
phism

L ", B
(’G—[go]
p " pp)

in M(ICW), then
Ten(G) o Tn(F) = g5~ o [f57'] = [(90f0)" "] = T<n(G o F),

since go fo is a representative of eqger. Hence T, is a functor.

Define the functor
ten : ICW — HoCW

to be the composition

Icw . M(ICW)

Ten

HoCW.

Let to oo : ICW — HoCW be the natural “inclusion-followed-by-quotient”-functor,
that is, for objects K set t(K) = K and for morphisms f set t<o(f) = [f]. There
is an important natural transformation of functors

embn : t<'IL — t<007

which we shall describe next. Given an object K of ICW, define emb,,(K) to be the
composition

[incl]

ten(K) = E(K)" E(K)
) ~ | M(K)™?
02
K

incl
n—1 —

(Note that emb, (K) has a canonical representative in CW, namely E(K)
h/

E(K) —% K.) Given a morphism f : K — L in ICW, we have to show that the

square

emb,, (K
ton(K) 2By (K

t<n(f) t<oo(f)

emb,, (L
t<n(L) <

teoo(L)
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commutes in HOCW. Using the morphism M (f), given by the commutative diagram

K = E(K)
1 E(H=M(L)o|floM(K)™*
L ML) E(L),

let fo be a cellular representative of E(f), for example fo = hy = f = h), and
consider the diagram

. —1
E(K)nil [incl] E(K) M(K) K
ten(£)=[£3"" [fo]=E(f) [f1=t<oo(f)
. —1
E(L)nil [incl] E(L) M(L) I

The left square commutes in HoOCW by construction and the right square commutes
in HoCW since

M(L)"'oB(f) = M(L)" "o M(L)o[floM(K)™" = [floM(K)™" = teoo(f)oM(K)™".

Thus emb,, is a natural transformation.

Let us move on to implementing functorial spatial homology cotruncation on the
interleaf category. Given an object K in ICW | we have the homotopy inverse cellular
homotopy equivalences hy : K = E(K) : hY;. If n <0, then t>,, : ICW — HoCW
will be the identity on objects and will be defined as ¢t>,(f) = [f] for morphisms
f+ K — Lin ICW. We will henceforth assume that n is positive. Define

ton(K) = E(K)/E(K)"™,

that is, t>,(K) is the cofiber of the skeletal cofibration E(K)"~! < E(K). Given a
morphism f : K — L in ICW, the morphism M(f) is represented by the homotopy
commutative diagram

K —" . B(K)
f fo:hLOfoh/K
L—" . B,

[fo] = E(f). The square
E(K)" ! — E(K)

fot fo

E(L)"! —— E(L)
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commutes in CW. Thus f; induces a unique map
?0 : th(K) — tzn(L)
between the cofibers such that
E(K)" ! —— E(K) — t>n(K)

ot fo fo

E(L)"! —— BE(L) — t>n(L)
commutes in CW. We define

(Note that we do not have to prove that this is well-defined, since no choices have
been made: the map fj is at this point a canonical representative of the homotopy
class E(f).)

LEMMA 1.9.10. Let h: X = Y be a continuous map between topological spaces.
Let ~ be an equivalence relation on X. Then there exists a unique continuous map
h: X/~ =Y such that

X/~
commutes iff h(z) = h(z") whenever x ~ z’.
LEMMA 1.9.11. Let Ey, Ey be two CW-complexes without odd-dimensional cells.

Ifg,h: Ey — E3 are two homotopic cellular maps, then g and h are homotopic, where
G,h: E1/EF — Ey/EY are induced by g and h, respectively.

PROOF. Let H : E; x I — E5 be a cellular homotopy with H(—,0) = ¢g and
H(—,1) = h. Since both E; and E> have only even-dimensional cells, we have
H(EY x I) C ES.
(The details of that argument can be found in the proof of Lemma 1.9.9.) We shall
apply Lemma 1.9.10 with X = By x I, Y = FEy/EX, and h given by the composition
x L By, 5 By EE,

where 7 is the natural quotient projection. The equivalence relation ~ on X is given
as follows: (e,t) ~ (¢/,t') iff t = ¢ and either e, e’ are both in EF, or, if not, e = ¢’
It follows that X/ ~ = (E;/E¥) x I. Suppose (e, t) ~ (¢/,'). Let us check that then
h(e,t) = h(e’,'). We have t = t' and if one of e, e’ does not lie in E¥, then e = ¢’ so
that (¢/,#') = (e,t) and therefore h(e’,t') = h(e,t). If e,e’ both lie in E¥, then both
H(e',t) and H(e,t) lie in E5. Thus, in this case,

h(e',t') = nH(e ,t) = [EY] = mH(e,t) = h(e,t).
Hence, by Lemma 1.9.10, there exists a unique map
H: (B /JEfYxI=X/~—Y = Ey/E}
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such that
E1 x I E2
(E,/E¥) x I s By /EE
commutes and H(—,0) =g, H(—,1) = h. 0

PRrROPOSITION 1.9.12. For an object K in ICW, we have
tzn(id}() = idth(K)
in HoCW.

PROOF. The morphism M (idg) is represented by the homotopy commutative
square

K —" . B(K)
idg fo=hkoh'y
hi
K E(K).

~

Since hx and h are homotopy inverses, we have fy ~ idg(x). By Lemma 1.9.11,
fo 'zjdE(K) : B(K)/E(K)"! - E(K)/E(K)""'. As E(K)/E(K)"™! = t>,(K)
and idg(x) = id., k), we obtain

tzn(idK) = [fO] = [idtzn(K)]'
(]

PropoOSITION 1.9.13. Given morphisms f: K — L and g : L — P in ICW, the
functoriality relation

t>n(go f) =t>n(g) ot>n(f)
holds in HoCW.

Proor. With
fo=hoflk, go=hpgh,
and
(9f)o = hpgfhY,

we must show

[(9£)o) = o] © [fol-
The maps (gf)o and go fo are homotopic, as

[90fo] = [hpghhr fhy] = [hpgfhi] = [(9.f)o]-
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By Lemma 1.9.11, (g9f), =~ gofo- Furthermore, since the square

E(K) — t>p(K)

go fo go fo goofo

E(P) —— t>n(P)
commutes if we use go fo and if we use gg o fo, uniqueness implies that

gofo =30 ° fo.

We conclude that (gf), is homotopic to gg o fo, as claimed.
Propositions 1.9.12 and 1.9.13 show that
t>n : ICW — HoCW
is a covariant functor. Let us describe a natural transformation of functors

Pro, :tcoe — t>n.

Given an object K of ICW, define pro,, (K) to be the composition

teo(K) = K — M5 | p(k)

Lrg [proj]
, (fr‘)

E(K)/E(K)"™! = t>n(K)
(Note that pro,, (K) has a canonical representative in CW, namely

K % B(K) 2 B(K)/B(K)" 1)
Given a morphism f : K — L in ICW, we have to show that the square

t<oo(K) pro,, (K)

t>n(K)
t<<>0(f) tzn(.f)
ro,, (L
teno(D) 22 (L)

commutes in HoCW. With fy = hy o f o by, we have E(f) = [fo] and

E(K) — t>n(K)
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commutes in CW. Thus both squares of the diagram

M(K)=[h
teno(K) = K PO, pgey ot (K)
t<oo (f)=[f] E(f)=[fo] [fol=t>n(f)
M(L)=[h
teoo(L) = L B2 ) - t5n(L)

commute in HoCW. Thus pro,, is a natural transformation.

PROPOSITION 1.9.14. The functor t>,, implements spatial homology cotruncation,
that is, if K is an object of ICW, then

pro,, : H.(K) — H,(t>,(K))

s an isomorphism for r > n and ﬁr(th(K)) =0 forr <n.
PROOF. Since (E(K), E(K)" 1) is a CW pair, the inclusion E(K)" ! — E(K)
is a closed cofibration, whence
H.(t>n(K)) = H(E(K)/E(K)"™") = H.(BE(K), E(K)"™").
For r < n, the exact sequence
H (BE(K)"™ ") =5 H(B(K)) - Hy(tsn(K)) 2= H,_(B(K)"™") =5 H,_1(E(K))

of the pair (E(K), E(K)"') shows that H,(t>,(K)) = 0. For r = n, the commuta-
tive diagram with exact top row

0=H (E(K)""") — Ho(B(K)) ™% H,(tsn(K)) 2 H,_(B(K)"") > H,_1(E(K))

M(K). | = Qp*
O
H,(K)
shows that proj,, and hence pro, (K)., is an isomorphism. For r > n, the claim
follows from the exactness of the top row and the commutativity in the diagram

0= H,(B(K)"™") — H,(E(K)) 2% H,(t,(K)) 2 H,_(E(K)") = 0.

1.10. Continuity Properties of Homology Truncation

Continuity of homology truncation refers to the question whether ¢, (f) is close
to t<n(g) when f is close to g in the compact-open topology. Here, t.,(f) and
t<n(g) denote particular representatives of the homotopy classes ., (f) and t,(g),
respectively. Our motivation for studying this question is the intention to apply
the answers obtained in setting up fiberwise homology truncation, see Section 1.11:
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Suppose E — B is a fiber bundle with fiber F', structure group G(F'), and continuous
transition functions gng : Us N Ug — G(F'), where {U,} is an open cover of B
over which the bundle trivializes. Let G(t<,F') be a topological group acting on the
truncation t., F of the fiber. Continuity of #.,, would ideally mean the existence of
a continuous homomorphism 7, : G(F) = G(t<,F) such that

Fr—2 >p

]

ten ' ——t, F
7n(9)
commutes for all g € G(F). Whenever such a 7, exists, it can be used to form a fiber
bundle ft., F — B, the fiberwise truncation of E, with fiber t.,F and structure
group G(t<,F') by gluing via the transition functions 7,, 0 gog : Uo NUg = G(t<, F).
The fact that 7,, is a group homomorphism ensures that the cocycle condition is
again satisfied for the system {7, o gog}. Techniques in this direction will enable
one to define intersection spaces for classes of pseudomanifolds that have nontrivial,
twisted link bundles. On the other hand, it is to be noted that a fiberwise homology
truncation

F E B

t<nF —_— ft<n E —_— B

cannot generally be carried out for any fibration and any n because the morphism
of the associated Serre spectral sequences induced by e, together with Hy(t<,F) —
H,(F) being an isomorphism for ¢ < n and H,(t<,F) = 0 for ¢ > n, places re-
strictions on the differentials in the spectral sequence of £ — B. Thus, suitable
assumptions on the fibration need to be adopted.

For topological spaces X and Y, let Map(X,Y") denote the set of all continuous
maps X — Y. We endow this set with the compact-open topology. If X is a lo-
cally compact, locally connected Hausdorff space, then the subspace Homeo(X) C
Map(X, X) consisting of all homeomorphisms X — X is a topological group, see
[Ared6]. If X and Y are CW-complexes, let Map (X, Y) C Map(X,Y) denote the
subspace of all cellular maps and let Homeocw (X) C Homeo(X)NMap (X, X) de-
note the subspace of all homeomorphisms that are cellular with cellular inverse. The
space Homeocw (X) is a group under composition. Any CW-complex is Hausdorff
and locally path connected, in particular locally connected. It is locally compact if,
and only if, each point has a neighborhood that meets only finitely many cells. Thus
for a finite CW-complex X, Homeo(X) is a topological group. Every subgroup of
a topological group is itself a topological group when given the subspace topology.
Hence Homeocyw (X) is a topological group for a finite CW-complex X. A fiber bun-
dle with fiber F' a priori has structure group Homeo(F'). Let us mention but one
example class that allows the structure group to take values in Homeocyw (F).

ProroSITION 1.10.1. Suppose F' is a smooth, compact manifold and & a smooth
fiber bundle with fiber F' and finite structure group G. Then the transition functions
of € take values in Homeocw (F) for a suitable CW-structure on F.
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PRrROOF. The fiber F is a smooth G-space. By [I1178], F is a G-CW-complex. For
a finite group, a G-CW-complex is the same thing as an ordinary CW-complex with
a cellular G-action. The latter means that G permutes the cells of F'; in particular,
G acts by cellular homeomorphisms that have cellular inverses and the map G —
Homeo(F') factors through a map G — Homeocw (F). O

Here is one way how bundles with finite structure group arise:

PrOPOSITION 1.10.2. Let G be a Lie group and B a smooth path-connected man-
ifold with finite fundamental group. Then any G-bundle over B having a connection
with curvature zero (“flat” bundle) can be reduced to a finite structure group.

PrOOF. By [Mil58, Lemma 1], the G-bundle ¢ is induced from the universal
covering bundle ¢’ with projection B — B (a 7 = m1(B)-bundle) by a homomorphism
h :m — G. This means that the transition functions g;; : U; N U; — G of £ are
gij = hgi;, where g, : U; N U; — m are the transition functions of ¢’. Thus the g;;
take values in the holonomy group im(h) C G, which is finite, since 7 is finite. (]

For a topological space X, let G(X) C Map(X, X) be the subspace of all (un-
based) self homotopy equivalences of X. If X is compact and has the homotopy type
of a finite CW-complex, then G(X) is a grouplike topological monoid under compo-
sition of maps, see [Fuc71]. In other words, G(X) is a strictly associative H-space
with strict unit and a global homotopy inverse, i.e. a map v : G(X) — G(X) such
that the composition

G(X) 25 G(X) x G(X) LY G(X) x G(X) 25 G(X)
is homotopic to the constant map at idx, where u is the composition of maps. Let
G[X] = moG(X) denote the group of homotopy classes of self homotopy equivalences
of X.

Let K be an object of the interleaf category with finitely many cells and n an
integer. To avoid a discussion of trivialities, we assume that n is positive. The functor

ten : ICW — HoCW
assigns to a homeomorphism f € Homeocw (K) a morphism
t<n(f) . t<nK — t<nK7

which is the homotopy class of some cellular map ¢. This ¢ is a homotopy equivalence
because the functoriality of ¢, implies that any representative of ¢, (f~!) is a ho-
motopy inverse for t. Thus t € G(t<, K) and t,(f) = [t] € G[t<,K]. The functor
t<n thus defines a map

t<n : Homeocw (K) — Gt<, K].

By the functoriality of ¢.,,, this map is a group homomorphism. We wish to construct
a continuous lift
G(t<nK)

ten 7 l/

t<n

Homeocw (K) ——— Glt<n K]

which will in fact be an H-map, but not in general a monoid homomorphism. (Note
that G(t<,K) is indeed a grouplike topological monoid because E(K)" 1 = t_,(K)
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is a finite CW-complex by Remark 1.9.8.) Recall that we had associated homotopy
inverse homotopy equivalences

hig : K = E(K) : h)y
with K. The CW-complex E(K) has only even-dimensional cells and we have
tenK = BE(K)"!

Set
t<pn : Homeoow (K) — G(t<nK)
f = (hgofohl)" L
Since
[(hxc o f o B )" = ten(f),

the map t,, is indeed a lift of t.,,. It is not only continuous, but also respects, up to
homotopy, the monoid multiplication:

THEOREM 1.10.3. The map t,, is an H-map.

PROOF. Let Q : K x I — K be a cellular homotopy from Q(—,0) = h’ o hi to
Q(—,1) = idg. By cellularity, Q@ maps K"~ x I C (K x I)" to K™. Let us denote
this restriction by Q" : K"~ x I — K". We will study the maps

H(f,g,t) = hkg"Q"(— )" 'he "t B(K)" ™ — E(K)"

where f,g € Homeocw (K) and ¢ € I. The following properties will be established
for H:

(1) H(faga ) - t<n )t<n(f)7

(3) H(faga )(t<n ) C t<nK

(4) H(f,g,t) : t<n K — t, K is a homotopy equivalence.

It follows from (3) and (4) that H is a map

H : Homeocw (K) x Homeoow (K) X I — G(t<, K),

We will then show that
(5) H is continuous.
Thus H will be an explicit “sputnik homotopy” in the terminology of Stasheff.

(1): We have

Q"(—,0) = Qlxn-1xj0y = Wchi|gn— = W 0"
and
h?(gnhlﬁ_l _ hr;{—lgnflthn—l'

Thus

h%gnQn(T’o){n—lh/ﬁfl )

S L
Wit U
(hxgh)" (hic fR )"

= t<n(g)t<n(f)~

H(f,g,0)
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(2): Holds since
H(f,9,1)

hjeg"Q (= ) hig ™
g il e J 3R
h}l(—lgnflfnfl h’;—l
(hrgfhy)""
= tenlgf)

(3): We distinguish two cases according to whether n is even or odd. For n even,
EK)" ! =E(K)" 2 Let Q"' : K" 2 x I — K" ! be the restriction of Q™. The
commutative diagram

h/n—l fn—l Q”(—,t) gn h}l(

E(F)n—2 K K2 K1 Kn—

shows that for n even,
H(f.g,t) =johi g" Q" (= t)f"2hig ™
and so has an image that lies in E(K)"! =t_, K.

For n odd, the statement follows from H(f, g,t)(E(K)"" 1) C BE(K)" = E(K)""!.

(4): Keeping f and g fixed, H(f, g, —) defines a homotopy H(f,g, —) : t<n K xXI —
t<nK. Since H(f,g,1) = t<n(gf) is a homotopy equivalence, every H(f,g,t) is ho-
motopic to a homotopy equivalence, hence itself a homotopy equivalence.

(5): We will throughout avail ourselves of the following three basic properties of
the compact-open topology:
(i))If¢: X' — X and ¢ : Y — Y/ are continuous maps, then the map
Map(X,Y) — Map(X',Y")
f= ofod
is continuous. (No point-set topological assumptions on the involved spaces.) In
particular, if A C X is any subspace of a topological space X then the restriction
map
Map(X,Y) — Map(4,Y)
fo= fla
is continuous.
(ii) If X,Y, Z are topological spaces with Y locally compact Hausdorff, then compo-
sition of maps
Map(X,Y) x Map(Y, Z) — Map(X, Z)
is continuous.
(iii) The exponential law (see e.g. [Bre93, Theorem VII.2.5)): If XY, Z are Hausdorff
spaces with X, Z locally compact, then there is a homeomorphism

Map(Z x X,Y) = Map(Z, Map(X,Y)).
The cartesian product of the continuous inclusion
Homeocw (K) — Mapoyw (K, K)

anl anl Kn Kn E(K)n

T b e ] ] s
h f 2 K"72 Q 1(_7t) g ! 1 hi E(K n
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with itself defines a continuous map
¢1 : Homeoew (K) x Homeocw (K) — Mapgy (K, K) x Mapoy (K, K).
The restriction maps
Mapey (K, K) — Mapgy (K"~1 K™ )
and
Mapey (K, K) — Mapey (K™, K™)
are continuous, since they are given by the composition
Mapoyy (K, K) < Map(K, K) =% Map(K"! or K", K).

Their product is a continuous map
o : Mapoy (K, K) x Mapgoy (K, K) — Mapey, (K™ K1) x Mapey, (K™, K™).
Composition with h’an1 : B(K)"~! — K"~ ! yields a continuous map

Mapeyy (K", K"71) — Mapey, (E(K)" ™1 K™Y,
and composition with A% : K™ — E(K)™ yields a continuous map

Mapeyy (K™, K™) — Mapcy (K™, E(K)").
Their product is a continuous map
3 : Mapoy (K" K™ 1) x Mapey, (K™, K™) —
Mapey (E(K)" 1, K" ) x Mapey (K", E(K)").

By [Mun00, Theorem 46.11], the map Q™ : K"~ ! x I — K™ determines a continuous

map Q" : K"~ ! — Map(I,K"). Composing with this map in the first factor and
using the canonical inclusion on the second factor, we get a continuous map

¢4 : Mapoy (E(K)" 1, K" 1) x Mapaw (K™, E(K)™) —
Map(E(K)" " Map(I, K™)) x Map(K™, E(K)").
By the exponential law, we have a homeomorphism
Map(E(K)"~, Map(I, K™)) = Map(E(K)"~! x I, K"),

since F(K)"~1, K™ and I are all Hausdorff (being CW-complexes) and E(K)" "1 T
are locally compact because they have finitely many cells. Composing this homeo-
morphism (crossed with the identity) with ¢4, we obtain a continuous map

¢4 : Mapoy (E(K)" 1, K"™1) x Mapow (K™, E(K)") —
Map(E(K)"™! x I, K"™) x Map(K™, E(K)").
Composition is a continuous map
cs : Map(E(K)" ' x I, K™) x Map(K", E(K)") —
Map(E(K)"! x I, E(K)") = Map(I, Map(E(K)"" ', E(K)")),

since K" is locally compact Hausdorff. The composition cscqczcacy is a continuous
map

Homeocw (K) x Homeocw (K) — Map(I, Map(E(K)"™*, E(K)™)).
By [Mun00, Theorem 46.11], this determines a continuous map

Homeocw (K) x Homeocw (K) x I — Map(E(K)" ™!, BE(K)"),
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since [ is locally compact Hausdorff. The value of this map on (f, g,t) € Homeocw (K) %
Homeocw (K) x I equals H(f,g,t) (and is in fact contained in G(t<,K)). Thus H
is continuous.

Restricting H to g = idg and t = 1, we obtain the continuous map
H(—,idk,1) : Homeocw (K) — G(t<n, K).

Since H(f,idg,1) = t<n(f), we conclude that f., is continuous. The map H is a

homotopy from ¢, (=) 0 t<,,(—) to t<,(— o —). Therefore, the square

Homeocw (K) x Homeocy (K) — Homeoow (K)

TanXtan t<n

GtenK) x G(tenK) G(tenK)

commutes up to homotopy and f.,, is an H-map. O
Let us discuss some observations concerning the problem of rectifying our trun-
cation H-map into a strictly multiplicative map. An H-equivalence is a homotopy

equivalence which is an H-map. By way of motivation, let us first mention the fol-
lowing simple fact.

LEMMA 1.10.4. Let X and Y be locally compact Hausdorff spaces. A homotopy
equivalence

X T—Y: 9

induces an H-equivalence
:GX) =ZGY): v

by setting ®(f) = ¢, V(g) = 1hgo.

PROOF. The maps @, ¥ are continuous: The map

Map(X,X) — Map(Y,Y)
o= ofy
is continuous for the compact-open topology. Thus the composition
G(X) — Map(X,X) — Map(¥,Y)

is continuous. If f : X — X is a homotopy equivalence, then ¢f1) is a homotopy
equivalence as well, whence the image of the composition lies in G(Y). It follows that
® is continuous. Similarly, or by symmetry, ¥ is continuous.

The maps ¢ and ¥ are homotopy inverses of each other: We shall define a ho-
motopy V& ~ idg(x). Let P : X x I — X be a homotopy from P(—,0) = ¢ to
P(—,1) =idx. Define

H:GX)xI— GX)
by
H(f,t)(x)=P(f(P(z,t),t), feGX), tel, zeX.
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Let us demonstrate that H is continuous. The map
P*:1 — Map(X,X)
t — P(—,1)
is continuous. Thus the product
1 = idyap(x,x) X (P*, P*) : Map(X, X) x I — Map(X, X)?
is continuous. Since X is locally compact Hausdorff, the composition map
co = (0,id) : Map(X, X)* — Map(X, X)?,
sending (f,g,h) to (fog,h), as well as
c3 = o : Map(X, X)? — Map(X, X),
sending (g, h) to ho g, is continuous. Thus the composition
G(X) x I < Map(X, X) x I =" Map(X, X)
is continuous. The value of this composition on a pair (f,¢), with f : X — X a
homotopy equivalence, is precisely H(f,t). Thus H is continuous as a map G(X)xI —
Map(X, X). The image H(f,t) is again a homotopy equivalence, since it is homotopic,
via H, to
H(fal) :P(f(P(_al))v]-) = f.
Thus we get a continuous map H : G(X) x I — G(X). Evaluating H at the other
end of the cylinder, we obtain
H(f,0) = P(f(P(x,0)),0) = ¥ fé = TUD(f).
Consequently, H is a homotopy between W& and idg(x). Similarly, or by symmetry,
one gets a homotopy ®V¥ ~ idg(y).

It remains to be verified that ® and ¥ are H-maps. We need to exhibit a sputnik
homotopy
H:GX)xGX)xI— GY)
that establishes the homotopy commutativity of the diagram

G(X) x G(X) T2 q(Y) x G(Y)

G(X)

G(Y).
Define such an H by

H(f,9,t)(y) = ofP(g(y),1), g€ G(X), tel, yeY.

The continuity of H follows by the usual arguments already detailed a number of times
in previous proofs, using that X and Y are locally compact Hausdorff. The fact that
the image of H, a priori only known to lie in Map(Y,Y), really lies in G(Y"), follows
from the fact that H(f,g,t) is homotopic, via H, to H(f,g,1) = ¢fP(g¥(—),1) =
o fg, which is a homotopy equivalence. We have

H(f,9,0)(y) = ofP(g¥(y),0) = ¢ fo(gv(y)) = (2(f)2(9))(y)
and

H(f,9,1)(y) = ofgv(y) = (f9)(y).
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Similarly, or by symmetry, ¥ is an H-map. ]

Let us contrast the above lemma with the analogous problem in the world of
CW-complexes. For a CW-complex K, let Gow (K) = G(K) NMapqy (K, K) be the
topological monoid of cellular self homotopy equivalences of K. A map r: X — Y
is called a homotopy retraction if there exists a map s : Y — X such that rs ~ idy.
If such maps exist, one says that Y is a homotopy retract of X. (Sometimes the
terminology “Y" is dominated by X7 is used.) If X,Y are H-spaces and s is an
H-map, we say that Y is an H-homotopy retract of X.

LEMMA 1.10.5. Let K and E be locally compact CW-complexes (i.e. each point
has a neighborhood that meets only finitely many cells). If E has no odd-dimensional
cells and K ~ E, then Gow (E) is an H-homotopy retract of Gow (K).

ProoOF. Let ¢ : K — FE be a cellular homotopy equivalence with cellular ho-
motopy inverse ¢ : E — K. Let P : E x I — E be a cellular homotopy from
P(—,0) = ¢y to P(—,1) =idg. Let

R: Gcw(K) — Gcw(E)
be the map R(f) = ¢f1 and let
S:Gow(E) — Gew(K)

be the map S(g) = ¥go.

The maps R, S are continuous: The map
Map(K,K) — Map(E,FE)
fo= ofY
is continuous, so the composition
Gew (K) — Map(K, K) — Map(FE, E)

is continuous. Since its image lies in Gow (F), it follows that R is continuous. Simi-
larly, S is continuous.

Let us define a homotopy RS ~ idg,,, (g). Define
H: Gcw(E) x I — Map(E,E)
to be
H(g,t)(x) = P(g(P(x,1)),1), g € Gew(E), t€l, z € E.
The continuity of H is demonstrated as in the proof of Lemma 1.10.4. The image
H(g,t) is again a homotopy equivalence, so we get a continuous map H : Gow (E) x

I — G(E). We claim that H(f,t) : E — E is in fact a cellular map: This follows
from the fact that P restricts to map

P|:E* x I — E*
a key observation that has already been used to prove Lemma 1.9.9: If & is even, then
P restricts as
P|:E¥ x I C (Ex Ik o EF = EF
while if k is odd, then P restricts as
P|:E¥xI=E'xTIc(ExI)*— EF
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Hence for a point * € E*, we have P(x,t) € E*, thus g(P(z,t)) € E* and so
H(g,t)(x) = P(g(P(x,t)),t) € E*. Therefore, H is a continuous map H : Gow (E) X
I — Geow (E). Evaluating H at time zero, we obtain

H(g,0)(x) = P(9(P(,0)),0) = ¢pvgdip(z) = RS(g)(x).

Evaluation at time one gives
H(g,1)(z) = P(g(P(x,1)),1) = g().

We conclude that H is a homotopy between RS and idg.., (k)-

It remains to be verified that S is an H-map. We need to exhibit a sputnik
homotopy

H: Gcw(E) X Gcw(E) x I — Gcw(K)
that establishes the homotopy commutativity of the diagram

Gew(E) x Gow (E) 23 Gow (K) x Gew (K)

Gew (E) Geow (K).

Define such an H by
H(fagvt)(y) = wfp(g(b(y)at)v fvg € GCW(E)7 te Ia ye K.

The continuity of H follows by the usual arguments already detailed a number of
times in previous proofs, using also that K and E are locally compact and Hausdorff,
being CW-complexes. The fact that the image of H, a priori only known to lie
in Map(K, K), really lies in Gow (K), follows on the one hand from the fact that
H(f,g,t) is homotopic, via H, to H(f,g,1) = ¥ fP(gp(—),1) = ¥ fg¢, which is a
homotopy equivalence, and on the other hand from the fact that H(f,g,t) : K — K
is cellular because P(E* x I) C E* as pointed out above. We have

H(f,9,0)(y) = ¢¥fP(g9(y),0) = Y fopgo(y) = (S()S(9))(y)
and

H(f,9,1)(y) = fgo(y) = S(f9)(y)-
O

REMARK 1.10.6. The key issue in the proof of the previous lemma is of course
the construction of a homotopy through cellular maps. As we have seen, this works if
the codomain has only even-dimensional cells. If there are cells of odd dimension as
well, then the method of proof breaks down and does not yield an induced homotopy
equivalence Gow (K) ~ Gow (E), unless one assumes for instance that the tracks of
a homotopy ¥¢ ~ idx remain in the skeleton which they start out from.

Let us return to our finite CW-complex K, an object of the interleaf category.
We can now improve the truncation H-map ¢., to a strictly multiplicative map, in
fact a monoid homomorphism, in the following manner.
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PRrROPOSITION 1.10.7. There exists a topological monoid G, which is an H-homotopy
retract of Gew (K), a homotopy retraction R : Gow (K) — G and a monoid ho-
momorphism t : G — G(t<,K) such that the homology truncation H-map t, :
Homeocw (K) = G(t<nK) factors as

R

Homeocw (K) “ Gew (K) G

G(t<nK).
PRrROOF. Consider the homotopy equivalence
hi : K T E(K) : hYy

The CW-complex E(K) has only even-dimensional cells and is finite, so in partic-
ular locally compact. By Lemma 1.10.5, Gew (E(K)) is an H-homotopy retract of
Gew (K). In fact, a homotopy retraction

R:Gew(K) — Gew (E(K))
is given by R(f) = hi fh), and a homotopy section
S:Gew(E(K)) — Gew (K)
for R is given by the H-map S(g) = hghk. Set G = Gow (E(K)) and define
t:G— Gt K)

by restricting a cellular homotopy equivalence to the (n — 1)-skeleton, that is, t(f) =
71 Observe that E(K)" ! =t_,K and t(f) : E(K)"~! — E(K)"! is indeed a
homotopy equivalence by Lemma 1.9.9. The map ¢ is continuous because the restric-
tion map

Map(E(K), E(K)) — Map(E(K)"", B(K))
is continuous, whence the composition

Gew (B(K)) < Map(E(K), E(K)) — Map(E(K)"™!, E(K))

is continuous. The image of the composition, however, lies in G(E(K)""!) and its
value on a map is the value of t. Furthermore, ¢ is a monoid homomorphism, since
t(id) = id and t(fg) = (fg)" ! = frlg"n! = t(f)t(g). Lastly, we have indeed
produced a factorization, as

tR(f) = t(hx fh) = (hi fhi)" ™! = t<n(f)
for f € Homeocw (K). O

We have so far discussed continuity properties of spatial homology truncation for
spaces that have only even-dimensional cells. Let us now turn to the much harder
problem of continuity for homology truncation of arbitrary (simply connected) com-
plexes. We will not discuss low-dimensional truncation but immediately turn to de-
grees n > 3. (The category CW,55 and the notion of n-compression rigidity have
only been defined for n > 3 and are irrelevant for n < 2.) Let (K,Y") be an object of
CW 55 and let G be a discrete group.
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DEFINITION 1.10.8. A group homomorphism p : G — Homeo(K) is called an n-
compression rigid representation (with respect toY) if p(G) consists of n-compression
rigid morphisms (K,Y) — (K,Y) in CW,,Hg.

ExaMPLE 1.10.9. Suppose B is the base space of a flat fiber bundle B X, F
given by a holonomy representation p : m1(B) — Homeocw (F), where the fiber F
is a simply connected CW-complex whose boundary operator 9, in its cellular chain
complex is either zero or injective. Then by Corollary 1.2.7, any cellular map F' — F
is an n-compression rigid morphism (F,Y) — (F,Y) and p is an n-compression rigid
representation. When n = 3 and the 1-skeleton of F'is a point, then the condition on
the boundary operator of the fiber is not even needed (by Proposition 1.3.1).

An n-compression rigid representation p : G — Homeo(K) determines an n-
compression rigid category C, with one object (K,Y’) and morphisms given by the
image p(G). By Corollary 1.1.40, one has a spatial homology truncation functor
ten : C, = HoCW,_;. Hence, for every g € G, one gets a homotopy class t<,p(g) :
ten(K,Y) = ten(K,Y). Set Koy = tn(K,Y). If g,h € G are two group elements,
then the functoriality of ¢, on C, implies

t<n(p(gh)) = t<n(p(g) o p(h)) = t<n(p(9)) 0 t<n(p(h)).

In particular, t<,p(g) is (the class of) a homotopy equivalence with homotopy inverse
t<np(g~1). The representation p determines thus a group homomorphism

P =tenp: G — G[Kp].

(A group homomorphism into a group of homotopy classes of self homotopy equiv-
alences of a space is called a homotopy action.) Using the result of [Coo78], where
an obstruction theory for finding equivalent topological actions for given homotopy
actions has been given, we derive:

PROPOSITION 1.10.10. Let p : G — Homeo(K) be an n-compression rigid repre-
sentation. If G has an Eilenberg-MacLane space K (G, 1) of dimension at most 2, for
example if G is free, then there exists a homotopy equivalence Ko, ~ K, inducing
an isomorphism G[K<,] = G[K_,], and a lift p<y, : G — Homeo(K”,,) such that

Homeo(K”.,) —» G(K”,)

G —=" + GIK.,)

= G[KL,)]

commutes.

PROOF. The space K., is a CW-complex. Thus the Corollary to [Coo78, The-
orem 1.1] applies and asserts that p., is equivalent to a topological action. This
means that there exists a homotopy equivalence h : Ko, — K., with homotopy
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/

. , .
inverse h' : K.,

— K., and a topological action p<, : G — Homeo(K”,, ) such that

G P<n G[K<n}

P<n e(h)

Homeo(K”,) — G[K.,]

commutes, where e(h)[f] = [hfh'] is conjugation by the homotopy equivalence. The
map €(h) is a homomorphism as

e(h)[fgl = [nfgh'] = [hfW hgh'] = [hfI] o [hgh') = e(h)[f] o e(h)[g]-
It is an isomorphism with inverse (') : GIK.,] = G[K<y], e(h')[f] = [W' fh]. O

ExaMPLES 1.10.11. Here are some examples of groups G that have a K(G, 1) of
dimension at most 2: Free groups were already mentioned. If GG is the fundamental
group of a connected closed surface ¥ other than the sphere or the projective plane,
then ¥ itself is a 2-dimensional K (G, 1). These surface groups are one-relator groups.
More generally, a theorem of Lyndon asserts that any one-relator group G whose
relator 7 is not a proper power r = z™ n > 2, has a 2-dimensional K(G,1).

1.11. Fiberwise Homology Truncation

We will describe fiberwise homology truncation for the following three situations:
(1) Mapping tori, that is, fiber bundles over a circle,
(2) Flat bundles over spaces whose fundamental group G has a K(G, 1) of dimension
at most 2 (for example flat bundles over closed surfaces other than RP?), and
(3) Fiber bundles over a sphere S™, m > 2, where the fiber is a finite interleaf
CW-complex.

1.11.1. Mapping Tori. Let F' be a topological space and f : F' — F' a homeo-
morphism. The mapping torus Ef of f is the quotient space

Ep = (FxI)/ ~,

where (x,1) ~ (f(z),0) are identified. The factor projection F x I — I induces a
map p: By — S'=1/(0~ 1). Let us recall a well-known fact.

LEMMA 1.11.1. The map p is a locally trivial fiber bundle projection.

PROOF. Let ¢ : I — S* be the quotient map and to = ¢(0) = ¢(1) € S*. It suffices
to find a local chart near the point tg. Let U be a small open neighborhood of ¢y in S*
so that ¢71(U) has two connected components V and V; homeomorphic to half-open
intervals, where V{ is an open neighborhood of 0 in I and V; is an open neighborhood
of 1in I. Set U; = q(V;), i = 0,1, so that U = Uy UU; and Uy NU; = {tp}. By
definition of the mapping torus, the preimage space p~!(U) sits in a pushout square

incl X f

{tO}XFHUOXF

incl x idpl jOl

Uy x F—2= p= (1)
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The product U x F sits in the pushout square

cl xidp

{to} x Sy x F
incl x id g J/ iol
Uy x F—2>UxF
By the universal property of the pushout, the commutative diagram

incl X idp incl X idg
-—— _

Ug x F {to} x F Uy x F
id x f idp id X idp
UO « F incl x f {to} « F incl X idp U1 “ F

induces a unique continuous map « : U x F — p~}(U) which evidently lies over U
such that

7 7
U xF —+UxF«——U xF
id x f a id X idp

Upx F 2% p=L(U) <2 Uy x F
commutes. The commutative diagram

incl X f incl X idg
—_—

U()XF {to}XF U, x F

id xf~t idp id X idp

incl X idp incl X idp
-~ —_

U()XF {tO}XF U, x F

induces a unique continuous map 3 : p~1(U) — U x F which lies over U such that

UoXFLpil(U)LU1XF
id x =t 8 id x idp

U x F - UXF " U xF

commutes. Since « and  are inverse to each other, 8 is a homeomorphism and thus
a local chart for p over U. a

Let f: (F,Y) — (F,Y) be an isomorphism in CW,,55. We shall explain how one
can perform fiberwise homological truncation on the fiber bundle p : E = Ey — S.
The result is a fiber bundle ft, (p) : ft,,(E) — S whose fiber is homotopy equivalent
to the truncation F.,, = t<,(F,Y). (Note that f is not required to be compression
rigid here.)
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Applying the covariant assignment t.,, : CW,,n9 - HoCW,,_; to f, we obtain
a homotopy class t<,,(f). Choose a representative f.,, : Fep, = F<p, for t<,,(f). Then
f<n is a homotopy equivalence by Proposition 1.4.1. (We cannot deduce this from
functoriality, since we did not require f to be n-compression rigid.) A construction
due to Cooke [Coo78] will serve us at this point: Let F., be the infinite mapping
telescope of fon,

FL, = (ZxIxFep)/(n,1,2) ~(n+1,0, fen(z)).

A homotopy equivalence h : Fo,, — F., is given by h(z) = (0,0, ). The shift

oo FL, — FL., fL.(nt,x)=(n—1t 1),

is a homeomorphism and the diagram

f<n
F<n F<n
h |~ ~|h
f/
/ <n /
F<n ~ F<n

homotopy commutes. Set
ﬂ]<n(E) - Ef’<n7

the mapping torus of fL,, and let ft<,(p) : ft<,, E — S* be the mapping torus
projection. By Lemma 1.11.1, ft,,(p) is a locally trivial fiber bundle projection. The
fiber is F, , which is homotopy equivalent to F,, via h.

1.11.2. Flat Bundles. Let B be a connected space. Any flat fiber bundle
p: E — B with fiber F' over B has the form E = EXPF, where p : m1(B) — Homeo(F)
is the holonomy representation and B is the universal cover of B. The projection p
is induced by projecting to the first component, followed by the covering projection
B — B. Suppose that 1 (B) has an Eilenberg-MacLane space K (71 B, 1) of dimension
at most 2. (For instance, B a closed surface other than RP2.) Let (F,Y) be an object
of CW,,59 and p : m1(B) — Homeo(F') an n-compression rigid representation with
respect to Y. We shall explain how to associate to the flat bundle p : E = B X, F'— B
a fiberwise truncation ft<,(p) : ft<,(E) — B, which is again a flat fiber bundle and
has a fiber homotopy equivalent to the truncation F., = t,(F,Y).

By Proposition 1.10.10, there exists a homotopy equivalence F,, — F. and a
lift pp, : m1(B) — Homeo(F~, ) such that

Homeo(F.,) “— G(FL,)

11 (B) —""+ G[F<y] === GIFL,)]

commutes. Set
ften(E) = B x;., FL,
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together with ft—,(p) : ft<,(F) — B induced as describe above, using the covering
projection. Then ft.,(p) is a flat fiber bundle with fiber F., homotopy equivalent
to the truncation F,,.

1.11.3. Remarks on Abstract Fiberwise Homology Truncation. As a
thought experiment, an idealized, but motivational, abstract setup for fiberwise ho-
mology truncation might be formulated as follows. Let G be a topological group
acting on a topological space F'. Let t.,(F) be a spatial homological truncation of
F.

DEFINITION 1.11.2. An abstract continuous homology truncation for (G, F, F.,)
is a morphism 7,, : G — G,, of topological groups together with an action of G,, on
F,.

For example, if there existed a morphism of topological groups 7, : Homeo(F') —
Homeo(F.,,) truncating automorphisms of F' in a continuous fashion, then one would
obtain an abstract continuous homology truncation for (Homeo(F), F, F,), taking
the obvious action of Homeo(F<,,) on F,.

Let £ = (E, p, B) be a numerable fiber bundle over B with fiber F' and structure
group GG. Suppose an abstract continuous homology truncation for (G, F, F.,) is
given. The Milnor construction, among other such constructions, associates to G a
numerable principal G-bundle wg = (EG, py,, BG), with EG a free G-space weakly
homotopy equivalent to a point. This bundle is universal in the sense that for each
numerable principal G-bundle £, there exists a classifying map f : B — BG such
that £ & f*(wg) as principal G-bundles. The morphism 7,, : G — G,, induces a
map Brt, : BG — BG,. Let £ be the underlying numerable principal G-bundle of
Ep. It is classified by a map f : B — BG. Composition with B7, yields a map
fn:Brpof:B— BG,. Set &, = f}(wg, ), a numerable principal G,-bundle. Since
G, acts on F.,, we obtain an associated fiber bundle ft., (¢r) = (ft<, E, ft<,, p, B)
with total space ft«, F = E(§,) X¢a, F<n, fiber F,, and structure group G,. We
might call ft.,({r) the abstract fiberwise homology truncation of £ with respect to
the given data.

As we have seen, however, it is in practice more realistic to take G, to be a
(grouplike) topological monoid. Moreover, the map 7, : G — G, is usually not a
monoid homomorphism, but only an H-map. For example, if a finite CW-complex
F is an object of the interleaf category, then we have constructed an H-map t.,, :
Homeocw (F) — G(t<,F), see Theorem 1.10.3. In certain situations, the above
general framework can be adapted to the monoid/H-map environment. We shall
illustrate this in the case of a sphere as the base space.

1.11.4. Fiberwise Truncation over Spheres. If G, is the topological monoid
of self homotopy equivalences of a space, then the role of the Milnor construction will
be played by Stasheft’s classifying space BG,. Given a space F, Stasheff [Sta63]
associates to the monoid H = G(F') a universal H-quasifibration

H — EH 2% BH.

The notion of a quasifibration was introduced by Dold and Thom in [DT58]. A
continuous map p : E — B is a quasifibration if, for every point b € B and every k > 0,
the induced map p, : mx(E,p (b)) — 7,(B) is an isomorphism. The idea is that
with respect to homotopy groups, quasifibrations should behave just like Hurewicz
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fibrations. In particular, the homotopy groups of each fiber p~1(b) fit into a long
exact sequence
oo > Tpa1(B) — m(pH(b) — mp(E) 25 m(B) — -

The total space EH of the Stasheff quasifibration is aspherical, that is, m.(EH) = 0.
It follows from the long exact sequence that the homotopy boundary homomorphism
induces an isomorphism

(16) me+1(BH) = mi(H).

Let & = (E,p,S™), m > 2, be a cellular topological fiber bundle over the m-
sphere with fiber F'. Assume that F' is an object of the interleaf category and a finite
CW-complex. Let n be a (positive) integer and

¢: 8™ 1 — Homeocw (F) = G
be the clutching function for the bundle {p. Set G,, = H = G(t<,F). In Section
1.10, we constructed an H-map
ten : G — Gy,
see Theorem 1.10.3. Composition yields a map
Yp=tcpo00: 8" — @G,
and an element [¢] € 7,,—1(G,). Under the above isomorphism (16),
T (BGr) = Tm—1(Gr),
[¢)] corresponds to a homotopy class [¢,], where &, is a map
& S — BG,.

Let w : UE — BG,, be Stasheff’s universal fibration, a Hurewicz fibration that
classifies Hurewicz fibrations with fibers of the homotopy type of t,, F'. Since t,F is
again a finite CW-complex by Remark 1.9.8, Stasheff’s classification theorem applies
and asserts that [—, BG,] and L(t<,F)(—) are naturally equivalent functors from
the category of CW-complexes and homotopy classes of maps to the category of sets
and functions, where L(t,F)(X) is the set of fiber homotopy equivalence classes of
Hurewicz fibrations with base space X and fibers of the homotopy type of t.,F. The
transformation [—, BG,] = L(t<,F)(—) is given by sending the homotopy class of a
map f : X — BG, to the pullback f*(u) of the universal fibration. Let ft., p =
(tt<n (E), ft<pn(p), S™) be the pullback Hurewicz fibration

ftop(E) — UE

ft<n (p) u

g’!‘L

Sm BG,
with fiber F.,. This is the fiberwise truncation of (. Note that while we did start
out with a bundle, we end up only with a fibration. This is to be expected, since G,
is not a group, only a monoid, and spatial homology truncation of a homeomorphism
yields only a homotopy equivalence in general. However, whenever the base space of
a Hurewicz fibration is a connected, locally finite polyhedron (such as in the present
case), Fadell [Fad60] shows that the fibration can be replaced by a fiber homotopy
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equivalent fiber bundle. Thus, up to fiber homotopy equivalence, we end up with a
bundle again.

1.12. Remarks on Perverse Links and Basic Sets

Let X™ be an even-dimensional PL stratified pseudomanifold that has no strata
of odd dimension. In [M'V86], the notion of a perverse link is introduced in order
to obtain a more direct description of the category of (middle-)perverse sheaves on
X. Let L be the link of a pure stratum S in X. A perverse link is a closed subspace
K C L such that for every perverse sheaf P®* on X — S,

HF(K;P*) =0, for k > —3dim S, and

H*(L, K;P®) =0, for k < —1dimS.
In a PL pseudomanifold such perverse links can always be constructed as certain sim-
plicial subcomplexes. While perverse links thus provide some form of cohomological
truncation, they cannot be used as a substitute for the spatial homology truncation
machine built in Section 1.1, for the following reason: Let us consider the case of
a space X having one isolated singular point ¢. Set d = n/2. On the complement
X — ¢ of the singular point, the constant sheaf P* = Rx_.[d] is a perverse sheaf in
the indexing convention of [MV86]. Thus, the perverse link of the link of ¢ satisfies

H*(K) =0, for k > d, and H*(L,K) = 0 for k < d.
The long exact sequence of the pair (L, K) shows that therefore
H*¥(K)= H*(L) for k < d —2.
For the missing degree d — 1, the sequence implies only an injection
H¥™YL) — HIYK).

In the present case of an isolated singularity (or whenever the link happens to be a
manifold), the perverse link is to be constructed as follows: Fix a triangulation T
of L and let T be the first barycentric subdivision of T'. Let K be the union of all
closed simplices in 7", whose dimension is less than (n —1)/2. The following example
shows that H?"!(K) can indeed be huge compared to H?~!(L), so that the above
monomorphism is in general far from an isomorphism. Let L = S3, the 3-sphere,
so that n = 4, d = 2. Triangulate it for instance as the boundary of a standard
4-simplex. Then K is the union of all closed simplices of dimension at most 1 of the
first barycentric subdivision. Thus K is a graph with a large number of cycles and
the map H4 (L) = H*(S%) = 0 — H'(K) is far away from being an isomorphism.
Moreover, the example shows that the cohomology of the perverse link is not an
invariant of the space L. Indeed, H91(K) depends on the triangulation of L: If we
refine the triangulation of S® more and more, then the number of 1-cycles in K, and
consequently the rank of H?~!(K), will increase beyond any bound and so the degree
(d — 1)-cohomology of K is in no way linked to the actual topology of S3.
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Intersection Spaces

2.1. Reflective Algebra

For a given pseudomanifold, the homology of its intersection space is not iso-
morphic to its intersection homology, but the two sets of groups are closely related.
The reflective diagrams to be introduced in this section will be used to display the
precise relationship between the two theories in the isolated singularities case. This
reflective nature of the relationship correlates with the fact that the two theories form
a mirror-pair for singular Calabi-Yau conifolds, see Section 3.8. Let R be a ring. If
M is an R-module, we will write M* for the dual Hom(M, R). Let k be an integer.

DEFINITION 2.1.1. Let H,, H, and B, be Z-graded R-modules. Let A_ and A,
be R-modules. A k-reflective diagram is a commutative diagram of the form

A

SN
A

!
Bi—1 > Hy | —> Hp_3 —> Bp_o —>> -

-+ — Bpy1 — Hpiy — Hpy — By

(17)

containing the following exact sequences:

) - 1~>Bk£>A i>A+&>Bk V= Hp = Hy g — -
2 —>Hk+1—>Bk—>Hk—>A+—>O

) -

)O— A_ Sy —> Bi_1—H | — Hp_1 —-
4) - —>Hk+1—>Bk—>A "5 H -0,

)

(1
(
(3
(
(5 0—>Hk—>A+—>Bk 1=~ Hj_, —-

The name derives from the obvious reflective symmetry of the diagram (17) across
the vertical line through Hj and Hj. The module H, will eventually specialize to
the reduced homology of the intersection space and H. will be intersection homology.

87
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The entire information of a reflective diagram may also be blown up into a braid
diagram:

\/
/\/\/\/\/\/\/\

EVAYAYAYAYAYA VA
INANININANIN N,

NN NN NN

While a k-reflective diagram does not directly display the relation between Hjy
and Hj,, this relation can however be readily extracted from the diagram: Since

Hy/ima_ = Hy/ker(Bras) 2 im(Bray) =im By and kera’ =imf_,
we have the following T-diagram of two short exact sequences:
0

(18) H,

im S

0
When R is a field, we can pick splittings and obtain a direct sum decomposition

Hp =imB3_ @ Hj, ®im}f,.
Let [ be an integer.
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DEFINITION 2.1.2. A morphism from a k-reflective to an [-reflective diagram is a
commutative diagram of R-modules

Hj,

o —> Hyyy — H; lﬂBkﬁA_/Cil’\fh
XK

"4>Gl+14>G2+14>D14>0_

N

Gy

_

Bk*l 9H}’€71 9Hk71 _— ..

oo

D4 — G;—l — G —— -

Reflective diagrams form a category, since the composition of two morphisms, de-
fined by composing all the vertical arrows, is again a morphism of reflective diagrams.

DEFINITION 2.1.3. A pair (H,, H,) of Z-graded modules is called k-reflective
across a Z-graded module B, if there exist modules A_ and A, such that the data
H, H,, B,, A fits into a k-reflective diagram (17).

DEFINITION 2.1.4. The k-truncated Euler characteristic x<i(Bx) of a finitely
generated Z-graded abelian group B, is defined to be

X<k(Bs) = Z(*l)i rk B;.
i<k
A reflective diagram for a pair (H,, H,) implies in particular a relation between

the Euler characteristics of H, and H., as well as a relation between the ranks of Hj,
and Hj in the cut-off degree k.

PROPOSITION 2.1.5. The Euler characteristics of a k-reflective pair (Hy, H.) of
finitely generated Z-graded abelian groups fitting into a k-reflective diagram (17) with
B.,A_, Ay finitely generated obey the relation

X(H.) = x(HZ) = X(Bx) = 2x<k(Bx).
Furthermore, the identity
vk H, +1k H, =tk A_ +1k A,
holds in degree k.

Proor. Putting

Xok = 3 _(~1)'tk H;, x<p = Y _(=1)"rtk H;,

i>k i<k
Xop = Z(—l)irkH;, Xep = Z(—l)irkH{,
i>k i<k

hi =1k Hy, h}, =tk H},, by =1k By, a_ =1k A_, a, =tk A,
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the five exact sequences (1) — (5) associated to the reflective diagram (17) in Definition
(2.1.1) give the following linear system of five equations:

(1) xsk = xXop + (=DFa = (=D¥ay + xp — x<k — x(B.) =0,
(2) xsk — Xop — Xok(Bs) — (=1)Fbp + (=1)%hy, — (=1)*ay =0,
(3) (*1)ka— - (*1)khk — X<k(Bx) + X’<1C — X<k =0,
(4) xok = Xor — Xok(Be) = (=1)Fby + (=1)*a_ — (=1)*hj, = 0,
(5) (=DFhp — (=D*aq — x<r(Be) + X — X<k = 0.

These equations are not linearly independent because we have the relations
2)+@)=1)=(4)+(5).

Thus equation (1) is redundant and one of the other four can be expressed in terms
of the remaining three equations. The difference (2) — (4) yields the equation

(6) hi +h), —a_ —ay, = 0.

The system (1) — (5) is equivalent to the system (2), (3), (6). The latter three
equations are linearly independent, since (3) and (6) are independent as (3) contains
variables such as y < that are absent from (6), and (2) is not in the span of {(3), (6)},
since (2) contains variables such as ys that are absent from both (3) and (6). Us-
ing (2) and (5) (for example), we derive the formula for the difference of the Euler
characteristics of H, and H. as follows:

X(Ho) = x(HD) = (s + (=D + x<r) = 0lp + (1) A+ x2p)

(x>t = X50) + (=1)Fhe — (=1)Fhj, + (x<rx — X2p)

= (xsk(Bs) + (=DFb — (=1)*hy + (=D*ay) + (=1)*hy
—(=1)*h, + ((=1)Fh}, = (=D*ay — x<r(Bx))

= X>k(Bi) + (=1)Fb — x<x(B-)

= X(Bi) — 2x<k(Bx).

O

We shall proceed to discuss duality for reflective diagrams over a field k = R. Let
A be the diagram (17).

DEFINITION 2.1.6. The dual A* of A is the k-reflective diagram

H*
N
B BZ

+ A*

\/

* 1% *
By —H;* —H — -

* Ix *
T kal Hk—l Bk*l

obtained by applying Hom(—,k) to A.

Under this notion of duality, sequence (1) in Definition 2.1.1 is self-dual, sequences
(2) and (3) are dual to each other, and sequences (4) and (5) are dual to each other.
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DEFINITION 2.1.7. Let (H.,, H,) be k-reflective across B, with reflective diagram
Ap and let (G, G,) be (n—k)-reflective across D, with reflective diagram A¢g. Then
(H.,H}) and (G.,G.,) are called n-dual reflective pairs if Ay and Ag are related by
a duality isomorphism A}, = Ag.

2.2. The Intersection Space in the Isolated Singularities Case

Let p be a perversity. The intersection space of a stratified pseudomanifold M
with one stratum is by definition IPM = M. (Such a space is a manifold, but a
manifold is not necessarily a one-stratum space.) Let X be an n-dimensional com-
pact oriented CAT pseudomanifold with isolated singularities x1,...,Z,, w > 1, and
simply connected links L; = Link(z;), where CAT is PL or DIFF or TOP. (Pseudo-
manifolds whose links are all simply connected are sometimes called supernormal in
the literature, sce [CW91].) Thus X has two strata: the bottom pure stratum is
{z1,...,2y} and the top stratum is the complement. By a DIFF pseudomanifold we
mean a Whitney stratified pseudomanifold. By a TOP pseudomanifold we mean a
topological stratified pseudomanifold as defined in [GM83]. In the present isolated
singularities situation, this means that the L; are closed topological manifolds and a
small neighborhood of x; is homeomorphic to the open cone on L;. If CAT=TOP,
assume for the moment n # 5. We shall define the perversity p intersection space
IPX for X.

LEMMA 2.2.1. Every link L;, i = 1,...,w, can be given the structure of a CW-
complez.

ProOF. We begin with the case CAT=PL. Every link is then a closed PL man-
ifold, which can be triangulated. The triangulation defines the CW-structure. For
the case CAT=DIFF, i.e. the Whitney stratified case, we observe that links in Whit-
ney stratified sets are again canonically Whitney stratified by intersecting with the
strata of X. Since the links are contained in the top stratum, they are thus smooth
manifolds. By the triangulation theorem of J. H. C. Whitehead, the link can then
be smoothly triangulated. Again, the triangulation defines the desired CW-structure.
Lastly, suppose CAT=TOP. If n < 1, then X has no singularities. If n = 2, the
links are finite disjoint unions of circles. By the simple connectivity assumption, such
unions must be empty. If n = 3, then by simple connectivity every link is a 2-sphere,
so again X would be nonsingular. (Simple connectivity is of course not essential here,
as circles and surfaces are certainly CW-complexes.) If n = 4, then the links are
closed topological 3-manifolds. Since they are simply connected, the links must be
3-spheres according to the Poincaré conjecture, proved by Perelman. The space X
would be nonsingular. (Simply connectivity is once more not essential for the exis-
tence of a CW-structure on the links because we could appeal to Moise’s theorem
[Moi52], asserting that every compact 3-manifold can be triangulated.) If n > 6,
the links are closed topological manifolds of dimension at least 5. In this dimension
range, topological manifolds have CW-structures by [KS77] and [FQ90]. O

REMARK 2.2.2. The preceding lemma makes a statement that is more refined
than necessary for constructing the intersection space. CW-structures arising from
triangulations for example, while having the virtue of being regular, typically are
very large and have lots of cells that are not closely tied to the global topology of
the space. To form the intersection space, it is enough to know that every link
is homotopy equivalent to a CW-complex. Using such an equivalence, one is free
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to choose smaller CW-structures, indeed minimal cell structures consistent with the
homology, or to obtain a CW-structure when it is not known to exist on the given
link per se. This latter situation arises in the case TOP and n = 5, not covered
by the lemma. In this case, the links L; are simply connected closed topological
4-manifolds. It is at present not known whether such a manifold possesses a CW-
structure. It is not possible to obtain such a structure from a handlebody because a
closed topological 4-manifold admits a topological handle decomposition if and only
if it is smoothable, since the attaching maps can always the smoothed by an isotopy.
For example, Freedman’s closed simply connected 4-manifold with intersection form
FEg does not admit a handle decomposition. However, such links L; are homotopy
equivalent to a cell complex with one 0-cell, a finite number of 2-cells and one 4-cell.
In the case TOP and n = 5, after having removed small open cone neighborhoods
of the singularities, we glue in the mapping cylinders of these homotopy equivalences
and now have CW-complexes sitting on the “boundary”. The intersection space can
then be defined, following the recipe below, in all dimensions, even when CAT=TOP.

We shall now invoke the spatial homology truncation machine of Section 1.1. If
k=n—1-—p(n) > 3, we can and do fix completions (L;,Y;) of L; so that every
(L;,Y;) is an object in CWy~g. If k < 2, no groups Y; have to be chosen and we
simply apply the low-degree truncation of Section 1.1.5. Applying the truncation ¢t :
CW;55 — HoCW._; as defined on page 41, we obtain a CW-complex t 1 (L;,Y;) €
ObHoCWy_1. The natural transformation emby : t.p — t<s of Theorem 1.1.41
gives homotopy classes of maps

fi = embk(LH)/Z) : t<k(Li7}/i) — Ll
such that for r < k,
fix t Hy(t<i(Li, Ys)) = Hp (L),

while H,(t<r(L;,Y;)) =0 for r > k. Let M be the compact manifold with boundary
obtained by removing from X open cone neighborhoods of the singularities z1, ..., Zy,.
The boundary is the disjoint union of the links,

OM = |_| L;.
i=1
Let
Lep = | |ten(Li,Y3)
i=1
and define a homotopy class
g: L<k — M

by composing
Low L oM — M,
where f =| |, f;. The intersection space will be the homotopy cofiber of g:

DEFINITION 2.2.3. The perversity p intersection space IPX of X is defined to be

IPX = cone(g) = M U, cone(Ly).

More precisely, I? X is a homotopy type of a space. If g; and g are both repre-
sentatives of the class g, then cone(g;) ~ cone(gs) by the following proposition.
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ProPOSITION 2.2.4. If

is a homotopy commutative diagram of continuous maps such that ¢y and ¢ are
homotopy equivalences, then there is a homotopy equivalence

Y Uy cone A — Y’ Uy cone A’
extending ¢y .

This is Theorem 6.6 in [Hil65], where a proof can be found. The preceding
construction of the intersection space I? X depends on choices of cellular subgroups Y;.
If a link L; is an object of the interleaf category ICW, then we may replace t < (L;, Y;)
in the construction by ¢t L;, where t.; : ICW — HoCW is the truncation functor
of Section 1.9. The corresponding homotopy class f; is to be replaced by the homotopy
class emby (L;) : t<xL; — L; given by the natural transformation

embk; : t<k — t<oo

from Section 1.9. The construction of the intersection space thus becomes technically
much simpler. The following theorem establishes generalized Poincaré duality for the
rational reduced homology of intersection spaces and describes the relation to the
intersection homology of Goresky and MacPherson.

THEOREM 2.2.5. Let X be an n-dimensional compact oriented supernormal sin-
gular CAT pseudomanifold with only isolated singularities. Let p and q be comple-
mentary perversities. Then:

(1) The pair (H,(IPX),TH?(X)) is (n — 1 — p(n))-reflective across the homology of
the links, and

(2) (H,(I"X;Q), IH?(X;Q)) and (H,(IX;Q), IHY(X;Q)) are n-dual reflective pairs.

REMARK 2.2.6. Note that, as stated in the hypotheses, the theorem cannot for-
mally be applied to a nonsingular X that is stratified with one stratum. The reason
is simply that the reduced homology of a manifold X = M does not possess Poincaré
duality. If M is connected, then Ho(M) = 0 but H,(M) = Z generated by the
fundamental class.

We begin the proof of Theorem 2.2.5:

PRrROOF. We prove statement (1) first. Put L = OM and let j : L < M be the
inclusion of the boundary. We will study the braid of the triple

f
L<I<:HL

N

M,
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/\/\/\/\/\/\/\

Hi12(j Hpa(f Hy(L<k) &(7) Hy_1( Hy_2(L<k) Hp—2(M)

\/\/\/\/\/\/\/

Hy 1 (L Hiyi(g x(9) Hi—1( Hi_1( Hi—o

/\/\/\/\/\/\/\

Hk+1 L<k Hk+ H}H_ Hy 1 L<k — .7 Hy. - 2 )

\/\/\/\/\/\/\/

Using the fact that f, is an isomorphism in degrees less than &, as well as H,.(L.x) =0
for r > k, the braid becomes

ch+2 7) Hk+1 Hi—2(L<k) Hip—2(M)

\/\/\/\/\/\/\/

Hk+1 Hk+1 Hi_ 1 Hy— 1 Hy 2

/\/\/\/\/\/\/\

Hi 1 (M Hit1(j Hi—1(L<r) Hp—1( Hi—1(

\/\/\/\/\/\/\/

Since

and

THI(X) = {Z%” Sy
this can be rewritten as
(19)

IH? Q /\ /\ /\ /\ /\ L/E X)
k+2 k+1 <k) k— 2
H/>/\/}j>/\/>/
/\/\/\/\/\/\/\
Hypa (M) THE, ( Hi 1(Ley) THP_( Hj_1(

x/x/\/\/\/\/\/
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By composing with the indicated isomorphisms and their inverses, we may replace

H,.(f) by H.(L) for r > k, H.(Ly) by H,(L) for r < k, H,(M) by H.(I?X) for
r >k, and H,(j) by H,.(I?X) for r < k to obtain

SN NSNS NN TN

RV AVAVA Y AVAVAY S
/\/\/\/\/\/\/\

Hy 1 (IPX) " Hy THY ((X) Hy_:1(I*X)

\/\/\/\/\/\/

Finally, THZ(X) = im , and we arrive at

\/

THY (X

/\/\/\/\/\/\/\

wio(X)  Hipa(L Hy_o( IH? ,(X)

\/\/\/\/\/\/\/

Hk+l L Hk+1 IPX Hk L Hk .IPX Hk 1 L Hk 1 IpX Hk 2

/\/\/\/\/\/\/\

Hiia ( ]pX Hi (X Hy— ( IH,’J (X)) Hier (17X)

where o’ is given by regarding a as a map onto its image and «/_ is the inclusion
of im«v into Hy(j). This braid contains the desired k-reflective diagram and all the
required exact sequences.

IH?

For the remainder of the proof we will work with rational coefficients. To prove
statement (2), we shall first construct duality isomorphisms

d: H.(I"X)* =5 H,_,.(I"X).

There are three cases to consider: r > k, r = k, and r < k. For r > k, braid (19)
contains the isomorphisms

H,(M) = H,(I"X).

For 17X, the cut-off degree k' is given by ¥ =n—1—¢g(n) =n—k. Since n—r < K/,
we have isomorphisms

Hy (19X) =5 Hy_(5)
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by the braid of the (n— k)-reflective pair (H, (I7X), THZ(X)) analogous to braid (19).
Using the Poincaré duality isomorphism H,.(M)* = H, _,.(j), we define d to be the
unique isomorphism such that

H,(IPX)* —= H,.(M)*
d|= PD\Lg

Hy (I7X) == Hor (j)
commutes. Then

THP(X)* H,(IPX)* — H,.(L)*

lg e leg

qu r 4>Hn ?”(IqAX)9 "_T_l(L)

commutes, where GM D denotes Goresky-MacPherson duality on intersection homol-
ogy. Indeed, via the universal coefficient isomorphism (which is natural), this diagram
is isomorphic to

H™(M,0M) ——> H"(M) ——~ H"(OM)
—m[aM]\Lg
6]

Hp—(M) — Hy_ (M, 0M) % H,_._1(0M).

m[MﬁM}lg m[MﬁM}lg

It commutes on the nose, not only up to sign, because
(N [M,0M]) = j*ENO.[M,0M] = j*¢ N [OM],

see [Spa66], Chapter 5, Section 6, 20, page 255. (Recall that we are using Spanier’s
sign conventions.) For r < k, we proceed by “reflecting the construction of the
previous case.” That is, using the isomorphisms

o

H,(I"X) =5 H,(j), Hy_r(M) =5 H,_.(I"X), PD: H,(j)* = H,_,(M),

we define d to be the unique isomorphism such that

1R

Hr(])* - ﬁr(lﬁx)*

pDig =

Hy (M) == H,_.(IX)
commutes. It follows that

H,_1(L)* — H,(I?X)* — THE(X)*
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commutes as well. The remaining case r = k is perhaps the most interesting one. Let

! (X)

/ K
= G q o Y 5y
Hpy_poy1(ITX) > THY (X)) —> Hp (L) —— Hy, (M) Hy, () —>
\ /
ﬁnfk(Iax)

Hyp_p_1(L) ——=IH? , (X) —> H, _;,_1(19X)

be the (n — k)-reflective diagram for the pair (H.(I7X),IHY(X)). The dual of the
k-reflective diagram for (H,(I?X),[HY(X)) near k is

(20)
HP(X)*
Hk—l(L)*%Hk Hy(M)* — Hy(L)".
\ T
H, (1P X)*

The following Poincaré duality isomorphisms will play a role in the construction of d:
dar = Hy(M)* =5 H,_1(5),
d?w : Hk(])* i) Hn,k(M)
dp : Hy(L)* — Hp_p—1(L).

)

Since the square

5

B~
Hy(M)* —— Hy(L)*
dMl/% dng
N
an (]) ; nfkfl(L)
commutes, dy, restricts to an isomorphism
dr, :im B =5 im 0.
Pick any splitting
Spg 1 1im 87 — Hy(M)*
for the surjection 8* : Hy(M)* — im 5* . Set
g5 = dprsppdy 2 im Sy — Hy, 1 (4).
Then sgs splits 04 : Hp—x(j) — im d4 because
64+ 8q5 = 0y dnrsppd;t = dp Bt sppdyt =id.
Pick any splitting N
Spa : Hk(M)* — Hk(IﬁX)*
for the surjection o : Hy(I?X)* — Hy(M)* and any splitting
Sqy : Hy_1(j) — Hp_ 1 (I7X)
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for the surjection v4 : Hy_x(I9X) — Hy,_1(5). The composition

Sp = SpaSps : M BX —> H,(IPX)*
is a splitting for 8* a* : H, (IPX)* — im 3* . Similarly, the composition

Sqg = SqySqs 1 iM L — H,_(I7X)
is a splitting for 6,74 : Hy_r(I9X) — im d,. Next, choose a splitting

ty : THY(X)" — Hi(5)"
for o/f + Hy,(j)* — IHJ(X)*. Since duals of reflective diagrams are again reflective,
diagram (20) has an associated T-diagram of type (18):
0
0 im ] —— Hy(j)* —= [H(X)* ——>0

Xy

Hy,(I7X)*

im g*

Thus we obtain a decomposition
Hi,(IPX)* = o* (im B%) @ o’ t, THP (X)* @ s, (im )

and every v € H, (IPX)* can be written uniquely as

v = (by + (1)) + 5,(b-)
with by € im 8%, h € THY(X)* and b_ € im B*. Write = by + t,(h). Setting

d(v) = y-diy (2) + 54di(b-)
defines a map _ _

d: H(I’"X)" — H,_;(I?X).

We claim that d is an isomorphism: By construction, the square

.
Xy

Hy(j)" — Hy(I"X)"

commutes. The square
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commutes also, since

dpfrar(v) = dppfia*(x)+drBlarsy(b-)
dr(b-)
04 Y47y () + 647484 (b-)
= 047+d(v).

Hence we have a morphism of short exact sequences

* ok

gid/M ld gidL

Sy

0—— H, (M) —> H,_1(I1X) imd, 0

By the five-lemma, d is an isomorphism. It remains to be shown that the square

*

B, (I7X)* —— Hy(M)*
di% %idM

Hy_p(19X) —— Hp_1(j)

commutes. This is established by the calculation

rad(0) = (@) + e sedr(b)
daro(x) + V48¢ySqsdL(b-)

= dMa* (o (%)) + sqsdr (b )

= dwa’ (3 (2)) + duspad; o dr(b)
— dwa” (3 (2)) + duspa(d)

= Of’i(ai(fﬂ))erM(Oé Spa ) Spp(b-)
= dya* Ea)i(m))—i—dMa sp(bo)

= dya* (v

In summary, we have constructed the duality isomorphism

ITHP(X)*
S
o
Hy_(IPX)* —= THE_(X)* — Hj_1(L)* *>Hk(1) THT_ k(X) Hy (M)* —>
T SR
Hyopp1(19X) > THT g1 (X) —>= Hp k(L)H'H'n k(M) T H,(IPX) H, _ k(])%‘
\ dlg /
v— Y4+
Hpy_ i (17X)

Hy, (L) ——= THY (X)) —> Hy (IPX)" ——> -
dL\LE \Le l/e
Hy_p_1(L) == ITHI | (X)) > Hp_jy_1(ITX) ——> -

between the dual of the k-reflective diagram of the pair (H,(I?X),TH?(X)) and the
(n — k)-reflective diagram of the pair (H,([9X),IH!(X)). O
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COROLLARY 2.2.7. Ifn = dim X is even, then the difference between the Euler
characteristics of Hy(IPX) and IHEY(X) is given by
X(H.(IPX)) = X(THP(X)) = =2X<n-1-p(m) (L),
where L is the disjoint union of the links of all the isolated singularities of X.
If n =dim X s odd, then

X(H(I"X)) = X(THMX)) = (=1)"F b1y /2(L),

where b, —1y/2(L) is the middle dimensional Betti number of L and 7 is the upper
middle perversity. Regardless of the parity of n, the identity

(21) rk Hy,(IPX) + vk TH? (X)) = vk Hy (M) 4 rk Hy (M, L)

always holds in degree k = n — 1 — p(n), where M is the exterior of the singular set
of X.

PROOF. By Theorem 2.2.5, the pair (H,, H.) = (fI*(IﬁX),IHf(X)) is(n—1-—
p(n))-reflective across the homology of L. Therefore, Proposition 2.1.5 applies and
we obtain

X(H. (1P X)) = x(TH? (X)) = X(L) = 2X<n—1-p(n) (L)-
If n is even, then L is an odd-dimensional closed oriented manifold and thus x(L) =
0 by Poincaré duality. If n is odd, then the cut-off value k for the upper middle
perversity is k =n — 1 —a(n) = (n — 1)/2, the middle dimension of L. We have

X(L) = x<k(L) + (=1)"br (L) + x>k(L) = 2x<k(L) + (=1)*bi(L),
by Poincaré duality for L. Finally, as A_ = Hi(M) and A, = Hy(M, L), identity
(21) follows from the equation

tk H, + 1k H, =tk A_ + 1k A,
of Proposition 2.1.5. (]

If a link of some singularity is not simply connected, so that the general construc-
tion of the intersection space as described above does not strictly apply, then one can
in practice still often construct the intersection space provided one can find an ad hoc
spatial homology truncation for this specific link. One then uses this truncation in
place of the t - L; applied above; the rest of the construction remains the same. The
simple connectivity assumption was adopted because our truncation machine required
it (which in turn is due to the employment of the Hurewicz theorem). Inspection of
the above proof on the other hand reveals that simple connectivity is nowhere neces-
sary, only the existence of a spatial homology truncation of the link in the required
dimension, dictated by the dimension of the pseudomanifold and the perversity. The
following example illustrates this.

ExaMPLE 2.2.8. Let us study Poincaré’s own example of a 3-dimensional space
whose ordinary homology does not possess the duality that bears his name: X3 =
Y7172, the unreduced suspension of the 2-torus. This pseudomanifold has two singular-
ities 1, xo, whose links are L; = Ly = T2, not simply connected. There are only two
possible perversity functions to consider: p(3) = 0 and §(3) = 1. These two functions
are complementary to each other.

Let us build the intersection space IPX first. The cut-off value kis k =n — 1 —
p(n) = 2. We have spatial homology truncations

t<2(L1) = t<2(L2) = Sl V Sl,
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the 1-skeleton of T2. The p-intersection space is I’PX = cone(g), where g is the

composition
Leo=(S'V S x (0,1}~ L =72 x {0,1)
; b

M=T?x1.

We shall proceed to work out its reduced homology. The braid utilized in the proof
of Theorem 2.2.5 looks like this:

HQ(L<2)—0 H2<M)< Hz(J)NZ\ Hi(f)=0 Ho(L<2)°‘Z HO(M)Q‘Z HO(J)fO
H3(g9) =0 H2<L)NZ2 Ha(g) =72 L) =7 Hy(g9) 7 Ho(L)"Z2 Ho(g) =0
Ha(h) & 2 Ha(f) = 2%  Hi(L<2) =2Z'  Hi(M)=2? Hi(j) = Z Ho(f) =0

\/\/\/\/\/\/\/

Therefore, the reduced homology of IP X,
H,(I"X) = H.(g) = H.(T* x I,(S* v §*) x {0,1}),

is

Hy(I7X) 0,

H\(I’PX) = Z{ptxI),

Hy(IPX) = Z{T? x {3}) @ Z(S" x pt xI) & Z(pt xS* x I),
H3(IPX) 0.

Let us now build the intersection space 19X . The cut-off value k is k = n—1—g(n) = 1.
The spatial homology truncations are

te1(L1) = t<1(L2) = pt,

the O-skeleton of T2. The g-intersection space is I7X = cone(g), where g is the
composition

Lot =ptx{0,1}0> L = 72 x {0,1}
ki

M=T?x1I.

g

Thus 17X is obtained from a cylinder on the 2-torus by picking two points on it, one
on each of the two boundary components, and then joining the two points by an arc
outside of the cylinder. Its reduced homology

H.(IX) = H.(g) = H.(T? x I,pt x{0,1}),
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can be determined from the long exact sequence of the pair and is given by

Ho(17X) = 0,

H\(I'X) = Z{ptxI) ®Z(S* x pt x{1}) ® Z{pt xS* x {1}),
Hy(IX) = Z(T? x {3}),

H3(IX) = 0.

The table below contrasts the intersection space homology with the intersection ho-
mology of X, listing the generators in each dimension.

r | IHP(X) | IHY(X) | H,.(I"X) | H,(I7X)
0 pt pt 0 0
1 ST x pt 0 pt xI pt xTI
pt xS* St x pt
pt xSt
2 0 (ST xpt) | T2 x {3} [T?x{3}
S(pt xS1) | ST x pt x[
pt xSt x I
3| B(St x St | (St x S 0 0

The relative 2-cycle S xpt x I in the p-intersection space homology corresponds to the
suspension ¥(S* x pt) in the g-intersection homology, similarly pt xS x I corresponds
to X(pt xS1). In dimension 1, we have an analogous correspondence between the
cycles S x pt, pt xS1. The fundamental class (S x S') is present in intersection
homology but is not seen in the homology of the intersection spaces. This is a general
phenomenon and explains why the duality holds for the reduced, not the absolute,
homology. Except for this phenomenon, the homology of the intersection spaces
sees more cycles than the intersection homology. The 2-cycle T2 x {%}, geometrically
present in X, is recorded by both the homology of I X and 12X, but remains invisible
to intersection homology, though an echo of it is the 3-cycle ©T? in intersection
homology. By the duality theorem, the 2-cycle T2 x {%} must have a dual partner.
Indeed, the intersection space homology automatically finds the geometrically dual
partner as well: It is the suspension of a point, the relative cycle pt xI. The relative
p-cycle ST x pt xI is dual to the g-cycle pt xS' and the relative p-cycle pt xS x I is
dual to the g-cycle S x pt. In the table, one can also observe the reflective nature of
the relationship between intersection homology and the homology of the intersection
spaces. The example shows that in degrees other than k¥ = n—1—p(n), the homology
of IPX need not contain a copy of intersection homology. (We shall return to this
point in Section 3.7.) In degree k it always does, as the proof of the theorem shows.
Let us also illustrate Corollary 2.2.7, relating the Euler characteristics of H, (IPX)
and IHf(X), in the context of this example. In general, see also Proposition 2.1.5,

X(H(IPX)) = x(TH? (X)) = X(L) = 2X<p—1-p(n) (L)-

We have x(L) = x(T? x {0,1}) = 0 and, since k = 2 for perversity p, x<2(L) =
2 — 4 = —2, whence

X(H.(I"X)) = x(IH! (X)) = 4.
Indeed, X(H,(I?X)) =0 —1+3—0 =2 and yUH(X)) =1 -2+0—1 = —2.
Furthermore, since a_ = rk Ho(T? x I) = 1 and ay =tk Hy(T? x I,0) = 2, we have
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according to equation (21),
vk Hy(IPX) + tk THY(X) = rk Ho(T? x I) 4+ tk Hy(T? x 1,0) = 142 = 3,

in concurrence with the ranks listed in the table. Since ¢ = n and the dimension
n = 3 is odd, we have for I9X:

X(H.(I"X)) = x(THY(X)) = —rk Hy (T* x {0, 1}) = —4,
consistent with x(H,(I7X)) =0—3+1—0=—2and YUHI(X)) =1-0+2—1=2.
Formula (21) states that

vk Hy(I7X) + rk THI(X) = vk Hy (T? x I) +tk Hy(T?> x 1,0) =2+ 1 = 3,
again in agreement with the ranks listed in the table.

EXAMPLE 2.2.9. (The intersection space construction applied to a manifold point.)
The intersection space construction may in principle also be applied to a nonsingu-
lar, two-strata pseudomanifold. What happens when the construction is applied to
a manifold point z? One must remove a small open neighborhood of z and gets a
compact oriented manifold M with boundary M = S™"~!. The open neighborhood
of z is an open n-ball, that is, the open cone on the link S"~!. For a perversity p, the
cut-off degree k =n — 1 — p(n) is at most equal to n — 1. Thus the spatial homology
truncation is <3 S™ ! = pt. The fundamental class of the sphere is lost, no matter
which p one takes. Thus IPN is M together with a whisker attached to the 0-cell of
the boundary sphere of M. This space is homotopy equivalent to M and to N — {z}.
The reduced homology of M satisfies Poincaré duality since H, (M) is dual to Ho(M)
and H,.(M) — H,.(M,0M) = H,(M,S™"!) is an isomorphism for 0 < r < n.

REMARK 2.2.10. There are two ways to truncate a chain complex C, algebraically.
The “good” truncation 7.;C, truncates the homology cleanly and corresponds to the
spatial homology truncation as introduced in Chapter 1. The so-called “stupid”
truncation o<, C,, defined by (6<xCy); = C; for i < k and (0<1Cy); = 0 for i > k,
does not truncate the homology cleanly. On spaces, the stupid truncation oL of
a CW-complex L would be oL = L*~! the (k — 1)-skeleton of L, and is thus
much easier to define and to handle than the good spatial truncation. In light of
these advantages, one may wonder whether in the construction of the intersection
space, one could replace the good spatial truncation t<;(L,Y) of the link L by the
above stupid truncation o L and still get a space that possesses generalized Poincaré
duality. The following example will show that this is in fact not possible. Let X™ be
the 4-sphere, thought of as a stratified space

X =8%=D*Ugs D* = M* Ups cone(L?),

where M* = D* and L3 = S3 is the link of the cone point, thought of as the bottom
stratum. Suppose L is equipped with the CW-structure

L=clUedUelUesUclUciucduel,
so that the equatorial spheres S C S* C S? C L are all subcomplexes. Is cone(g),
where g is the composition

ocrL = [ A XY
5 j

M,
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a viable candidate for an intersection space of X? Since H, (M) = H,(D*) = 0, the
exact sequence of the pair (M, L*~1) shows

H,(cone(g)) = H,_(L*1).

For the middle perversity, one would take k = n/2 = 2. Thus 0oL = L' = S* and
the middle homology of cone(g),

Hy(cone(g)) 2 H(S"),

has rank one. If cone(g) had Poincaré duality, then the signature of the nondegenerate,
symmetric intersection form on Hy(cone(g)) would have to be nonzero. (Zero signa-
ture would imply even rank.) But the signature of X = 5% is zero. Thus H,(cone(g))
is a meaningless theory, unrelated to the geometry of X. It is therefore necessary to
choose a subgroup Y C Cy(L) = Ze? @ Ze3 such that (L,Y) € ObCWyp and apply
the good spatial truncation t2(L,Y"), not the stupid truncation o<oL. (Using o1L
or o3L does not yield self-dual homology groups either.) Any such Y arises as the
image of a splitting s : im 9y — Co(L) for G : Co(L) — im Gy = ker 81 = Z{e} — el).
So we could for instance take Y = Ze? or Y = Ze3 because 0a(€?) = el — el = 9a(e3).

2.3. Independence of Choices of the Intersection Space Homology

The construction of the intersection spaces I?X involves choices of subgroups
Y; € Ci(L;), where the L; are the links of the singularities, such that (L;,Y;) is an
object in CWy~g with k =n —1—p(n), n = dim X. Moreover, the chain complexes
C.(L;) depend on the CW-structures on the links and these structures are another
element of choice. In this section we collect some results on the independence of these
choices of the intersection space homology H.,(I?X).

THEOREM 2.3.1. Let X™ be a compact oriented pseudomanifold with isolated sin-
gularities and fized, simply connected links L; that can be equipped with CW-structures.
Then
(1) H,(IPX;Q) is independent of the choices involved in the construction of the in-
tersection space IP X,

(2) H.(IPX;Z) is independent of choices for r #n —1— p(n), and
(3) H,(IPX;Z), k = n — 1 — p(n), is independent of choices if either

Ext(im(Hy, (M, L) — Hy_1(L)), Hy(M)) = 0,

or

Ext(Hy (M, L), im(Hy, (L) — Hy(M))) = 0.

PRrOOF. We shall first look at the integral homology groups. For r > k, the proof
of Theorem 2.2.5 exhibits isomorphisms
H,(M) = H,(I"X).
Thus ];'T(IﬁX ) is independent of the choices of Y; for » > k. Similarly, the isomor-
phisms
H,(I"X) = H,(j) = H,(M, L)

for r < k show that I?T(I’_’X) does not depend on the choices of Y;. This proves

statement (2); it remains to investigate r = k. By Theorem 2.2.5, the pair (H,(IPX),
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TH?(X)) is k-reflective across the homology of the links. The associated reflective

diagram near k is
IHP \
B+=0x

H(L) =5 Hy(M }\ j) ——= Hi_1(L).

The sequence

(22) 0 — Hp(M) HHk(IPX) % impBy — 0
is exact. If Ext(im 84, Hp(M)) = 0, then the induced exact sequence
0 — Hom(im B, Hy(M)) — Hom(Hy(IPX), Hy(M)) == Hom(Hy(M), Hy(M))
— Ext(im By, H,(M)) =0
shows that the sequence (22) splits. Thus
Hy,(I"X) 2 Hy(M) & im .

is independent of the choice of Y;. Similarly, if Ext(H(7),im S_) = 0, then the exact
sequence

(23) 0 — imfB_ — Hy(I”X) =5 Hy(j) — 0
splits and
Hy,(I"X) = Hy,(j) @ im 3_

is again independent of the choice of Y;. This establishes claim (3) of the theorem.
Finally, working with rational coefficients, the sequences (22) and (23) split with-
out any assumption. This, together with

H.(M;Q), r>k,
H.(j;Q), r<k,

proves claim (1) of the theorem. O

H,(I"X;Q) {

REMARK 2.3.2. The assumption that the links be simply connected is adopted
only to ensure the existence of IP X and its omission does not invalidate the theorem,
as the simple connectivity is not used during the proof. In practice, I? X often exists
even if the links are not simply connected, as illustrated by Example 2.2.8 above and
Example 2.3.3 below.

EXAMPLE 2.3.3. Let L, be a 3-dimensional lens space with fundamental group
m1(Ly) 2 7Z/p, p > 2. Let M* be the total space of a D?-bundle over S? with M =
L,. Let X* be the pseudomanifold obtained from M by coning off the boundary.
Since this is a rational homology manifold, the ordinary rational homology of X
enjoys Poincaré duality; nevertheless we shall investigate the intersection space I™X
of X. Here k = n—1—m(n) = 2, so that we must determine a truncation t<o(L,), as
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L, is the link of the singularity. (Note that this is another example involving a non-
simply connected link.) The standard cell structure for L, is L, = e Uel Up e2ued
with corresponding cellular chain complex

ze3 25 Ze? 25 7! - 760,

Thus we may choose t<o(L,) = €’ U el U, €2, the 2-skeleton of L,. Then I™X =
M/(S'u, e?), S* U, e? < L, = M < M. The exact sequence of the pair (M, L,),
HQ(Lp) — HQ(M) — HQ(M, Lp) — Hl(Lp) — Hl(M)

is
0-25%2-12/,—0,
whence
Ext(im(Hy(M, L,) — H1(Ly)), Ho(M)) = Ext(Z/,,2) = Z/, # 0,
but
Ext(H2(M, Ly),im(Hs(L,) — Ha(M))) = Ext(Z,0) = 0.
By Theorem 2.3.1, the integral homology H, (I™X;Z) is independent of choices.

EXAMPLE 2.3.4. There are of course manifolds M with boundary OM = L for
which the hypothesis in (3) of Theorem 2.3.1 is not satisfied, that is, both Ext groups
are nonzero. Consider for instance M? = L, x S* x D?, where L, is a 3-dimensional
lens space with fundamental group m1(L,) =2 Z/,, p > 2, and take k = 3 = 8 — p(9)
for a perversity p with p(9) = 5. The relevant homology groups are

Hy(OM) = Z/p(w x pt x[S']),
H3(M) = Z([L,] x pt x pt),
H3(M,0M) = 7/,(w x pt x[D?,0D?)),

where [—] denotes various fundamental classes and w is the generating loop in L,. The
connecting homomorphism 0, : Hs(M,0M) — H2(0OM) is an isomorphism because
it maps the generator w x pt x[D?,dD?] to

Dx(w x pt x[D? 0D?)) = w x pt xd,[D?, dD?| = w x pt x[0D?],
which generates Hy(0M). Thus the exact sequence of the pair (M, M) has the form
H3(OM) — Hy(M) > Hs(M,0M) S Hy(0M).
It follows that
Ext(im(Hs(M,0M) — Hy(0M)), H3(M)) = Ext(Z/,,Z) =Z/, # 0
and
Ext(Hs(M,dM),im(Hs(M) — Hs(M))) = Ext(Z/,,Z) = 7./, # 0.

As an application of Theorem 2.3.1, we shall see that even the integral homology
of the (middle perversity) intersection space is well-defined independent of choices
for large classes of isolated hypersurface singularities in complex algebraic varieties.

Let wg < wy; < --- < w, be a nondecreasing sequence of positive integers with
ged(wo, - .., w,) = 1. We shall refer to the w; as weights. Let 2, ..., 2, be complex
variables. For each i, we assign the weight (or “degree”) w; to the variable z;. This

means that the weighted degree of a monomial z(°2;" - -+ 2% is woug + -+ + Wy Uy,
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DEFINITION 2.3.5. A polynomial f € Clz, ..., 2z,] is weighted homogeneous if

FO®0 20, A 2,) = M f (20, -+, 20),
where d is the weighted degree of f.

For example, f(z0,21,22,23) = 2823 + 21 + 2520 + 2521 + 252122 is weighted
homogeneous for weights (wp, w1, ws,ws) = (5,14,17,21) with weighted degree d =
56. If all weights are equal to one, then “weighted homogeneous” is synonymous with
“homogeneous”. We shall be specifically interested in 3-folds, so we shall take n = 3.

DEFINITION 2.3.6. A weight quadruple (wq, w1, ws, w3) is called well-formed (see
[BGNO3)) if for any triple of distinct indices (4, j, k), ged(w;, w;, wi) = 1. We shall
also refer to a polynomial f € Clzo, 21, 22, 23] as well-formed if it is weighted homo-
geneous with respect to a well-formed weight quadruple.

The above example of a weighted homogeneous polynomial is well-formed in this
sense.

THEOREM 2.3.7. Let X be a complex projective algebraic 3-fold with only isolated
singularities. If all the singularities are hypersurface singularities that are weighted
homogeneous and well-formed, then the integral homology PNI*(Iﬁ‘X) 1s well-defined,
independent of choices.

PROOF. Let x; be one of the isolated hypersurface singularities of X. Since x;
is a hypersurface singularity, there exists a complex polynomial f; in four variables
20,21, 22,23 such that an open neighborhood of x; in X is homeomorphic to the
intersection V'(f;) Nint D of the hypersurface V(f;) = f;*(0) € C* with an open ball
int D® = {z € C* | || < €} of suitably small radius € > 0. Under the homeomorphism,
x; corresponds to the origin 0 € V(f;). The origin is the only singularity of V(f;).
Set ST =0D8 ={2€ C*| |2| =€} and L; = V(f;) N S?. The space L; has dimension

dim L; = dim S7 + dimg V(f;) — dimg C* =7+ 6 — 8 = 5.

For sufficiently small ¢, L; is a smooth manifold by [Mil68, Corollary 2.9]. Fur-
thermore, [Mil68, Theorem 2.10] asserts that V(f;) N D? is homeomorphic to the
(closed) cone on L;. Thus an open neighborhood of z; in X is homeomorphic to the
(open) cone on L; and thus L; is the link of z; in the sense of stratification theory.
By [Mil68, Theorem 5.2], L; is simply connected. By assumption, f; is weighted
homogeneous with well-formed weights. According to [BGNO03, Proposition 7.1], see
also [BGO1, Lemma 5.8], this implies that Hy(L;;Z) is torsion-free. Since L; is a
compact manifold, Ho(L;;Z) is in addition finitely generated, hence free (abelian).
Consequently,

Hy(L) = é Hy (L)
i=1

is free, where w is the number of singularities of X. Thus the subgroup
is also free and
Ext(im(Hs(M, L) — Hs(L)), H3(M)) = 0.
For the middle perversity /m, we have m(6) = 2, so that £ = 3. By the Independence-
Theorem 2.3.1, H,(I"™X) is independent of choices. O
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Ifalink L; = V(f;)NS7 in the context of the above proof is in addition known to be
spin, then Smale’s classification [Sma62] of simply connected closed spin 5-manifolds
implies that L; is diffeomorphic to S®#m(S? x S3), since Ha(L;) is torsion-free. This
geometric information allows us to work out the intersection space explicitly and to
verify the independence of the intersection space homology rather directly. Indeed,
if m = 1 so that the link is S? x S2, having the minimal CW-structure consistent
with its homology, i.e. S% x 8% = €’ U e? Ue® U €%, then the boundary operator
C3(S?% x S3) — Co(S% x S3) is zero. Therefore, C3 = Z3 (the cycle group) and
Y C (s is forced to be zero. So there is in fact only one possible choice of Y.

Theorem 2.3.7 applies in particular to the case of nodal singularities: If a singular
point z; is a node, then the corresponding polynomial f; is 23 + 22 + 22 + 23, which
is homogeneous (and hence well-formed). In this case, the link is in fact S? x S3.
The case of isolated nodal singularities is rather important in string theory. It arises
there in the course of Calabi-Yau conifold transitions and will be discussed from this
perspective in Chapter 3.

2.4. The Homotopy Type of Intersection Spaces for Interleaf Links

In the previous section we have seen that in general the rational homology of
an intersection space of a given pseudomanifold is well-defined and that its integral
homology is well-defined at least under certain homological assumptions on the exte-
rior of the singular set. In the present section, we shall prove a stronger statement
under stronger hypotheses on the links of the singular points: If the links lie in the
interleaf category (Definition 1.9.1), then the homotopy type of the intersection space
is well-defined.

Let A be a topological space and k a positive integer. Consider the following
three properties for a map f: K — A:

(T1) K is a simply connected CW-complex,
(T2) f.:H.(K;Z)— H.(A;Z) is an isomorphism for r < k and
(T3) H.(K;Z) =0 for r > k.

LEMMA 24.1. Let f : K — A be a map satisfying (T1)-(T3). If A is an object
of the interleaf category, then so is K.

Proor. By (T1), K is a simply connected CW-complex. By (T2) and (T3), the
even-dimensional integral homology of K is finitely generated, since this is true for A.
By Lemma 1.9.3, Hoyen(A;Z) is torsion-free, hence free (abelian) because it is finitely
generated. Thus, by (T2) and (T3), Heyen(K;Z) is finitely generated free (abelian).
Since Hoqd(A;Z) = 0 implies, again by (T2) and (T3), that Hoqa(K;Z) = 0, we
deduce by an application of the universal coefficient theorem that H,qq(K;G) = 0
for any coefficient group G. ]

THEOREM 2.4.2. Let X be an n-dimensional compact PL pseudomanifold with
only isolated singularities xy,...,2, and links L; = Link(x;), i = 1,...,w. If all
L;,i=1,...,w, are objects of the interleaf category, then the homotopy type of the
intersection space IPX is well-defined independent of choices. More precisely: Let
E=mn—1-p(n). Gwen maps f; : (Li)<k — Liy i = 1,...,w, satisfying (T1)-(T3)
and a second set of maps f; : (Li) ey — Liy i = 1,...,w, satisfying (T1)-(T3) as
well, there exists a homotopy equivalence

IPX = cone(g) ~ cone(g) = IP X,
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where g is the composition

||z S5 | zi=om & M

and g is the composition

|| @ B | |z =om & M.

PrOOF. Since L; lies in ICW, there exists a homotopy equivalence €; : L; —
E(L;), where E(L;) is a finite CW-complex that has only even-dimensional cells, see
Proposition 1.9.7. Let €, : E(L;) — L; be a homotopy inverse for €;. Set

L=||Li, E(L) =] |E(L),

e:|_|ei : L — E(L), € :|_|e; : E(L) — L.
Let F': E(L)k=! — L be the restriction of ¢ to the (k — 1)-skeleton and let
G:EB(L)F' — M
be the composition
B I L= oM < M

The space cone(G) will serve as a reference model for the perversity p intersection
space of X. Indeed, we shall show that both cone(g) and cone(g) are homotopy
equivalent to cone(G), hence they are in particular homotopy equivalent to each other.

Since (L;)< is a simply connected homology truncation of L; (by (T1)—(T3) for
fi), it lies in ICW as well, by Lemma 2.4.1. Thus there exists a homotopy equivalence
(€i)<k : (Li)<k = E((L;)<k), where E((L;)<g) is a finite CW-complex that has only
even-dimensional cells. Let (¢;), : E((Li)<x) — (Li)<x be a homotopy inverse for
(€i)<k-

We claim that E((L;)<x) has no cells of dimension k or higher. To verify this, let
rq denote the number of d-dimensional cells of E((L;)<). If k is even, then the even
cellular chain groups in degrees > k are given by

Crtom(E((Li)<k)) = Z™+2™, m > 0.
Since all boundary maps are trivial, we have

zr2m = Cipom (E((Li)<k)) = Hirom(E((Li)<k)) = Hirom((Li)<k) =0

by (T3). Thus 7512, = 0 for all m > 0 and E((L;)<) is a complex of dimension at
most k — 1. Similarly, if &k is odd, then Cy(E((L;)<k)) = 0 and 7x12m+1 = 0 for all
m > 0 because the homology ranks equal the number of cells and the former vanish
in dimensions k + 2m + 1, m > 0, as before — the claim is established.

Let e; : E((L;)<k) — E(L;) be a cellular approximation of (that is, cellular map
homotopic to) the composition
(ed)! k

E((Li)<k) (Li)<k LN L; =5 E(L;).
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As E((L;)<k) has no cells of dimension k or higher, the map e; factors through the
(k — 1)-skeleton of E(L;),

€

E((Li)<k) —= E(L;).

Set
Lay = | @) <r, B(Lar) = |E((Li)<k),

%

€<k = |_|(€i)<k : Loy — E(Ley), €2p = |_|(€i)/<k : BE(L<g) — Ly,

f=firLax =L, e=||e;: E(Ley) = E(L), é=| |é: B(Leg) — E(L)*1,
- . k-1
€=¢ecp: Loy — E(L)" .
The diagram

(24) Ly 7 M

E(L)* 1 C M

commutes up to homotopy because it factors as
Loy — > oM~ n
él \Lid L lid M
B} L —omE— M

and the left-hand square homotopy commutes, since
Fe

(¢ oincl)(ée<y)
eecy
(efe e

f.

The map € is a homotopy equivalence: If r > k, then H,.(L.;) = 0 = H,(E(L)k~1),
so that &, : H.(L<y) — H,(E(L)*~!) is an isomorphism in that range. Once we have
shown that € is a homology isomorphism in the complementary range r < k as well,
it will follow from Whitehead’s theorem that € is a homotopy equivalence, since Ly,
and E(L)*~1 are CW-complexes, € induces a bijection between the connected compo-
nents (L;)<p of L.y and the connected components E(L;)*~! of E(L)*~!, and each
of these components is simply connected. Suppose then that r < k. The skeletal
inclusion incl : E(L)*~1 € E(L) induces an isomorphism of cellular chain groups

1

o

incl, : C.(E(L)*Y) — C.(E(L)).
As H.(E(L)*~Y) = C.(E(L)*~') and H,(E(L)) = C.(E(L)), we deduce that
incl, : H.(E(L)*1) — H,(E(L))
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is an isomorphism. By assumption, f. : H,.(L<y) — H,(L) is an isomorphism (prop-
erty (T2)). The commutativity of the pentagon

(€<k)*

H,.(E(L<y)) —— H.(L<y)

mcl*

H,(E(L)"~ H,(E(L))

implies that é, is an isomorphism. Hence, as € is the composition of the homotopy
equivalence e« and é, &, : H,(L<) — H.(E(L)*~1) is an isomorphism for r < k
(and thus for all r).

Proposition 2.2.4 applied to the diagram (24) yields a homotopy equivalence

cone(g) ~ cone(Q)

extending the identity map on M. Since the f; and the f. both satisfy properties
(T1)—(T3), the same argument applied to the f, instead of the f; will produce a

1
homotopy equivalence

cone(g) =~ cone(Q).

2.5. The Middle Dimension

Let X™ be a compact oriented pseudomanifold whose dimension n is divisible by
4 and which has only isolated singularities with simply connected links. We work
exclusively with rational coefficients in this section. Since 7i(n) = m(n), an upper
middle perversity intersection space I" X for X may be taken to be equal to a lower
middle perversity intersection space I™X. Denote this space by IX = I™X =
I"X. Let m = n/2 be the middle dimension. The compact manifold-with-boundary
obtained by removing small open cone neighborhoods of the singularities is denoted
by (M,0M). Theorem 2.2.5 defines a nonsingular pairing

H,.(IX)® H,_.(IX) — Q.
In the middle dimension, one obtains a nonsingular intersection form
Hp(IX)® Hp(IX) — Q.

We shall prove that this form is symmetric. In particular, it defines an element in the
Witt group W(Q) of the rationals. On middle perversity intersection homology, one
has the symmetric, nonsingular Goresky-MacPherson intersection pairing

IH,(X)®IH,(X) — Q,

which also defines an element in W(Q). We shall show that these two elements
coincide, so that while H,,(IX) and IH,,(X) can be vastly different, they do yield
essentially the same intersection theory.
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LEMMA 2.5.1. Let (M,0M) be an oriented compact manifold-with-boundary of
dimension 2m, with m even. Let dp @ Hp (M) — H™(M,0M) = H,,(M,0M)*
be the Poincaré duality isomorphism inverse to capping with the fundamental class
[M,0M] € Hop(M,0M), & = ji : Hp(M) = Hp(M,0M) the canonical map, and
let w € Hpy,(M). If dp(w) annihilates the image of a, then a(w) = 0.

PROOF. Set w = dps(w), so that w N [M,0M] = w. If w annihilates im «, then
(7% (W), 0) = (W, ju(v)) = 0
for all v € Hy, (M), j* : H™(M,0M) — H™(M), which implies that j*(w) = 0. The

diagram

—N[M,0M]
B ———

H™(M,0M) H,, (M)

H™(M) _—NIMOM] H, (M, 0M)
commutes, whence

a(w) = j(w N [M,dM]) = 5*(w) N [M,dM] = 0.

THEOREM 2.5.2. The intersection form
®rx : Hp(IX) ® Hy(IX) — Q
is symmetric. Its Witt element [®Prx] € W(Q) is independent of choices. In fact, if
Crg IHW(X)QIH,(X) — Q
denotes the Goresky-MacPherson intersection form, then

[@rx] = [®ru] € W(Q).

PrOOF. We shall use the following description of the intersection form on H,, (IX).
Consider the commutative diagram (which is part of a self-duality isomorphism of an
m-reflective diagram)

Hp(1X)
Hyn(OM) —2—— H, (M) 0 HL(M M) H, (M)
E‘Lda gidM > d gid’M gldé
B3 Lot .
Hyp 1 (OM)* —> H,,(M,0M)* H,,(M)* —— H,,(dM)*
H,,(IX)*

The dotted isomorphism d is to be described. It determines the intersection form
®;x by the formula

Prx(v@w) = dv)(w), v,w e Hp(IX).
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The Goresky-MacPherson intersection form ®;y : ima ® ima — Q is given by
Crp(v@w) = dy(v)(w) for any v € Hp, (M) with a(v") = v. This is well-defined
because if a(v") = v, then v/ —v" is in the image of 8_, v' —v" = _(u), u € Hp,(OM),
and

dar(v' = v")(w) = dagf-(w)(a(w)) = B1ds(w)(a(w)) = a*Bda u)(w) =0,

where a(w') = w.

Frequently, we shall make use of the symmetry identity d (v)(w) = d),;(w)(v),
v € Hy (M), w € Hy,(M,0M), which holds, since the cup product of m-dimensional
cohomology classes commutes as m is even.

Choose a basis {e1, ..., e, } for the subspace ima C H,,(M,9M). Choose a subset
{€1,...,&} C Hp(M) with a(e;) = e;. In this basis, ®ru(e; @ e;) = da(€)(e;).
Define an annihilation subspace Q C H,,,(M,0M) by

Q = {q € Hy(M,0M) | das(@)(g) = 0, for all i}.

We claim that @ Nima = 0: Let v € @ Nima. Then v = a(w) for some w € H,, (M)
and dps(€;)(a(w)) = 0 for all i. Consequently,

dyr(w)(e;) = djyy(e:)(w) = diy(a(E))(w) = a”du(€)(w) = dur(€)(a(w)) =0
for all ¢ and we see that dj;(w) annihilates ima. By Lemma 2.5.1, v = a(w) =
0, which verifies the claim. Let us calculate the dimension of (). The subspace
F C H,,(M,0M)* spanned by {dy(€1),...,dn ()} has dimension dim F' = r, since
{€1,...,e.} is a linearly independent set and dps is an isomorphism. If V is any
finite dimensional vector space and F' C V* is a subspace, then the dimension of the
corresponding annihilation space W = {v € V | f(v) = 0 for all f € F} is given by
dim W = dim V — dim F. Applying this dimension formula to V = H,,(M,0M), we
get
dim @ = dim H,,,(M,0M) —r,
or
dimim o + dim Q = dim H,,,(M,0M).
Hence we have an internal direct sum decomposition

Hp, (M, 0M) =ima® Q.

Let {q1,...,q:} beabasis for Q. Then {es,... e, q1,...,q} is abasis for H,,(M,0M).
By construction, the formula

(25) dr(€:)(q;) =0

holds for all 4, j. For the dual H,,(M,dM)*, we have the dual basis {e!,... ,e", ¢*,...,
q'}. Since dys : Hy (M) — H,,(M,0M)* is an isomorphism, there are unique vectors
pi € Hp, (M) such that dps(p;) = ¢°. We claim that {p1,...,p;,€1,...,€.} is a basis
for H,,(M). Since dps is an isomorphism, the set {p1,...,p;} is linearly independent
and spans an [-dimensional subspace P C H,,(M). The linearly independent set
{€1,...,€.} spans an r-dimensional subspace E C H,,(M). We will show that P N
E =0 Letv=>Ymp =>¢€¢ € PNE, m,e; € Q. Then dy(v) = > mg’,
a(v) = e€jej, and

S sy (e;) = dyga(v) = a’dy(v) = a* 3 mig'.
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Let w € H,,(M) be an arbitrary vector. Its image a(w) can be written as a(w) =
> wiek, wi € Q. Thus

O edile)w) = (@Y mg")(w) = (D mig") (al(w))
= (D_md")(Q_wrer) = Y _ miwrd' (ex) = 0.
ik

It follows that d); > ¢je; = 0 and so > €;e; = 0. Thus all coefficients ¢; vanish and
v="> ¢;€; =0. Consequently, {p1,...,pi,€1,...,€} is a linearly independent set in
H,,(M). It is a basis, as
dim H,,, (M) = dim H,,,(M,0M)* = dim H,,,(M,0M) = r + 1.
This finishes the verification of the claim. Since a4 is surjective, we can choose
q; € Hp,(IX) with a4 (g;) = ¢;- We claim that
B={a_(p1), -0 (P10 (@) o (@) Tay - T}

is a basis for f[m(IX). Since «_ is injective, the set {a_(p1),...,a—(p;),a—_(€1),...,
a_(€,)} is linearly independent and spans ima_ C fIm(IX). The set {Gy,...,q;}
is linearly independent (since {qi,...,q} is linearly independent) and spans an I-
dimensional subspace Q C ﬁm(IX). We shall show that ima_ N Q = 0. Suppose
v=a_(w) =Y \q € ima_NQ. Since ay(v) = a(w) =Y N\ig; and ima N Q = 0,
we have Y \;q; = 0. Therefore, \; = 0 for all i and v = 0. It follows that B is a
linearly independent set containing r + 2 vectors. The exact sequence

Ho (M) “=55 H,,(1X) % H,\ (M, M) — 0

shows that B
dim H,,,(IX) = dim H,,,(M,0M) + rk(a_S-).
Using rk(a_f_) = rk f_ = dimker « and
r=rka =dimH,,(M) —dimkera = r 4+ — dimker a,
we see that B
dmH,(IX)=r+)+1=r+2L
Thus B is a basis for H,,(IX). This basis yields a dual basis
B ={a_(p)"...,a-(p)" 0 (@)% . a (@)1, @
for H,,(IX)*. We observe that

(26) a*(¢') =0
and
(27) a(p;) =0

for all i. Equality (26) holds, since on basis vectors,
a*(¢')(;) = ¢'(a(e;)) = q'(e;) =0
a*(q")(pj) = 4" (a(p) = ¢’ O ewex) = Y _ exq'(ex) = 0.
Equality (27) follows from (26) by noting that, as d,; is an isomorphism, a(p;) van-

ishes if, and only if, d},;a(p;) vanishes, and

dya(ps) = o*dy(pi) = a*(q") = 0.
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Furthermore, the relation
(28) 7; = ()

holds for all j. Its verification will be carried out by checking the identity on the three
types of basis vectors of B: On vectors of the type a_(pg), we have

7;(a—(pr) = 0 = ¢ (a(pr)) = (4 (a”) (a—(pr)),
using equation (27). On vectors of the type a_(g;), we have
o’ (¢)(a- (&) = ¢ (a(@)) = ¢ (e;) = 0 =T} (a_(e)).
Finally, on vectors of the type g, we have
T (@) = 60 = ¢ (ar) = ¢ (a4 (@) = (') @),

which concludes the verification of (28).

Let us proceed to define the map d : H,,(IX) — H,,(IX)*. On the elements of
the basis B, we set

dla_(&;)) = aidu(e),
dla—(p;)) = G,
d(g;) = o—(p)"
Set N

H = Qla_(@)....,a_(&)) C Hu(IX),
IHT = Qa-(e1)"...,a-(&,)") C Hyn(IX)",
L_ = Q{a—(p1), "aaf(pl»CHWi( X),
LT— = Q<O‘—(p1)*7"'70~‘—(pl)*>CHm(IX)*a
Ly = Q<617"'76l>cj—£m(IX)7
LY = Q@,....q) C Hn(IX)".

We obtain thus corresponding internal direct sum decompositions

H,(IX)=L_®IH® L.,
and
H,(IX)" =L o 1H © L]
Note that IH is isomorphic to the intersection homology of X. The isomorphism is
given by
TH =5 ima = IH,,(X),
a_(€) = ar(a_(e)) = ale;) = ¢;.

We claim that d(IH) C THT. To see this, we write d(a_(€;)) as a linear combination

da_(@)) =Y ma_(pe)" + > o ()" + Y AT

with uniquely determined coefficients 7y, €;, As. The coefficient 7, can be obtained
by evaluating on the basis vector a_(pg):

T = (aidum(@))(a-(pr))
= gM(Ei)(CV Dk))
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using (27). The coefficient A4 can be obtained by evaluating on the basis vector g,:

s = (aidu(E))(3,)
= du(&)(a4(Ts))
= gM (Ei) (QS)

by (25). The claim is thus established. We claim next that the restriction d| : TH —
ITH?' is injective: Let v € TH be a vector with d(v) = 0. Writing v = 3" €;a_ (&), we

have
Oéj,_dM(Z Eiéi) = Zeiaj_dM(éi)

> eid(a— (&)

= d(v)

= 0.
Since o is injective and dj; is an isomorphism, it follows that ) e;e; = 0. This
can only happen when ¢; = 0 for all ¢, which implies that v = 0. This finishes the
verification of the claim. From

dimIH =dim IH' =r

we conclude that

d: IH =5 IH'
is an isomorphism. Note that under the above isomorphism IH 2= IH,,(X) to
intersection homology, d|;g is just the Goresky-MacPherson duality isomorphism
IH,,(X) —5 IH,,(X)*. By construction, the restrictions

d:L. =L, d:L, =Lt

are isomorphisms as well. It follows from the above direct sum decompositions that
d is an isomorphism.

Our next objective is to prove that the pairing ®;x, induced by d, is symmetric.
A sequence of calculations will lead up to this. Pairing I H with itself is symmetric:

dla—(&))(a—(er)) = (aidm(&))(a—(ek))
dr(@)(aler))
dy(a(er)) ()
(a*dar(er)) (@)
(ol dum(er)) (@)
(o dnr(Ex))(a— (&)
= d(a_(er))(a—(e)).

The pairing is zero between IH and L_:

d(or— () (a—(p;))

(i dn (&) (e (p;))
gM (@) ((ps))

by (27). The pairing is also zero between IH and L :

dla—(€:))(q;) = (afdm(€:))(q;)
= dum(@)(ay(g;))
= gM(Ei)(Qj)
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by (25). The pairing vanishes between L_ and I H:

d(a—(p;))(a-(er)) = Tj(a—(er)) = 0
by definition of g} as a dual basis element. Pairing L_ with itself yields another trivial
block:

d(o—(pj)(e—(px)) = g5 (a—(px)) = 0,
again by definition of g; as a dual basis element. Pairing L_ with L and pairing L.
with L_ both give the identity matrix in our chosen bases:

dla—(p))(@) = T;(a)
= a(pr)"(a-(ps))
= d@)(a-(p)))-

The pairing vanishes between Ly and I H:

d(@;)(a—(exr)) = a—(p;)"(a-(&)) = 0
by definition of a_(p;)* as a dual basis element. Finally, pairing Ly with itself yields
a trivial block:

d(@;)(qx) = a—(pj)* (@) = 0.

Prx(a-(&) ®@a-(g) = (afdu(@))(a-(e)))
= du(@)(a(e;))
= du(ei)(e;)
= POy (ei X e ) .
In summary, we have shown that with respect to B, ®;x has the matrix representation

LA S
(Prg)s O 0 I1H
0 0 1; || L
0 1, 0 | Ly

‘We have

(Prx)s =

with (®7g)s denoting the symmetric Goresky-MacPherson intersection matrix on
IH,,(X) with respect to the basis {e1,...,e,}, and where 1; denotes the identity
matrix of rank [. Thus ®;x defines an element [®;x] € W(Q) in the Witt group
of the rationals. Set S = L_ & L, C H,,(IX). The subspace S is split ([MH73])
because it contains the Lagrangian subspace L_, ®;x|,_ =0,dimL_ =1= %dim S.
Thus [®rx|s] =0 € W(Q) and we have

[@1x] = [®rx]ru] + [P1x|s] = [®ru] € W(Q).
It remains to be shown that the two squares

Hp (M) <= H,,(IX) 2% H,,(M,0M)

IR
¥

>~ ldy >~ | dy

* *

Hy (M, 0M)* <% H,,(IX)* —=» H,,(M)*
commute. The commutativity of the left-hand square can be checked on the basis
{p1,...,p1,€1,...,€} of Hy(M): For the vectors p;, we find

do_(p;) =, = o (¢") = o’ dar(p;)
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by (28), and for the vectors €; we have
d()é,(éi) = O[j_dM(El)

by definition. Thus the left-hand square commutes. The commutativity of the right-
hand square will be verified on the elements of B. For basis vectors a_(€;),

aZd(a(e))

ar o dy(€;)
a*dM(Ei)
dyya(e)

= dyasa (@)

For basis vectors a_(p;),

o d(a—(py)) = o () = o” (o’ (¢')) = a*(¢7) = 0 = diya(p;) = dyas (a—(p))),
using (26), (27) and (28). For basis vectors g;, we need to verify the equality

a” (a-(p;)") = dy(gj) € Hm(M)".

We will do this employing the basis {p1,...,pi, €1,...,€-} of Hp(M):
o (a—(p)*)(pr) = a—(p;)*(a=(pk)) = 6k = ¢"(¢;) = dar(pr)(q5) = dr(a5) (pr),

a” (a-(p;)") (@) = a—(p;)"(a—(ek)) = 0 = dar (@) (g;) = dn(g;)(Er)

(using (25)). Hence the right-hand square commutes as well. O

EXAMPLE 2.5.3. Let N* = 52 x T2. Drill out a small open 4-ball to obtain the
compact 4-manifold Ny = N — int D* with boundary 9Ny = S. The manifold M8 =
Ny x 8? x §? is compact with simply connected boundary L = OM = S x S? x §2.
The pseudomanifold

X8 = M Uy, cone L

has one singular point of even codimension. Consequently, for classical intersection
homology TH™(X) = IH?(X) and for the intersection spaces I™X = ["X. We shall
denote the former groups by I H,(X) and the middle perversity intersection space by
IX. Our objective is to compute the intersection form on ﬁ4([ X) and compare it
to the intersection form on I'Hy(X). We shall use the notation of the proof of the
Duality Theorem 2.2.5.

Let
a =1[S? x pt x pt], b= [pt xS* x pt], ¢ = [pt x pt xS]

denote the three generating cycles of H,(N). Inspecting the long exact homology

sequence of the pair (Ny,dNp), we see that Hi(Ng) = Hy(No,ONg) = Hy(N) is

generated by the cycles b, c. We see furthermore that Ho(Ny) = Ho(N) is generated

by a,b x ¢ and H3(Ny) = H3(N) is generated by a x b, a x ¢. The homology of Ny is
summarized in the following table:

. (No) | Hy | Hy | H, Hs H,

Generators | pt | b, ¢c|a, bxc|axb axc]| 0

Let
x = [S% x pt xpt], y = [pt xS? x pt], z = [pt x pt xS
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be the indicated cycles in H,(L). By the Kinneth theorem, the homology of L is
given by:

H,.(L) Hy | Hi | Hy | H3| Hy Hs Hg Hy
Generators | pt | 0 |y, z| = |yXz|zXy, axz| 0 |zXyxz

If V is a vector space with basis eq,...,e;, then e],..., e/ will denote the dual basis
for the linear dual V*. The Poincaré duality isomorphism
dp, : Hy(L)* = Hs(L)
is given by
dr(y x z)* = x.
We have
Hj3(M) = H3(No) x Ho(S* x S?) @ Hi(No) x H2(S? x S?),
so that
Hs(M)=Q{axbyaxec,bxy, ¢cxy,bxzcxXz).
The middle homology of M is given by
Hy(M) = Hy(Ny) x Ha (5% x §%) @ Hy(Ny) x Hy(S? x §?),
so that
H,(M)=Q{axy,bxcxy,axzbxcxzyXz).
The map
G- : Hy(L) — Hy(M)
maps the generator y X z to y X z € Hy(M), in particular, S_ is injective. If v, w are

two homology classes, we shall from now on briefly write vw for their cross product
v X w. The surjective dual map

B*  Hy(M)* — Hy(L)*
maps (yz)* to (yz)* and all other basis elements to zero. Next, let us discuss the
exact sequence
B @ N €
Hy(L) = Ha(M) == Ha(j) = Hz(L) — Ha(M).

(Note that 84 = d4 in the present context.) Let us first calculate the middle inter-
section homology group from it:

Hy(M Hy(M Hy(M
[Hy(X) =ima M) _ Ha(M) _ Ha(M)

ker a imf_ Q(yz)

Hence,

TH4(X) = Q{ay, bey, az, bez).
We claim that e is the zero map. Since the boundary homomorphism Hy(Ny, ONy) —
H3(S3) maps the fundamental class [N] = a x b x ¢, which we may identify with
the relative fundamental class [Ny, 9Ny, to the fundamental class [ONp], the latter
is mapped to 0 under H3(S®) — H3(Np). Pick some point in S? x S? to get a
commutative diagram of inclusions

53181\70 NO

l l

53 x §2 x §2 —= Ny x 52 x §2




120 2. INTERSECTION SPACES

which induces a commutative square
H3(S%) — H3(Ny)
Hs(L) —— H3(M)

Since the left vertical arrow maps [0Np] to z and the upper horizontal arrow maps
[ONy] to 0, it follows that e(xz) = 0. Since x generates Hs(L), € is indeed the zero
map. Consequently, d is surjective,

im6+ = Q<x>7
e Hi(j) _ Hi(G) _ Ha())
2(3)  Ha(G)  Ha() . _
TH(X) ~ ma  kers, om0+ = Q@)
‘We have
H,(j) = Hy(X) = Qlay, bey, az, bez, abe),
with

04 (abe) = x.
The Poincaré duality isomorphism

dy - Hy(M)* =5 Hy(j)

is given by
(ay)* +—  bez
(bey)* —  az
(az)* +—  bey
(bez)* —  ay
(yz)* +— abe.

Take spg :im X — Hy(M)* to be
spa(y2)" = (yz)"

This determines sqs : im o4 — Hy(j):

$05(2) = darspadz (2) = dassya(y2)” = dus(y2)" = abe.
The middle intersection space homology group is given by

I;T4(IX) = Q(ay, bey, az, bez, yz, abe).
Note that a(yz) = 0, since yz is in the image of 5_. The factorization
Hy(M) 2= Hy(IX) =5 Hy(j)

of a is given by

a-(ay) = ay, ailay) = ay
a_(bcy) = bey, ay(bcy) = bey
a_(az) = az, ay(az) = az
a_(bez) = bez, ay(bez) = bez
a-(yz) = yz, ai(yz) = 0
a4 (abe) = abe.

The map Sy : Hy(j) — Hs(L) agrees with o, i.e. maps abc to x and all other basis
elements to zero. Take the splitting s, : Ha(M)* — H4(IX)* for a* to be

spa(ay)” = (ay)”, spalbey)” = (bey)™, spalaz)” = (a2)",
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Spa(bez)” = (bez)*, spa(yz)* = (y2)*.
Take the splitting sg : Ha(j) — H,(IX) for v, = a4 to be
Sgv(ay) = ay, sqy(bcy) = bey, sqy(az) = az,

Sqy(bez) = bez, sq(abe) = abe.

Thus s, is
img* =L Hy(IX)*
(yz)* = (y2)"
and s, is

imé, -5 Hy(IX)
x +— abc.
The Poincaré duality isomorphism

dyy - Ha(§)" > Ha(M)

is given by
(ay)* +— bez
(bey)* — az
(az)* +— by
(bez)* —  ay
(abc)* — yz.

The following table calculates the duality isomorphism
d: Hy(IX)* = Hy(IX)
on the middle intersection space homology group:
| v | d(v) |

(ay)” = o (ay)" | v-d)y(ay)” = (bcz) = bez
(bey)™ = o (bey)™ | v-diy(bey)” = v-(az) = az
(az)* = o (az)* | y—d)(az)* =v_(bcy) = bey
(bez)* = ol (bez)” | y—djy(bez)* =y (ay) = ay
(abe)” = o (abe)* | y-d),(abe)” =y (yz) = yz
(W2)" = sp(y2)" | s4dr(yz)" = sq(x) = abe

(Note yv— = a_ here.) The intersection form on Hy(IX) with respect to the basis
{ay, bey, az,bez, abe, yz} is thus given by the matrix

0001 0O
001 00O
01 00 0O
10 0 0 00
0 000 01
0000 10
On the basis elements {ay, bey, az, bez}, this matrix contains the block
0 0 01
0 010
01 00
10 00

which is the intersection form on I Hy(X).
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2.6. Cap products for Middle Perversities

The intersection space cohomology trivially has internal (with respect to the space
and with respect to the perversity) cup products

H(I’X) @ H*(IPX) — H""5(I"X),
given by the ordinary cup product. The ordinary cap product
H (I™X)® H;(I™X) % H;_,(I"X)

is of little use in establishing duality isomorphisms, since P~I*(I ™ X') never contains an
orientation class, the reason being that H, (I™X) = Hy(I"X)* =0 (n = dim X, X
connected). Orientation classes for singular spaces X are usually contained in H,(X),
so what would be desirable would be cap products of the type

H (I™X)® Hy(X) 2 Hi_,(I"X)
and

H'(I"X) ® Hy(X) % H,_.(I"X).
We shall construct such products, at least on the even cohomology H?* of the middle
perversity intersection spaces. Chern classes of a complex vector bundle, for instance,
lie in the even cohomology of the underlying base space. The L-class of a pseudo-
manifold, when defined, generally lies in the ordinary homology of X. Thus the new
product allows one to multiply such classes and get a result that is again a middle
perversity intersection space homology class. In constructing the products, we shall
concentrate on the important two middle perversities and leave the obvious modifica-
tions necessary to deal with other perversities to the reader. Similarly, it is possible

to go beyond the even cohomology-degree assumption, but we do not work this out
here.

2.6.1. Motivational Considerations. The existence of a cap product of the

type
H'(I"X) @ Hy(X) - Hy_(I"X)

seems counterintuitive from the point of view of classical intersection homology. The
product asserts that one may take a class in the cohomology of the middle perversity
intersection space, pair it with an arbitrary homology class and one will end up with
a class that lifts back to a class in the homology of the middle perversity intersection
space again. An analogous statement for intersection homology is certainly false, as
the following example shows. Suppose X is the pseudomanifold with one singularity
obtained by coning off the boundary of a compact manifold M of dimension, say, 10.
The codimension of the singularity is even, so I™X = ["X = [X and TH"(X) =
ITH(X) = IH.(X). There cannot generally be a cap product

N:TH*(X)® Hy(X) — THy(X),

for example. The reason is that since 2 is below the middle dimension 5, we have
ITH?*(X) = H?*(M) and IHy(X) = Hy(M). Furthermore, Hy(X) = Hy(M,0M) so
that the existence of the above product would amount to a cap product

N: H*(M)® Hy(M,0M) — Hy(M).
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Such a product cannot generally be defined. The evaluation of the absolute chain-level
product

on the submodule CV (M) ® C;(0M) will lead to chains in C;_;(0M), but these chains
can be nontrivial, even homologically. Thus the product (29) induces only a product

N:H(M)® H(M,0M) — H;_;(M,0M)
and not a product
N: H) (M) ® H(M,0M) — H;_;(M).

Why, then, does the pairing of an intersection space homology class with an arbi-
trary homology class again yield an intersection space homology class? Let us give a
systematic analysis of the behavior of intersection homology versus the homology of
intersection spaces in this regard. The analysis continues to be framed in the context
of the above 10-dimensional X. Let the symbol “a” denote the absolute (co)homology
of M and let the symbol “r” denote the relative (co)homology of the pair (M,0M).
Since we always wish to cap with arbitrary homology classes, we only deal with cap
products of the type — Nr — —. As we have seen, capping an absolute cohomol-
ogy class with a relative homology class gives a relative homology class. Capping a
relative cohomology class with a relative homology class gives an absolute homology
class, since (29) restricts to zero on the submodule C7(M,dM) @ C;(0M). Thus, cap
type behaves like a logical negation operator

rer —  a,
axr — 7.

We shall first focus on intersection homology. To simplify our analysis, we shall leave
aside the middle dimension. In the tables below, a field will be crossed out (receive
an entry “x”) if either middle dimensional elements would be required to fill it or a
cap product for this field would land in a negative dimension. We investigate in detail

for which ¢ and j one can define a pairing
N:TH (X) @ Hi(X) — TH;_;(X).
In terms of the pair (M,dM), the groups I H’(X) have the following types:

J 0112345 |6|7[8]9]10

(30) IH.(X)|al|la|alala|x|r|r|r|r|r

The entries of the following table show what the actual cap type of the result of N on
ITHY(X)® H;(X) is. Since cap type is negation, the rows of this table are obtained
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10

by negating the row (30).

i’

(31)

10

The next table contains the dimensions i — j of the results of N on TH/(X) ® H;(X)

or on H/(I1X) ® H;(X).

10

10

4

5

716

8

9

10

N

(32)

10

The table below decodes the a/r-type of TH;_;(X).

o
= &
| &
0 | &
D~ |~
NeoNES
0| X
<3
el RS
[a RS
— 3
(=N
—~
<2
I e 7]
. H.v,
~
—~
™
™
N

Putting the result of table (33) into table (32) we obtain:

i’

(34)

10
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Take table (31) and table (34) and perform the transformation

(31) | (34) | (35)

r r — white
r a — black R
a r | — white
a a — white

125

on it. (White fields mean that there is no inconsistency between the actual result
(31) of the cap product and the putative target (34). For instance, a,r receives white
because there is a canonical map from absolute to relative homology. The pair r,a
receives black, since you cannot always lift a relative class to an absolute one.) The

result is:
~Nlol112]3]4l56]7]819]10
O |M | X | X | X|X|X|X]|X]|x|x]|X
1 ||| X | X | X|X|X]|X|X]|Xx] X
2 |l |08 | X | X |X|X|X]|X]|x|X
S (| BB | x| X|Xx|x]|x]|x|X
4 (H|H B B B x| x|x|x]|x|x
(35) 5 x || 0 B B x| x| xX|xX]|Xx]| X
6 x ||l 0| x X | x| x| x
7 x ||l | x X | X | X
8 x || x X | %
9 X | X X
10 X

The presence of the black fields is the reason that no general cap product N : TH?(X)®
H;(X) — IH,;_;(X) can be defined.

Let us carry out the very same kind of analysis for the homology of the intersection
space, asking for a cap product N : H/(IX) ® H;(X) — H;_;j(IX). The groups

H(IX) have the following a/r-types:

J

0

1

2

5

7

10

(36)

Hi(IX)

r

r

r

X

a

a

The entries of the following table show what the actual cap type of the result of N on
HI(IX)® H;(X) is. Since cap type is negation, the rows are obtained by negating

the row (36).

~Nlol1] 2131451671891 10
0 |a| X | X | X|X|X]|X]|X|XxX]|X] X
1 |la|la | X | X|X|X|X]|X]|X|X]|X
2 lala|la| X | X|X]|X|X]|XxX]|xX]|X
3 |lala|la|la|X|X|X|X]|X]|X]| X
4 lalalala|al|X|X]|X|X]|X] X
5 lalala|a|a|X|X|X|X|X]X
6 |alalala|al|XxX|7r|Xx|x]|x]| X
7T lala|la|lal|la|xX|r|r|x|x|Xx
8 lalalala|la|XxX|r|r|r|x]| X
9 lalal|la|lala|X|r|r|r|r]| X
100 |lalalalalal| X |7 |7r|r|r|T
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The table below decodes the a/r-type of IA{Q_]-(IX).

i—j 0[1]2|3[4|5|6|7[8]9]10
(38) H, ;(IX)|r|r|r|r|r|x|alala|al a
Putting the result of table (38) into table (32) we obtain:
~Nlol1l2]34l5]6|7]8]9]10
0 TIX | X | X[ X[ X]|X]|X]|X]|X] X
1 rlr X | X[ X|X|X]|X]|X]|X]|X
2 rlr|r | X | X|X|X|X]|XxX]|XxX]|X
3 rlr|r|r | X | X|X|X]|X]|X]| X
(39) 4 rlr|r|r|r| x| x|x|x]|x|X
5 X|r|r|r|r|X|X|X|X|X]X
6 a|X|r|r|r|XxX|r|XxX|x|x]| X
7T lala|xX|7r|r|XxX|r|r|x|x]|X
8 alala | X|r|xX|r|r|r|x|X
9 alalal|la|X|X|r|r|r|r]| X
100 |alalalala|X|7r|r|7r|7|T

Take table (37) and table (39) and perform the above transformation

(37) | (39) | (40)
r r | — white
r a — black
a r | — white
a a — white
on it to get
SNlol1l 2134516781910
0 X | X | X | X | X | X|X]|X]|x]| X
1 X | X | X | X | X|X]|X|X]| X
2 X | X | X | X | X | x| x| X
3 X | X | X | X |X|X] X
4 X | X | X | x| x| X
(40) 5 X X | X | X | X |X| X
6 X X X | X | X | X
7 X X X | x| x
8 X X X | X
9 X | X X
10 X

There are no blackouts for H, (IX). This explains why a cap product N : HY (IX)®
H;(X) — H;_;(IX) can be defined.

2.6.2. Canonical Maps. Let X™ be a pseudomanifold with isolated singular-
ities x1,...,2y. Let X be the quotient of X obtained by identifying the points
Z1,...,Ty. Then X is again a pseudomanifold. It has one singular point whose link
is the disjoint union of the links L; of the points ;. The quotient map X — X isa
normalization of X if all L; are connected. If w = 1, then X = X. For the homology
we have the formula B

H.(X)= H.(M,dM).
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If j : OM < M denotes the inclusion of the boundary, then X may also be described
as X = cone(j). The reason why we introduce X here is that there will be canonical
maps ¢ : IPX — X, but if there is more than one singularity, i.e. w > 2, then there is
no map from I?X to X. However, as far as (co)homology is concerned, switching back
and forth between X and X is no big deal, since the map X — X, for X connected,
induces isomorphisms H,(X) = H.(X) for r # 1 and Hy(X) = H|(X) ® Z¥~ 1.
The intersection homology does not change at all under normalization. Another in-
terpretation of X is this: If a negative perversity value p(n) = —1 were allowed
(this would be one step below the zero perversity 0), then k = n — 1 — p(n) = n,
Loy =L, =L = 0M (since L has dimension n — 1), f =id : Ly — IM and
IPX = cone(g) = cone(jf) = cone(j) = X. So one may view X, but not X, as an
extreme case “I~' X" of an intersection space of X and thus a canonical map c should
have target X, not X.

To a diagram of continuous maps

x—1 Ly
20 h
A
we can associate a commutative diagram

h id

Y -7 - -7

A A A

! hf h

Xx{1} 2% xx{1}) L yx{1}

Y

. Y
cone(X) 24 cone(X) conelf)

Y
cone(Y)

The pushout of the left column is cone(f), the pushout of the middle column is
cone(hf) and the pushout of the right column is cone(h). Thus the horizontal maps
of the diagram induce maps

cone(f) —» cone(hf) — cone(h).
The braid of the triple (f, hf, h) contains the exact sequences

(hf)x b

H(X) "% H.(2) 2 Ho(hf) 25 H_(X)

as well as

H(Y) 2 H(Z) 2 Hy(h) 25 H,_ (V).
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The diagram

H,.(h)

is contained in the braid and commutes. The corresponding diagram on cohomology

H"(Z) ~~— H"(hf)

H' (h)

commutes also.

Applying this to the diagram
Lo —L v L =0M

we obtain canonical maps

I?X = cone(g) —= cone(j) = X
and
M -2 17X
(the latter is the canonical inclusion map from the target of a map to its mapping
cone) such that

H, (M) "~ H,(I"X)

and

H™(X)
commute. The manifold M has the following interpretation as an intersection space:
If p(n) =n — 1 were allowed (it is actually one step above the top perversity ¢), then
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k=n—-1—p(n) =0, Loy = Lo = & (the empty space) and I?X = cone(? — M) =
M™, the union of M with a disjoint point.

REMARK 2.6.1. Due to the fact that the construction of intersection spaces re-
quires (in general) certain choices in the k-th cellular chain groups of the links, the
existence of maps between IPX and I9X for different perversities p,q is a some-
what delicate matter and will not be pursued in the present book. When such maps
I?X — I19X exist, then certainly only for p > G. For such p, ¢ one has canonical maps
THI(X) — IH?(X) on intersection homology, once again documenting the reflec-
tive nature of the relationship between intersection space homology and intersection
homology.

2.6.3. Construction of the Cap Products. We take rational coefficients for
this section. With more care, integral products can also be defined, where possibly
exceptional degrees are those close to k. The difficulty stems from the fact that for ho-
mology, H,(I"™X;7Z) = H,.(M;Z) when r > k, while one need not have H"(I"™X; Z) =
H"(M;7Z) for cohomology when r > k. Since H*(L ;) = Ext(Hy_1(L),Z) (see Re-
mark 1.1.42), one has in the borderline case r = k + 1 the exact sequence

Ext(Hy_1 (L), Z) — H*Y(I™X;2) — H*Y(M;2Z) 2= H"Y(Loy; Z) = 0,

which shows that for r = k + 1, H"(I™X;Z) — H"(M;Z) is only onto with kernel
given by the image of the torsion subgroup of Hy_1(L;Z). Over Q, this group is zero,
so we get an isomorphism. In order not to clutter up our statements with torsion-
freeness assumptions in relevant degrees r close to k, we prefer to phrase them in this
book for rational coefficients only.

PROPOSITION 2.6.2. Suppose n = dim X = 2 mod 4. Then there exists a cap
product

H*(I™X) @ Hy(X) 5 Hi_p(I™X)
such that
HA(I™X) @ Hy(X) > Hi_o(I™X)

c*®id Cx

H2(X) ® Hy(X) — > H_a(X)
commutes, where the bottom arrow is the ordinary cap product.

PROOF. Write n = 4m + 2. If i > n, then H;(X) = 0, so we may assume i < n.
From m(2p) = p — 1 it follows that

k=n—-1—-mn)=4m+1-2m=2m+1=n/2

is odd. Thus £or r = 21, we have either 7 > k or r < k. Suppose r > k. In this case,
the map b* : H"(I™X) — H"(M) is an isomorphism. Since

i—r<n—-r<n—k=n/2=k,
the map
o Hi_y(I"X) = Hi_,(9) = Hi_,(j) = H;_(M,dM) = H;_(X)
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is an isomorphism. Define

through the diagram

Since the diagrams

~ n ~ N

H"(X) @ Hy(X)

(41) a*®id

H™(M) @ H;(M,0M) - H;_,(M,0M)
and

* ~

H"(X) <> H"(I™X)
>~ b

H (M)
commute, we have for £ € H"(X) and = € H;(X):
(b")~a*(§) N

“Ha*(€)na)  (by definition)
= . HEna) (by the commutativity of (41))

()N

I
o

so that
c(cf(@Na)=E&nua

as required. Now suppose r < k. Then the map ¢* : H"(X) = H"(M,0M) —
H"(I"™X) is an isomorphism. Define

~ ~ N n =~

H'(I™X)® Hy(X) - H;_,(I"X)
by
Enz=b.((c) () Na),

where b, is the map b, : I;TZ-_T(M) — ﬁi_T(ImX) and the cap product used on the
right-hand side is

N: H"(M,0M) ® Hy(M,0M) — H;_.(M) — H;_(M,*) = H;_,(M).
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(If i — r > k, then b, is an isomorphism.) Using the commutativity of the diagram

H™(M,0M) ® H;(M,0M) > H;_, (M)

H"(X) @ Hi(X) Hi_(X)
we compute for £ € H"(X), = € Hy(X):
(@) Nx) = c(b(6Nz)) (by definition)
= a.({Nz)
= {Nuz.

]

PROPOSITION 2.6.3. Suppose n = dim X = 0 mod 4. Then there exists a cap
product

H*(I™X) ® Hy(X) = Hi_p(I™X)
for 21 # n/2 such that

HA(I™X) @ Hy(X) > Hi_o(I™X)

c*®id Cu
HA(X) ® Hy(X) — 1 Hi_y(X)
commutes.

PROOF. Write n = 4m. We may assume ¢ < n. From m(2p) = p — 1 it follows
that
k=n—-1—mn)=4m—-1—-(2m—1) =2m =n/2.
Thus for r = 2l # n/2, we have either r > k or r < k. Suppose r > k. In this case,
the map b* : H"(I™X) — H"(M) is an isomorphism. As in the case 2 mod 4,

i—r<n—r<n—k=n/2=k,

so the construction can proceed precisely as in the proof of Proposition 2.6.2. When
r < k, the cap product can be defined by the formula £ Nz = b,((c*)~1(&) N ), just
as in the proof of Proposition 2.6.2. ]

PROPOSITION 2.6.4. Suppose n = dimX = 1 mod 4. Then there exists a cap
product

H(I™X) ® Hy(X) =5 Hy_o(I"X)
such that

HA(I™X) @ Hy(X) 2> Hi_o(I"X)
c*®id Cu

n ~

H2(X) @ Hy(X) —"» H;_2(X)
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commautes.
PrOOF. Write n = 4m + 1. As usual, we may assume ¢ < n. From m(n) =
(n—3)/2, i(n) = (n — 1)/2 it follows that for I"™X,

4m — 2
km=n—1—m(n)=4m — m2 =2m+1

is odd and for I" X,
k,—l:n—l—ﬁ(n):4m—7:2m
is even. Thus for r = 21, we have~either r > kg or v < k. Suppose r > k. In this
case, the map b%, : H"(I™X) — H"(M) is an isomorphism. Since
i—r<n—r<n—kn=4m+1—(2m+1)=2m = ks,

the map
" H; (I"X)— H;_.(M,0M) = H;_.(X)
is an isomorphism. Define
- . n o~ _

H (I"X) ® Hy(X) 5 H;_,(I"X)
through the diagram

H(I™X)® Hy(X) -- -~ Hi_, (I"X)

by, ®id | = >~ |l
H™ (M) ® Hy(M,0M) > H;_,(M,0M).
Since the diagrams
- n ~ N

H"(X) ® Hy(X) H;_.(X)

(42) a*®id

H™ (M) ® Hy(M,0M) > H;_.(M,0M)

and
H(X) <7 A7 (17 X)
e =\ by,
H" (M)
commute, we have for £ € H™(X) and x € Hy(X):
p@ne = (by)la*(§)Na
= () Ha*(€)Nzx) (by definition)
= ()7 Hena) (by the commutativity of (42))
so that

(€ na) =¢na
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as required. Now suppose r < kj. Then the map cf, : H™(X) = H"(M,0M) —
H"(I"™X) is an isomorphism. Define

H (I"X)® Hy(X) - H;,_.(I"X)
by
ENna =07 ((cy) 1 (€) Na),

where b7 is the map b7 : H;_,(M) — H;_,(I"X) and the cap product used on the
right-hand side is

N: H"(M,0M) ® Hy(M,0M) — H;_.(M) — H;_.(M,*) = H;_(M).
(If 4 — r > kg, then b7 is an isomorphism.) Using the commutativity of the diagram

H™(M,0M) ® H;(M,0M) - H;_, (M)

Qs

~ N n ~

(%) @ Hy(%) H(X)
we compute for £ € H"(X), = € Hy(X):
Aep©ne) = AEOFENT)) (by definition)
= a.(¢{Nx)

= &N,
O

PROPOSITION 2.6.5. Suppose n = dim X = 3 mod 4. Then there exists a cap
product

H*(I"X) @ Hy(X) 2 Hy_p(I™X)

such that
HA(I"X) @ Hy(X) > H;_o(I™X)
c*®id Cy
HA(X) @ Hy(X) — H;_(X)
commutes.

PROOF. Write n = 4m + 3. We may assume ¢ < n. From m(n) = (n — 3)/2,
n(n) = (n—1)/2 it follows that for I"™X,
4
k‘m:n—l—m(n):4m+2—7m =2m+ 2
is even and for I™"X,

dm 4+ 2

kn=n—1—n(n)=4m+2 — =2m+1

is odd. Thus for r = 2I, we have either r > k; or 7 < k. Suppose 7 > kj. In this
case, the map b% : H"(I"X) — H" (M) is an isomorphism. Since

i—r<n—r<n—kp=4m+3—(2m+1)=2m+2 = ky,
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the map

™ H_ (I™X) — H;_(M,0M) = H;_.(X)

is an isomorphism. Define

~ ~ N n =~ _

H(I"X) ® Hy(X) 5 H,_ (" X)

through the diagram

H(I"X)® Hy(X) -~ H,_,(I"X)

. o ~ ~ | m
by ®id | = =~ | cl

H™(M) @ H;(M,0M) —> H;_,(M,0M).
Since the diagrams

~ n ~ N

H"(X) @ Hy(X) Hir(X)

(43) a*®id

H™(M) & H;(M,0M) - H;_,(M,0M)

and

A7(X) - H7(I7X)

Q% = b;
H"(M)
commute, we have for £ € H™(X) and x € H;(X):
ci(@ne = (bp) " (§) Nz
= (™) YHa*(€)Nnx) (by definition)
= (™)~ HeEna) (by the commutativity of (43))

so that
cMep@)Ne)=¢Nna
as required. Now suppose r < ks. Then the map ¢ : H"(X) = H"(M,0M) —
H"(I"X) is an isomorphism. Define
H'(I"X)® Hy(X) 5 H,_.(I"X)
by
ENna =b7((c;) 7€) Na),
where b™ is the map b™ : H;_.(M) — H;_,(I™X) and the cap product used on the
right-hand side is

N: H"(M,0M) ® Hy(M,0M) — H;_.(M) — H;_(M,*) = H;_(M).
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(If i — r > ky,, then 0" is an isomorphism.) Using the commutativity of the diagram

H™(M,0M) ® H;(M,0M) > H;_, (M)

H"(X) @ Hi(X) Hi_(X)
we compute for £ € H"(X), = € Hy(X):
(@) na) = POP(ENa)) (by definition)
= a.(§Nx)
= (N

2.7. L-Theory

Let L* be the 0-connective symmetric L-spectrum, as in [Ran92, §16, page 173],
with homotopy groups
Z, i =0 mod 4 (signature)
mi(L*) =LY (Z) ={Z/5, i=1 mod 4 (de Rham invariant)
0, 1=2,3 mod4

for ¢ > 0, and m;(IL*) = 0 for negative 7. Rationally, IL.® has the homotopy type of a
product of Eilenberg-MacLane spectra

L*@Q~ [[K(Q,4i).
i>0

A compact oriented smooth n-manifold-with-boundary (M, M) possesses a canonical
L*-orientation [M, OM]y, € H,(M,0M;L*) which is given rationally by the homology
L-class of M:

[M,0M]L ® 1 = L, (M,0M) = L*(M) N [M,dM)]
€ Hy(M,0M;L*) @ Q = @) Hy—si(M,0M; Q),
i>0

where £*(M) € H**(M;Q) denotes the Hirzebruch L-class of (the tangent bundle
of) M and [M,0M] € H,(M,0M;Q) denotes the fundamental class in ordinary
homology. There is defined a cap product

N: H(M;L*) ® H,(M,0M;L*) — H,_;(M,0M;L*)
such that
—N[M,0M]y, : H'(M;1L*) — H,,_;(M,0M;L*)
is an isomorphism. This product induces a cap product on the rationalized groups,

N: H(M;L*) @ Q® H,(M,0M;L*) ® Q — H,,_;(M,0M;L°) ®Q



136 2. INTERSECTION SPACES

such that the diagram

H(M;L*) ® Q® H,(M,0M;L*) © Q —» H,_;(M,0M;L*) ® Q
proj proj

HiT(M;Q) ® Hyy—ar(M,0M;Q) —— H,_;_4q4m)(M,0M;Q)

commutes, where the lower product is the usual cap product in ordinary homology.

Let X™ be an oriented, compact pseudomanifold of positive dimension n with
only isolated singularities and let (M, dM) be the exterior, assumed to be smooth, of
the singular set. We define the reduced L*-orientation [X]1, of X to be

[X]]L = [M’ aM]]L € Hn(Ma 8M7L.> = ﬁn(XvL.)

(The “denormalization” X of X was defined in Section 2.6.2). We define the reduced
L-class L£.(X) of X to be

L£,(X) =L, (M,0M) € Hy_4,(M,0M;Q) = H,_4,(X; Q).

Thus [X]L ® 1 = £.(X).
DEFINITION 2.7.1. A homology class
U= Up 4 Up—g + Un_g+ - € Hy_4.(X;Q)
is called unipotent if
A HY(M,0M; Q) — Ho o (M;Q)
(and
—Nuy : H'(M;Q) — Hyp—p (M, 0M;Q))

are isomorphisms for all ». An L*-homology class u € PNIn(X ;1L®) is called rationally
unipotent if u® 1 € Hn(X; L*) ® Q is unipotent.

ExAMPLES 2.7.2. If X is an oriented compact pseudomanifold, then the funda-
mental class u = [X] € H,(X;Q) is unipotent. Thus any class u with u, = [X]
is unipotent. In particular, the L-class u = L*(X ) is unipotent, since the top-
component of the homology L-class of a pseudomanifold is the fundamental class.
The L*-homology fundamental class [X]y € H,(X;L®) is rationally unipotent as

XL®1=L,(X).
The following duality theorem covers all dimensions n, except n = 0(8).

THEOREM 2.7.3. Let X be an n-dimensional compact pseudomanifold, n > 0, with
only isolated singularities. Capping with a rationally unipotent class u € H,(X;L*)
induces an isomorphism

—Nuel: HI™X;L) 0 Q — H,(I™X;L*) @ Q
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forn=2 mod 4 and n =4 mod 8 such that
H'(I™X;L*) ® Q

o ~

H,(I"X;L*) ©Q

—Nu®1

(XL @ Q ——— Hy(XiL*) ®Q

commutes, an isomorphism
—Nuel: HUI™X;L) 0 Q — H,(I"X;L*) © Q
form=1 mod 4 such that

HO(I"X;10) © Q ——» H,(I"X;L*) @ Q

(XL ©Q —— Ho(XL9) @ Q

commutes, and an isomorphism
—Nu®l: HI"X;L*) @ Q — H,(I"X;L*) ® Q

forn=3 mod 4 such that
HY(I"X;L*) ©Q

oy ~

H,(I"X;L*) © Q

—Nu®1l

H(XL*) ®Q —— Hu(XL) 2 Q

commutes.
PrROOF. Let us provide the details for the case n =2 mod 4 first. We have
HY(I™X;L*) ®Q Bz H(I™X; Q)
®4l<k H4l(Ma 8M7 Q) S2) ®4l>kz H4l(M7 Q)v
where k = n/2 (an odd number). Let {¢},..., €} } be a basis for H*(M,dM; Q) when
41 < k and for H*(M;Q) when 41 > k. The homology groups are rationally given by
@lzo ﬁn%l(ImX; Q)
D, —sisr Ho-at(M;Q) @ B,y Hn—a1(M,0M; Q).
Since u is rationally unipotent, capping with the top component w,, of

u®1:un+un_4+...€ﬁn_4*(X;Q)

R

Hy(ImX;L*) @ Q

1

yields isomorphisms
— Ny : HY(M,0M;Q) —» H,_y(M;Q)

and
— Ny HY(M;Q) = H,,_y(M,0M;Q).
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Thus, setting e} = €} Nuy, yields bases {e}, ..., el } for H,,_4(M;Q) when 4/ < k and

for Hy,—4;(M,0M;Q) when 4] > k. With respect to the basis
{6(1),...,6?0,6%,...,6}1,...}

of HY(I™X;1L*) ® Q and the basis
{e[l),...,e?o,e%,...,e;l,...}

of Hn(lmX; L*) ® Q, the linear map — Nu ® 1 can be expressed as a matrix U. The
image of a basis vector ei,, 1<p<y,is

eéﬁ(u@l):ei,ﬁun+ei,ﬂun,4+ei,ﬁun,g—|—...eHn,4l,4*

Jit1 Jit2

1 I+1 1+1 Z 1+2 1+2
—eerZ/\j e;  + /\j e+
Jj=1 Jj=1

(The cap product used here is of course the one provided by Proposition 2.6.2. For
€l Mup_g; with 41 < k < 4(i + 1), this involves the map b, : H,(M) — H.(I™X).)
Hence, the é-column of U is

(0yer s 0y 0,000,0,0,0 0 T, 0N L B T
—— —_—— ———— +1
Jo Ji—1 Ji
In terms of (j; x j,)-block matrices, U has thus the form

Ly 0 0
* Ij1 0
U: * X I] )

2

where I, denotes the ¢ x ¢ identity matrix. We see that U is a lower triangular matrix
with entries 1 on the diagonal, i.e. a unipotent matrix. In particular, it is invertible
and so —Nu ® 1 is an isomorphism. The commutativity of the diagram follows from
the commutative diagram of Proposition 2.6.2.

Let us explain why the other cases concerning the dimension n can be treated
analogously and why the argument breaks down when n = 0 mod 8. Let k =n —
1 — p(n) be the cut-off value for the cohomology perversity (p = m or 1) and k' =
n — 1 — g(n) be the cut-off value for the homology perversity (7 = 72 or m). In order
for the above argument to work, the rational LL*-cohomology has to be decomposed
into degrees 41 < k and 41 > k, so we need k #Z 0(4). In addition, the rational L°*-
homology has to be decomposed into degrees n — 41 > k' and n — 41 < k’, so we also
need n — k' # 0(4). Since for complementary middle perversities we have k + k' = n,
the two conditions are equivalent. The following table shows that this condition is
satisfied for all n (using appropriate complementary middle perversities), except when
n = 0(8).

4qg+1|49+2 | 49+3 | 8qg+14 | 8
m m n m m
29+1|2g+1|2g+1|49+2 | 4q
n 7 T 7 m
4q

n m m m
2q 2¢94+1|2¢+2|4qg+2

T 3| 3
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Once the decomposition has been carried out, using for the homology decomposition
k' instead of k, the rest of the argument is the same. O

COROLLARY 2.7.4. Let X be an n-dimensional, compact, oriented pseudomanifold
with only isolated singularities. Capping with the L*-homology fundamental class
(XL € H,(X;L*) induces rationally an isomorphism

—N[XL®l: HUI"X;L)®Q — H,(I™X;L*) @ Q
forn =2 mod 4 and n =4 mod 8 such that

HI"X;L)®Q —— H,(I"X;L*) ®Q

—N[XL®1

HO(X;L*) ® Q H,(X;L*) ® Q

—N[X]Le1
commutes, an isomorphism

—NXL®1: HOI™X;L*) ® Q — H,(I"X;L*) ® Q
form=1 mod 4 such that

~ o ~

HO(IMX;L*) © Q H,(I"X;L*) © Q

—N[XL®1

FNIO()A(; L*)®Q
commutes, and an isomorphism
—NXL®1: H'(I"X;L*) ® Q = H,(I"X;L*) ® Q
forn =3 mod 4 such that

~ o ~

HY(I"X;L*) ®Q — H,(I"X;L*) ®Q

—N[XL®1
HO X;L' ® A fIn X;}L' ®
(BiL%) 8 Q ———— A (L) 90
commauytes.
PROOF. The class u = [X]y is rationally unipotent. O

ExAMPLE 2.7.5. Let us work out the duality for the 12-dimensional pseudoman-
ifold
X12 = D* x P* Ugs pa cone(S® x P*),
where P* denotes complex projective space. Let g € H?(P*) be the negative of the
first Chern class of the tautological line bundle over P* so that (g*, [P4]) = 1 and the
Pontrjagin class is p(P*) = (1 + ¢%)° = 1 + 5¢% + 10g*. As L (py) = %pl, we have
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L1(P*) = 5¢%. Since the signature of P* is 1, we have £?(P*) = g* by the Hirzebruch
signature theorem, so that
5
L*(P4) =14+ §g2 _|_g4'
In this example (M,0M) = (D* x P4, 83 x P*) and

5
L*(M):1xL*(P4):1x1+§1xg2+1><g4.

Let p = [D*, S3] € Hy(D*, S3) and [P*] € Hg(P*) be the fundamental classes. Then
the homology L-class of (M,0M) is given by
L.(M,0M) = (Ix)NpxPY+2(1xg*)Nnpx [P+ (1xghnux [P
= ax [P+ B x [P g x PO)

The link L of the singularity of X is L = S x P4, The cut-off-value k for the middle-
perversity intersection space I™X is k = n — 1 —m(n) = 11 — m(12) = 6. Since
all boundary operators in the cellular chain complex C,(S%) and C,(P*) vanish, the
boundary operators in the complex C,(S3 x P*) vanish also because they are given

by the Leibniz formula. Thus L. = L.¢ is the 5-skeleton of S% x P4 and I"™ X is the
cofiber of the composite cofibration

(83 x P*)° — L = OM — D* x P*.
Let d € H*(D*, S®) be the unique generator such that dNp = [pt] € Ho(D*). For the
L*-homology we have
Hp(I"X;L)®©Q = Hp(™X) & Hs(I™X) & H(I™X) & Hy(I"X)
= Hp(M) o Hg(M) © Hy(M,0M) & Ho(M,0M)
= 0 @ Qpt]x[P] ® Qux[P’] @ 0,
and for the LL*-cohomology

HO(I"X;L)®Q = H(I™X) o H'(UI™X) @ H3(I™X) ® HYZ(I™X)
= HO(M,0M) @ HYM,0M) ® H¥M) & H“Z(M)
= 0 ® Qd x 1 ® Qlxg* o 0.

Setting ¢! = d x 1 and €2 = 1 x g%, we obtain a basis {¢!,e2} for HO(I™X;L*) ® Q.
The dual basis for Hy2(I™X;L*) @ Q is {e!, e?}, with

el = e nNuip=dx1nux [P =pt] x [P,

e? = ENui=1xg'Nnpx[PY=pxP.
The images of the basis elements under cap product with the reduced L-class of X

are X 1) 0 (e x P4+ 2 x [P + pox [PO))
+2b.((d x 1) N (% [P2)))

dNL.(X) =

= e s

since the map b, : Hy(M) — Hy(M,dM) is zero (its neighboring maps in the sequence
of the pair are isomorphisms), and

ENLX) = (1xg") N (ux [P+ 5 x [P + o x [PY))

Thus in the bases {€!,e?} and {e!,e?}, the map
—NXL®1: HOI™X;L*) © Q — Hi,(I"X;L*) @ Q
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o~ )

The pseudomanifold X itself does not possess Poincaré duality. The cohomology
group H*(X;Q) is generated by d x 1, which is dual to pt x[P*]. However, the cycle
pt x[P4] is zero in Hg(X;Q) = Q(u x [P?]).

is given by the identity matrix

2.8. Intersection Vector Bundles and K-Theory

Given a pseudomanifold X with fixed intersection space I?X, we may define a
p-intersection vector bundle € on X to be an actual vector bundle £ on IPX. That is,
the isomorphism classes IPV Bg(X) of real n-plane p-intersection vector bundles on
X may be defined by

I’V Bg(X) = [I’X, BO,)|
and similarly for complex intersection vector bundles using BU, in place of BO,,.
More generally, given any structure group G, one may describe principal intersection
G-bundles over X as

I? Princg(X) = [I’X, BG].
The variation of these notions over different choices of I?X for fixed X remains to
be investigated. Any vector bundle over X determines a p-intersection vector bundle
on X by pulling back under the canonical map ¢ : I?X — X. Naturally, a complex
intersection vector bundle on X has Chern classes in the intersection space cohomology
of X.

As in the previous section, there are Poincaré duality statements between the re-
duced rational K-theory of the intersection space, K* (I X)®Q, and reduced rational
K-homology K, (I"X) ® Q. These can be worked out in analogy with the previous
section, observing that the rational type of the K-spectrum and KO-spectrum can be
easily understood using the Chern and the Pontrjagin character, respectively.

Let M, as usual, denote the exterior of the singular set of X. If M is smooth, for
example X Whitney stratified, then it has a tangent bundle T'M, which defines an

element in Eéo (M). Even in the isolated singularity situation, X itself will not have
a tangent bundle in the classical sense of vector bundle theory, restricting to TM,
unless the link of the singularity is parallelizable. Let a : M — X and b: M — IPX
be the canonical maps, see Section 2.6.2. It may very well happen (see Example 2.8.1
below) that the tangent bundle element does not lift under

KO (X) 5 KO (M),
but does lift back to the KO-theory of the intersection space I? X under
KO (I"X) 25 KO (M).
Indeed, the higher the perversity p, the closer IPX is to M, and the easier it becomes

to lift. The intersection space I?X (in the isolated singularity case) is the mapping
cone cone(g) of a map g : Lo, — M. The cofibration sequence

Lo -5 M -2 1PX = cone(g) — S(L<g),

where S(—) denotes reduced suspension, induces an exact sequence
-1

KO (Ley) — KO (I7X) 255 KO (M) 25 KO (t<1L),
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which can be used to investigate existence and uniqueness of such lifts. Thus sin-
gular pseudomanifolds may have (stable classes of) p-intersection tangent bundles,
even when they do not have actual tangent bundles. Such a p-intersection tangent
bundle will have characteristic classes, for example Chern classes ¢; € H?(I?X) in
the complex case, or Pontrjagin classes p; € H*(I?X) in the real case. Using the
cap products of Section 2.6, one can multiply these characteristic classes with any
homology class in X and will get a class in the homology of an intersection space of
X, not merely an ordinary homology class of X. (If p is a middle perversity, then
the resulting class will again lie in the homology of a middle perversity intersection
space.)

ExAMPLE 2.8.1. By surgery theory, there exist infinitely many smooth manifolds
L;,i=1,2,...,in the homotopy type of S? x S4, distinguished by the first Pontrjagin
class of their tangent bundle, p;(T'L;) € H*(S? x §*) 2 Z, namely, p;(TL;) = Pi, P
a fixed integer # 0. Let L% be any such manifold, p; (L) # 0. A smooth triangulation,
for example, gives L a CW-structure. Since the bordism group ng is trivial, there
exists a smooth compact oriented manifold M7 with M = L. Set

X = M Uy, cone(L).
——0
We will show that the tangent bundle element ¢t = [TM] — [07,] € KO (M), where

0% is the (isomorphism class of the) trivial r-plane bundle over a space X, has no lift
under

0 of ——=0
KO (X) — KO (M),

but does have a lift under
—0, * =0
KO (I"X) 25 KO (M),

a:M— X,b: M — I"X. Since X 2 M/L and a : M — X = M/L is homotopic to

the quotient map, the cofibration sequence L <y M % X induces an exact sequence
—0 ot —=0 " ——0
KO (X) %5 KO (M) < KO (L).

—0
Thus ¢ lifts back to KO (X) if and only if 5*(¢) = 0. To show that in fact j*(t) # 0,
we use the Pontrjagin character ph as a detector,

ph: KO’(—) — @B H*(—;Q),
>0

1
ph = rank +p; + ﬁ(p% —2pg) 4 -+ .

Using the naturality of the Pontrjagin classes and observing that classes of degree 8
and higher vanish in the cohomology of M as M is 7-dimensional, we calculate

ph(j*t) = j* ph([TM] = [0},]) = 5" k(T M) + p1(TM) — rk(6}) — p1(0},))
= j"p1(TM) = p1(TM|onr) = pr(TL @ 01) = p1(L) # 0.
Thus j*t # 0 and ¢ cannot be lifted back to E(J)O(X).

The manifold L, being homotopy equivalent to S% x.§4, is an object of the interleaf
category ICW. (See also Example 1.9.4(2).) Thus to construct the spatial homology
truncation <L, where k = n — 1 — fi(n) = 3, we may use the functor ¢t : ICW —
HoCW of Section 1.9. The natural transformation embs : t.3 — t.o gives a
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homotopy class [f] = embg( ) : t<sL — L, whose canonical representative f is
o incl

tesL = E(L)* < E(L) # L, with A/, a cellular homotopy equivalence. Since b} is
cellular, its restriction (h’)? to the 2- skeleton maps into the 2-skeleton L? of L and

we have a factorization

EL? L1

(f% JW
L2,

The intersection space I™X is the mapping cone of g : t.3L — M, where g is the
composition

tosl Lo L M

The cofibration sequence to3L —25 M brx = cone(g) induces an exact sequence
—0 x —0 « 0
KO (I"X) 25 KO (M) 45 KO (tsL),

which shows that ¢ lifts back to If(\(SO(IﬁX) if and only if ¢g*(¢) = 0. Let us prove
first that L is spinnable, i.e. the restriction of its tangent bundle T'L to the 2-
skeleton is trivial. While the Pontrjagin classes of closed manifolds are of course
not homotopy invariant, Wu’s formula implies that the Stiefel-Whitney classes w;
of closed manifolds are homotopy invariants. Thus w (L) = w1(S? x §%), we(L) =
we(S% x §%). As HY(S? x $%Z/5) = 0, we have w;(L) = 0. The second Wu class
vy = vo(S? x §*) € H?(S?x S*Z/5) = 7/ is determined by vo Uz = Sq? () for all z.
Since Sq? : H*(S? x §%Z/5) — H**2(5% x S*;7Z/,) is zero, as follows, for instance,
from the Cartan formula , we have vy = 0. By Wu’s formula, wy(L) = wq(S? x S*) =
v2(5? x S%) = 0. Let V5(TL) denote the 5-frame Stiefel manifold bundle associated
to TL. There exists a cross-section of V5(T'L) over the 1-skeleton L' of L. There
exists a cross-section over the 2-skeleton L? if and only if a primary obstruction class
in H?(L;Z/2) vanishes, and that class is wo(L), indeed zero. Thus T'L|» = 65, ® ',
where A\! is some line bundle over L?. Now

wl()\l) = w (/\1 ) 9%2) = wq (TLle) = Z;’wl(L) =0,
whence A! is trivial also. Hence T'L|z2 = #9, and the element g*(¢) is
g*(t) = f5°(TM] - [0}])

f*([TMIL} = [03]1])
M(TLe 91] [67])

= f(ITL] - [67])

= (hp)*"i5([T'L] - [07))

= (hp)*([TL|r2] = (03 ]12])
= (h2)2*([9§z] [6%21)

|
o

Therefore, ¢ lifts back to I’{\éo(IﬁX).

2.9. Beyond Isolated Singularities

Let X be an n-dimensional, compact, stratified pseudomanifold with two strata

X=X,DX,_..
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The singular set ¥ = X,,_. is thus an (n — ¢)-dimensional closed manifold and the
singularities are not isolated, unless ¢ = n. Assume that X has a trivial link bundle,

that is, a neighborhood of ¥ in X looks like & x coneL, where L is a (¢—1)-dimensional
closed manifold, the link of 3. We assume furthermore that L is a simply connected
CW-complex in order to be able to apply the spatial homology truncation machine of
Section 1.1. For such a pseudomanifold X, we shall construct associated perversity p
intersection spaces IP X by performing truncation fiberwise. If k = c—1—p(c) > 3, we
can and do fix a completion (L, Y") of L so that (L,Y") is an object in CWy~y. If k < 2,
no group Y has to be chosen and we simply apply the low-degree truncation of Section
1.1.5. Applying the truncation <} : CWy55 — HoCW,_; as defined on page 41,
we obtain a CW-complex t<(L,Y) € ObHoCW_;. The natural transformation
emby, : top — t<oo Of Theorem 1.1.41 gives a homotopy class

f=emby(L,Y): tep(L,Y) — L

such that for r < k,
fa Hr(t<k(L7Y)) = HT(L)7
while H,(t<r(L,Y)) =0 for r > k. Let M™ be the compact manifold-with-boundary

obtained by removing from X an open neighborhood ¥ x coneL of ¥. Thus the
boundary of M is OM =X x L. Let

g: Y Xtep(LY)— M
be the composition
S x tepy(L,Y) X v L= am s
The intersection space will be the homotopy cofiber of g:

DEFINITION 2.9.1. The perversity p intersection space IPX of X is defined to be

’IﬁX = cone(g) = M U, cone(X x t<,(L,Y)). ‘

(More precisely, I?X is a homotopy type of a space.) As pointed out in Section
2.2, the construction simplifies if the link happens to lie in the interleaf category ICW,
for then we apply tr : ICW — HoCW instead of t.; : CWg55 —» HoCWy_1.

Rational coefficients for homology and cohomology will be understood for the
rest of this section. If NV is a simply connected CW-complex, k an integer, and Ny,
a homological k-truncation of N with structure map f : Nop — N (so that f, on
homology is an isomorphism in degrees less than k), then we shall often think of f up
to homotopy as an inclusion, by replacing N with the mapping cylinder of f. We shall
thus also use the notation H,.(N, N.i) for the reduced homology of the mapping cone
of f. A statement similar to Lemma 2.9.2 below was already discussed in Proposition
1.9.14; nevertheless we shall provide details.

LEMMA 2.9.2. Let N be a simply connected CW-complex. Then the map
7 H.(N) — H,.(N,N.g)

induced on homology by the inclusion is an isomorphism whenr > k, while H.(N, N<j) =
0 when r < k.

ProoF. If r < k, then the long exact homology sequence of f has the form

H,(Ney) — Ho(N) -% H.(N,Ney) 25 H,_ 1 (Noy) — H,_i(N),
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whence H,.(N, N.) = 0. For r = k, it has the form
0+=0 =
0= Hk(N<k) — Hk(N) — Hk(N,N<k> — kal(N<k) — kal(N),

so that Hi(N) — Hy(N, N<) is an isomorphism. Finally, if r > k, then the exact
sequence

.
0= HT(N<7€) — H’I"(N) — Hr(Na N<l<:) — Hrfl(N<k) =0
again exhibits H,.(N) — H,.(N, N.k) as an isomorphism. O

PROPOSITION 2.9.3. Let N™ be a closed, oriented, simply connected manifold
equipped with a CW-structure. Let k be an integer. Let Ny be any homological k-
truncation and N<,_r+1 be any homological (n — k + 1)-truncation of N.

(1) There exists a cap product

H" "(N<y) @ Ho(N) =5 Ho (N, Nep_joi1)

such that
H""(N<) © Hy(N) > H (N, Ney_js1)
(44) fr®id T
H""(N) ® Hy(N) ——» H,(N)
commutes.

(2) Capping with the fundamental class [N] € H,(N) is an isomorphism
—N[N]: H" "(Nep) — Hy (N, Nep_js1)-

PROOF. (1): We consider the two cases n —r < k and n — r > k separately.
Suppose n — r < k. Then f* is an isomorphism and we define the cap product of
&€ H" " (N<) and © € H,(N) by

Ena=m((f) 7€) Na).

By definition, diagram (44) commutes. If n —r > k then H" " (N;) = 0 and we set
ENax=0¢€ H,.(N,N<y_k+1). This is in fact the only available value, since n —r > k
implies r < n — k 4+ 1, and by Lemma 2.9.2, H.(N, Nc,_g+1) = 0. In particular, the
diagram commutes in this case as well.

(2): Suppose n —r < k. As this implies r > n — k + 1, Lemma 2.9.2 asserts that
Tx * HT(N) — HT(N7 N<n—k+1)
is an isomorphism. The map f* is an isomorphism, too, and the claim follows from

Poincaré duality for the manifold N and the commutativity of the diagram

N[N
H" ™" (N<y) —nin H,.(N,Ncp_p1)

1R

£l

=)
=

anr(N)

H,(N).

IR



146 2. INTERSECTION SPACES
If n —r > k, then both H" "(N.y) and H,.(N, Ncp,_r+1) are zero, using Lemma
2.9.2. O

PROPOSITION 2.9.4. Let 3%, N™ be closed, oriented manifolds with N simply con-
nected and equipped with a CW-structure. Let k be an integer.
(1) There exists a cap product

H" (S X Ne) @ Hyyn (S X N) -5 Ho (S x (N, Nen_g+1))

such that
N
H*" " (8 x Neyp) @ Hyn (S % N) —> Ho(E % (N, Nen—is1))
(45) (idsg x f)*®id incl,
H* """ (£ x N) @ Hy (X x N) ——+ H,(3 x N)
commutes.

(2) Capping with the fundamental class [X x N| € Hgi (X X N) is an isomorphism
—N[Ex N|: HT"7 (S x Neg) — Hp (2 % (N, Nep_jt1))-

PROOF. In the interest of better readability, we shall denote the product to be
constructed by N and the product of Proposition 2.9.3 by N. (1): Let £ € H3T"~ " (X x
Ncp)and z € Hgyp,(Ex N). By the Kiinneth theorem, these elements can be uniquely
written as

= ) D o xu, ol e HY(D), v € HI(N.y),
pt+q=s+n—r 1
r=uxv, u€ Hy(X), ve H,(N).
(For the latter equation, observe that ¥ need not be connected, but N is connected
by assumption.) We define

N o= Z (n— q)z )ﬂu V(i)ﬁv),

pHg=s+n—r

with az(,i) Nué€ Hy_p(X) and ué“ﬁv € Hy—¢(N,Nep_k+1). (Recall that we are using
the sign conventions of [Spa66].) Let us verify that diagram (45) commutes. Given
n€ HT" (L x N) and z € Hg (X x N), write

1= S Yol xuld, o) € H(), 4 € HIN),
p+g=s+n—r i

r=uxv, u€ Hy(X), ve H,(N).

Then
inclu(nnz) = (idg xm). ((ZO’ xuq) (uxwv))
= (-1 q><1dz><7r> (03" Nw) x (u Nv)
= S(=1)P=9 (g )ﬂu) « m(,ug") nv)
= Y (~1)pln—a ( Nu) X (f*u l)ﬂv) (by Proposition 2.9.3)
= (o x frug) ! (ux )

= S((ids xf)*(op) x u$)) '
= ((ids xf)*n) N z.
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(2): Let {ol(f)}i be a basis for HP(X) and let {I/éj)}j be a basis for H?(N<y). Then
{05) ® Véj)}m» is a basis for H?(X) ® H?(N«) and thus, by the Kiinneth theorem,

(#) (4) o
{Up X Vg b} idpa
p+qg=s+n—r

is a basis for H*T"~"(X x N.). We shall show that

{0 x vP) N [EX NI} ijpg
ptg=s+n—r

is a basis for H, (X x (N, Nep—k+1)). Set

ay) = (-1 N [S] € H,,(S),
béj) = z/(g])ﬁ[N] € Hy—q(N, Nen—k+1)-

Since

) B, )

is an isomorphism by Poincaré duality, {az(f)}i is a basis for H;_,(X). By Proposition
2.9.3(2),
_A[N]
Hq(N<k:) — Hn—q(N7 N<n—k+1)
is an isomorphism, so that {bgj)}j is a basis for H,_¢(N, Ncp—g+1). Thus {az(,i) ®
b((f)}i,j is a basis for Hy_,(X) ® Hy—q(N, Nep_41) and
{a;(j) ® bl(;j)} i,4,0,9
P

+q=s+n—r
is a basis for
@ Hs—p(z) ®Hn—q(N7 Nepn—k+1)-
(s=p)+(n—q)=r
By the Kiinneth theorem,
(07 X WY o
is a basis for H,(X X (N, Nep_g+1)). Since

(03] x U [Ex N = (o) x v) Y (5] x [N])
= ot s « A
= (=)= (o) N [2)) x (WP AIN])
aéi) % b((]])

for p+ ¢ = s +n — r, the claim is established. O

We return to the notation present in the definition of I?X. The manifold ¥ thus
has dimension n—c and the link L has dimension ¢c—1. Assume that X" is oriented and
that the singular stratum 3 and the link L are oriented in a compatible way, that is, for
the fundamental classes we have [0M] = [¥ x L] = [£] x [L], where M, and hence 0M,
receive their orientation from the orientation of X. Put L.y = t<x(L,Y). Choose a
Y’ such that (L,Y”) is an object of CW (._p)5p and set Lo = tecp(L,Y'). (If
c¢—k <2, n0 Y’ has to be chosen and we apply low-degree truncations, as usual.)
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LEMMA 2.9.5. The diagram

HA=r (M) —% e B0 (S % Loy)
(46) —N[M,0M] | = ~| _n[ExL]

Ho (M, 0M) 2% H,_ (S x (L, Lee_y))

commutes (there is no sign here), where 0, is the connecting homomorphism for the
triple (M,0M =X X LY X Lec_g).

PROOF. The connecting homomorphism 0, : H,(M,0M) — H,_1(0M) sends
the fundamental class [M,0M] to 0.[M,0M] = [O0M] = [¥ x L]. Since for j* :
H»"(M)— H" " (X x L) and £ € H* " (M) we have

0 (EN[M,0M]) = j*ENO[M,0M] = 7°EN [X x L)
(see [Spa66], Chapter 5, Section 6, 20, page 255), the square
H" (M) 2+ H" (S x L)

(47) —N[M,0M] | = ~ | _n[ExL]

H,(M,0M) 2> H,_,(S x L)

commutes. By Proposition 2.9.4, the square

HY (2 x L) =920 | pner(sy v Ly)
(48) —N[ExL] | ~ | —n[ExL]
incl,
Hy (S x L) Hy (S % (L, Leo_y))

commutes as well. Since g* = (idy X f)* 0 j* and the connecting homomorphism
Os : H(M,0M) — H,_1(X X (L, Lcc—k))
of the triple factors as
Ho (M, OM) 5 Hy_1(3 x L) ™55 Ho (8 % (L, Lee—t),

diagram (46) is the composition of diagram (47) and diagram (48) and therefore
commutes as well. O

LEMMA 2.9.6. Let

A ! - B g el n D' i’ - F'

be a commutative diagram of rational vector spaces with exact rows. Then there exists
a map v : C — C' completing the diagram commutatively.
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PROOF. Let s:imh — C be a splitting for h| : C — imh and let s’ : imh' — C’
be a splitting for A'| : C' - imA’. Then C = img @ im s and an element ¢ € C' can
be uniquely written as ¢ = ¢4 + ¢,, with ¢4 € img and ¢, € ims. We set

v(c) = ¢'B(b) + s'dh(cs),
where b € B is any element such that g(b) = ¢,. Note that indeed dh(cs) € imh' =
keri/, since ©/6h = eih = 0. To show that ~ is well-defined, consider ' € B with
g(b') = c4. Then b — ' = f(a) for some a € A and thus

g'Bb) —g'B(Y) =g B8f(a) =g'fala) =0.
Furthermore,
R~y(c)=hg'B(b) + h's'6h(cs) = dh(cs) = Shg(b) + dh(cs) = dh(c)
and for any b € B,
v9(b) = g'B(b)

by definition. O

THEOREM 2.9.7. Let X be an n-dimensional, compact, oriented, stratified pseu-
domanifold with one singular stratum X of dimension n — ¢ and trivial link bundle.
The link L is assumed to be simply-connected and X,% and L are oriented compatibly.
Let IPX and I7X be p- and q-intersection spaces of X with p and q§ complementary
perversities. Then there exists a generalized Poincaré duality isomorphism

D:H" "(IPX) = H,(I9X)
such that
H" " (IPX) —= H" " (M)

5]
1R

>~ | —N[M,0M]

H,(ITX) —» H,(M,oM)

commutes, where (M,0M) is the complement of an open tube neighborhood of ¥, and

H 1S x Loy) 2 H™7(I7X)

—N[OM] | =

R
>}

Ho(OM, S % Lo y) —» Ho(I7X)
commutes, where k =c—1—p(c).
PrOOF. We have
IPX = cone(g;) = M U, cone(S x Lcy)
for g5 : ¥ x Lo, = M the composition
Sx Loy XL =oM< M,
and, since c— k=c—1—q(c),

19X = cone(gg) = M Uy, cone(X X Lee_p)
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for g5 : ¥ x Lcc— — M the composition

Sx Loy EX v L =oM< M.
Hence _
H*(I7X) = H'(g5) = H*(M, S x Le),
H*(I"X) = H*(gq) = H* (M, % x Lec_y),

and similarly for homology. Consider the diagram

Hrr - () —— M (M, 0M)

95 O

H™ V(8 % Ly) — P H, (8 % (L, Do)
5

H"™"(M,% x Ley) H, (M,X X Leci)

H (M) ——— 2 (M, oM)
95 9.
H™ (8 x L) — =2 H, (S x (L, Leey),

whose left hand column is the long exact sequence of the pair (M, X x L) and whose
right hand column is the long exact sequence of the triple (M, ¥ x L, ¥ X L.._). By
Lemma 2.9.5, the top and bottom squares commute. By Lemma 2.9.6, there exists a
map

D:H" "(M,Y X Ley) — Hpy (M, X X Lee—g)

filling in the diagram commutatively. By the 5-lemma, D is an isomorphism. (|

EXAMPLE 2.9.8. Set L = 5% x §* and M'* = D3 x 5% x §? x L. We will compute
the duality in the homology of the intersection space I"* X for the pseudomanifold

XM = M Ugn 8% x §? x 5% x cone L.
This pseudomanifold is to be stratified in the intrinsic manner, with singular set
Y = 52 x 2 x §? x {0}, where o is the cone point of cone(L), and link L. Since
the codimension ¢ of ¥ is 8, the cut-off value k is k = ¢ — 1 — m(c) = 4. Hence
Loy =L.y=25%xptand
fiLeg=5%xpt— 8§ x5
is the inclusion. The intersection space I™X is the mapping cone of
g:5%% 5% %x8%x8%xpt— D3 x5%x8%x 5% x84,

that is,
D3 x 8% x §% x §3 x §4
52 x 52 x 82 x S3xpt’
If A, B are cycles in a 2-sphere and C is a cycle in the 3-sphere, then

ImX ~

D3 x Ax B x C X ptUgzxaxBxoxpt cone(S? x A x B x C x pt)
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is a cycle in the space I™X. We shall denote the homology class of such a cycle
briefly by [D? x A x B x C x pt]". The following table lists all generating cycles of the
homology of the intersection space. Dual cycles are next to each other in the same
row.

H.(I™X) Hyy (I™X)
x =0 0 0
x=1 0 0
x* =2 0 0

Nl [pt xS% x S x 83 x 81
[D? x S x §% x S% x pt]"
A [pt x pt xS? x S% x SY]
Al [pt xS?% x pt xS x S4)
[D3 x pt xS% x S3 x pt]"
[D3 x 8% x pt xS x pt]"

* =3 | [D?x ptx pt xptxpt
x =4 [pt X pt x pt x pt x 5%
=05 | [D3x 8% x pt x pt x pt
[D? x pt xS? x pt x pt
*=6| [ptxS?xptxptxS?
[pt x pt xS? x pt x 54

[D3 x pt x pt xS3 x pt]" [pt xS% x 82 x pt xS54]
*=T7] [ptxptxptxS®xSH | [D>x8?x8?xptxpt]"
[D? x S? x 8% x pt x pt]" | [pt x pt x pt x93 x §4]

Let us indicate how one may form candidates for intersection spaces I? X for pseu-
domanifolds X having more than two strata and whose link bundle may be nontrivial.
Up to now, we have used only a small fraction of the spatial homology truncation
machine as developed in Chapter 1, namely, we have only invoked it on the object
level. For general stratifications, the full range of capabilities of the machine will
have to be employed. Let us start out with some remarks on gluing constructions and
homotopy pushouts. A 3-diagram I' of spaces is a diagram of the form

xda 2y,
where A, X, Y are topological spaces and f, g are continuous maps. The realization |T|
of T is the pushout of f and g. A morphism I’ — T of 3-diagrams is a commutative
diagram

(49) X<l a4—9.y

R

X/ O A/ gﬂ Y/

in the category of topological spaces. The universal property of the pushout implies
that a morphism I' = IV induces a map |I'| — |T”| between realizations. A homotopy
theoretic weakening of a morphism is the notion of an h-morphism I" —, I'. This is
again a diagram of the above form (49), but the two squares are required to commute
only up to homotopy. An h-morphism does not induce a map between realizations.
The remedy is to use the homotopy pushout, or double mapping cylinder. This is
a special case of the notion of a homotopy colimit. To a 3-diagram I'" we associate
another 3-diagram H(I") given by

at 0 at 0

XUsAxI=cyl(f) « A= cyllg) =Y Uy; A x 1.
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We define the homotopy pushout, or homotopy colimit, of I" to be
hocolim(T") = |H(T)|.
The morphism H(T') — T given by
XUfAxI<—A——=Y U, AxI

ir f ld l

X A—1 sy,

where the maps r are the canonical mapping cylinder retractions, induces a canonical
map

hocolim(T") — |T|.
An h-morphism I' =, IV together with a choice of homotopies between clockwise and
counterclockwise compositions will induce a map on the homotopy pushout,

hocolim(T") — |T”|.

Indeed, let

X<~——a—2sy

b,k
xo<l Ly

be the given h-morphism. Let F : A x I — X' be a homotopy between Fy = f'a and
=¢f. Let G: Ax I — Y’ be a homotopy between Gy = ¢’ and Gy = ng. Then

XUy Ax <20 D AC 20 YU, Ax T
lgu_fF la anyG
X’ & Al 4 Y,

commutes (on the nose) and thus defines a morphism H(I') — I". This morphism
induces a continuous map on realizations hocolim(T") = |H(T")| — |T”].

Let X™ be a PL stratified pseudomanifold with a stratification of the form X, =
X" D X; O Xo, X1 = S = {x0}. There are thus three strata. If the link-
type at g is the same as for pomts in X7 — Xy, then X can be restratified as
Xn = X" D X1 ~ St Xg = ¢, and the link bundle around the circle Xl may
be a twisted mapping torus. Let NO be a regular neighborhood of zy in X. Then
Ny = cone(Lg), where Ly is a compact PL stratified pseudomanifold of dimension
n—1, the link of zg. Set X’ = X —int(Ny), a compact pseudomanifold with boundary.
This X’ has one singular stratum, X] = X;NX’ = Al, where Al is a 1-simplex (closed
interval). Let Ly be the link of X7, a closed manifold of dimension n — 2. The link L
may be singular with singular stratum Lo N X; = Lo N X] = 0A! = {A§, A9} (two
points). A regular neighborhood of AY, i = 0,1, in L is isomorphic to cone(Ly). If
we remove the interiors of these two cones from Ly, we obtain a compact (n — 1)-
manifold W, which is a bordism between L; at A§ and Ly at AY. A normal regular
neighborhood of X| in X’ is isomorphic to a product Al x cone(L;) since Al is
contractible. Removing the interior of this neighborhood from X', we get a compact
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n-manifold M with boundary M. The boundary is A x L; glued to W along the
boundary OW = 9A! x L; = {AJ, A%} x L;. Thus M has the form

oM = T,

where I' is a 3-diagram of spaces
W folf1 aAl % Llc incl X id Al % le

for suitable maps f; : AY x Ly — W, i = 0,1. For example, if the link-type does not
change running along X; — Xy into zp, then Lg is the suspension of Ly and W is the
cylinder W = I x L. The boundary of M is a mapping torus with fiber L;. We may
take fo to be the identity and f; the monodromy of the mapping torus.

Given a perversity p, set cut-off degrees
kr=n—-2-—p(n-1), kw =n—1—p(n).

We observe that the inequality ky > kz holds because p(n) < p(n — 1) + 1. Two
cases arise. If p(n) = p(n — 1) + 1, then kr = kw; if p(n) = p(n — 1), then ky =
kr + 1. Suppose the perversity value actually increases and we are thus in the case
k1, = kw (denote this value simply by k). Next, and this is the only point where an
obstruction could conceivably occur, you have to be able to choose Y7, and Yy such
that fo, f1 : (L1,Yr) — (W,Yw) become morphisms in CWy~g. If fy and f; are
inclusions, then Proposition 1.5.1 is frequently helpful to settle this. If L; or W lie in
the interleaf category ICW, then no Y7, or no Yy has to be chosen and dealing with
the obstructions simplifies considerably. Once fy and f; are known to be morphisms
in CWp5g, we can apply spatial homology truncation and receive diagrams

emby (L1,Y]
ton(L1,Y2) ombelbeYL)

t<k(fi)l l[fi]
emby (W,Y;
ter(W, Yiy) % W,

i = 0,1, which commute in HOCW_;. Let (f;)<x be a representative of the homo-
topy class t<(fi), i = 0,1, and let t4I" be the 3-diagram of spaces

(fo)<kU(f1)<k

incl x id

t<k(VV, Yw) 6A1 X t<k(L1,YL)< Al X t<k(L1,YL).

Let er, be a representative of the homotopy class emby(Lq1,Yr) and let ey be a
representative of the homotopy class embyg (W, Yy,). An h-morphism ¢, —p, T is
given by

(fo)<kU(f1)<k

incl x id

ter(W,Yw) OAY Xt (Ly, Yy )C Al Xt (L, Y1)

ewl lidXEL \le Xer
foUf1

W OAL x L, el xid Al x L.

(The right-hand square commutes on the nose.) Once the requisite homotopy has
been chosen, this h-morphism induces a map

hocolim(t<xT') —L || = OM.
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Let g be the composition

hocolim(t<I") g, 0

M

M.
It is consistent with our earlier constructions to consider cone(g) as a candidate for
PX.

If the perversity value does not increase, so that ky = kp + 1, then one must
use iterated truncation techniques to form a 3-diagram t i I". If fo, f1 : L1 - W
can be promoted to morphisms fo, f1 : (L1,Y1) = (W, Yy ) in CWyg,, 59 by choosing
suitable Y7, Yy, then there are truncations

tekw (fi) Ttk (L1, Y1) — tapy (W, Yir).
By Proposition 1.6.1, there is a homotopy equivalence

t<kr, (t<kW (L17 Y1)7 YL) ~ itk (Lla YL)7

where (L1,Y7) € ObCWy, 55. Choosing a representative for the result of applying
the natural transformation embyg, to the pair (t<g,, (L1,Y1),Ys) gives a map
€ teky (tkw (L1, Y1), Y1) = by (L1, Y1)
Let
a: OAY X tepy (L1, YL) — gy, (W, Yiy)
be the composition

id X~

8A1 X t<kL (Ll, YL)

OAY X t gy (tapy (L1, Y1), Y1)
J{id xe
OAY X topy, (L1,Y1)
J{(fo><kwu<f1)<kw

tekw (W, Yw),

where (f;) <k, is a representative of t<y,, (f;), i = 0,1. Let t4I" be the 3-diagram

incl x id
tkw (W, Yw) : DAL X t g, (Ly, V) —————= Al x t oy, (L1, Y1),

For an appropriate t,I' —}, T, one will get f, g and a candidate for I?X as above.



CHAPTER 3

String Theory

3.1. Introduction

String theory models physical phenomena by closed vibrating loops (“strings”)
moving in space. As the string moves, it forms a surface, its world sheet ¥. The
movement in space is described by a map ¥ — T to some target space T'. (This is the
starting point for the data of a nonlinear sigma model.) This space is usually required
to be 10 = 4 + 6-dimensional and is often assumed to be of the form T = M* x X6,
where M* is a 4-manifold which, at least locally, may be thought of as the space-time
of special relativity. The additional 6 dimensions are necessary because a string needs
a sufficient number of directions in which it can vibrate. If this number is smaller
than 6, then problems such as negative probabilities occur. The space X carries
a Riemannian metric and is very small compared to M. Among other constraints,
supersymmetry imposes conditions on the metric of X that imply that it has to be a
Calabi-Yau space. A Calabi-Yau manifold has a complex structure such that the first
Chern class vanishes, and the metric is K&hler for this complex structure. (A large
class of examples of Kéhler manifolds are complex submanifolds of complex projective
spaces.) Calabi conjectured that all K&hler manifolds with vanishing first Chern class
admit a Ricci-flat metric, which was later proven by S. T. Yau. Many examples of
Calabi-Yau manifolds are obtained as complete intersections in products of projective
spaces. Consider for instance the quintic

P.(2) = 25 + 20 + 25 + 25 + 25 — 5(1 + €) 2021222324,
depending on a complex structure parameter €. The variety
X.={2€CP*| P(2) =0}

is Calabi-Yau. It is smooth for small € # 0 and becomes singular for e = 0. (For X, to
be singular, 1+ ¢ must be fifth root of unity, so X, is smooth for 0 < |¢| < [e27/5 —1].)
It is at present not known which Calabi-Yau space is the physically correct choice.
Thus it is very important to analyze the moduli space of all Calabi-Yau 3-folds and
to find ways to navigate in it. One such way is the conifold transition. The term
“conifold” arose in physics and we shall here adopt the following definition:

DEFINITION 3.1.1. A topological conifold is a 6-dimensional topological stratified
pseudomanifold S, whose singular set consists of isolated points, each of which has
link S2 x S3. That is, S possesses a subset ¥, the singular set, such that S — X is a 6-
manifold, every point s of 3 is isolated and has an open neighborhood homeomorphic
to the open cone on S? x S3.

An example is the above space Xy. The singularities are those points where the
gradient of Py vanishes. If one of the five homogeneous coordinates zy, . . ., z4 vanishes,
then the gradient equations imply that all the others must vanish, too. This is not
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a point on CP*, and so all coordinates of a singularity must be nonzero. We may
then normalize the first one to be zg = 1. From the gradient equation zé = 21292324
it follows that z; is determined by the last three coordinates, z; = (222324)’1. The
gradient equations also imply that

5 5 5 5 5
1 =20 = 2021222324 = 2] = 29 = 23 = 2,

so that all coordinates of a singularity are fifth roots of unity. Let (w,£,n) be any
triple of fifth roots of unity. (There are 125 distinct such triples.) The 125 points

(1:(wem™ rw:€:n)
lie on X and the gradient vanishes there. These are thus the 125 singularities of Xj.

Each one of them is a node, whose neighborhood therefore looks topologically like the
cone on the 5-manifold S? x S3.

3.2. The Topology of 3-Cycles in 6-Manifolds

Middle dimensional homology classes in a Calabi-Yau 3-manifold have particularly
nice representative cycles, namely embedded 3-spheres, as we shall now prove.

PRrOPOSITION 3.2.1. FEvery 3-dimensional homology class in a simply connected
smooth 6-manifold X, in particular in a (simply connected) complex 3-dimensional
Calabi-Yau manifold, can be represented by a smoothly embedded 3-sphere S C X
with trivial normal bundle.

PROOF. As X is simply connected, the Hurewicz theorem implies that the Hurewicz
map m2(X) — Ho(X) is an isomorphism and the Hurewicz map m3(X) — H3(X)
is onto. Thus, given a homology class © € H3(X), there exists a continuous map
f: 5% — X such that f.[S®] = x, where [S?] € H3(S?) is the fundamental class. Let
us recall part of the Whitney embedding theorem [Whi36], [Whid4]: Let N™, M?"
be smooth manifolds, n > 3. If M is simply connected, then every map f : N* — M?2"
is homotopic to a smooth embedding N — M. Hence, with n = 3, our f is homo-
topic to a smooth embedding f' : S% — X, f1[S3] = £.[S®] = x. So z is represented
by an embedded S3. The transition function for the normal bundle of f’ lies in
m2(GL(3,R)) = m2(0(3)) = m2(SO(3)) = 0. Thus the normal bundle is trivial. O

This result implies in particular that one can do (smooth) surgery on any 3-
dimensional homology class in a Calabi-Yau 3-manifold. One represents the class
by a smoothly embedded 3-sphere. Since the normal bundle is trivial, this cycle
has an open tubular neighborhood diffeomorphic to S® x int(D?). Removing this
neighborhood, one gets a manifold with boundary 52 x S2. The surgery is completed
by gluing in D* x S% along the boundary 9(D* x S?) = §3 x S2.

3.3. The Conifold Transition

The conifold transition takes as its input a Calabi-Yau manifold and produces an-
other (topologically different) Calabi-Yau manifold as an output by passing through a
Calabi-Yau conifold. Let X, be a Calabi Yau 3-fold whose complex structure depends
on a complex parameter €. The dependence is such that for small € # 0, X, is smooth
and the homotopy type of X, is independent of €, while in the limit ¢ — 0, one obtains
a singular space .S which is a conifold in the above sense. We will refer to this process

X~ S
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as a deformation of complex structures. Let us assume that the singularities are
all nodes. This implies that the link of every singularity is a product of spheres
S? x S% and the neighborhood of every singularity thus is topologically a cone on
52 x 83. Topologically, the deformation X, ~» S collapses S3-shaped cycles in X, to
the singular points and there is a collapse map X. — S. The singular space S admits
a small resolution Y — S, which replaces every node in S by a CP!. The resulting
space Y is a smooth Calabi-Yau manifold. The transition

X~ S~Y

is an instance of a conifold transition. (Other instances may involve singularities worse
than nodes.) Suitable generalizations of such transitions connect the parameter spaces
of many large families of simply connected Calabi-Yau manifolds, see [GH88] and
[GH89], and may indeed connect all of them.

3.4. Breakdown of the Low Energy Effective Field Theory Near a
Singularity

Let X be a Calabi-Yau manifold of complex dimension 3. By Poincaré duality,
there exists a symplectic basis Ay,..., A, BY,..., B" for H3(X;Z), that is, a basis
with the intersections

A;NB = -BINA; =6, AiNnA;=0=B"NnDB.

By Proposition 3.2.1, we may think of the A; and B’ as smoothly embedded 3-spheres
with trivial normal bundle. Let €2 be the holomorphic 3-form on X, which is unique
up to a nonzero complex rescaling (b3 = 1). Then a complex structure on X is
characterized by the periods

Fl:/ Q, ZJ’:/ Q.
A; Bi

i

The Z7 can serve as projective coordinates on the moduli space M of complex struc-
tures on X. Locally, the F; may be regarded as functions of the Z7. When one of
the periods, say Z!, goes to zero, the corresponding 3-cycle B! collapses to a singular
point and X becomes a conifold. On M there is a natural metric G, the Petersson-Weil
metric [Tia87]. According to [Str95], see also [Pol00], near Z* = 0,

Fi(Z') ~ const —l—L_Z1 log Z*,
27
and one obtains
S11 ~ IOg(lel)
for the metric near Z' = 0. Thus, while the distance with respect to § to Z! = 0 is
finite, the metric blows up at the conifold. The conifold is hence a singularity for M

in this sense. This singularity is responsible for generic inconsistencies in low-energy
effective field theories arising from the Calabi-Yau string compactification.

3.5. Massless D-Branes

The problem is rectified in type II string theories by (nonperturbative quantum
effects due to) the presence of D-branes that become massless at the conifold, see
[Str95], [Hiib97]. In ten-dimensional type IIB theory, there is a charged threebrane
that wraps around (a minimal representative of) the 3-cycle B!, which collapses to a
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singularity for Z! — 0. The mass of the threebrane is proportional to the volume of
B!. In the limit
e=2"50, X.~ S,

this volume goes to zero and the threebrane becomes massless. If the conifold S has
n nodes arising from the collapse of n 3-cycles, and there are m homology relations
between these n cycles in X, then there will be n — m massless threebranes present,
since a D-brane is really an object associated to a homology class.

In type ITA theory, there are charged twobranes that wrap around (minimal
representatives of) the 2-cycles CP! of Y, where

S~Y

is the second part of the conifold transition (the small resolution) and the curves CP!
resolve the nodes. Again, the mass of the twobrane is proportional to the volume of
the CP!. As the resolution map Y — S collapses the CP!, this volume goes to zero
and the twobrane becomes massless. If n and m are as before, then there will be m
massless twobranes present, as we will see in Section 3.7 below. For a nonsingular
description of the physics, these extra massless particles arising from the D-branes
must be explicitly kept present in the effective theory.

3.6. Cohomology and Massless States

Following [GSW8T7], we will explain that cohomology classes on X, that is, har-
monic forms on X, are manifested in four dimensions as massless particles. Let w be
an antisymmetric tensor field, i.e. a differential form, on T = M* x X. For such a
form to be physically realistic, it must satisfy the field equation

d*dw =10
(if w is a 1-form, this is the Maxwell equation) and the generalization
d'w=0

of the Lorentz gauge condition in electrodynamics, where d* is the adjoint operator®
d* : QK(T) — QFY(T) and * : Q¥(T) — Q% (T) is the Hodge star-operator. If
Ar = dd* + d*d denotes the Hodge-de Rham Laplacian on T, then the two equations
imply
ATOJ =0.
The Laplacian on the product manifold decomposes as
Ar = Ay + Ax,

where Aj; and Ay are the Hodge-de Rham Laplacians of M and X, respectively.
Hence, w satisfies the wave equation

(50) (AM+Ax)w=0

This equation suggests the interpretation of Ax as a kind of “mass” operator for four-
dimensional fields, whose eigenvalues are masses as seen in four dimensions. (Compare
this to the Klein-Gordon equation (O +m?)w = 0 for a free particle, where m denotes
mass and O,; is the d’Alembert operator, i.e. the Laplace operator of Minkowski
space.) In particular, for the zero modes of Ax (the harmonic forms on X), one
sees in the four-dimensional reduction massless forms. For example if ¢ is the unique

1On an even-dimensional manifold the mathematical literature usually uses d* = — x od o x,
whereas physicists seem to prefer d* = + * od o * in the present context.
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harmonic representative of a cohomology class in X and w = p A £, where p is a
differential form on M, then the wave equation (50) implies that

Appp=0

so that p is indeed massless. Therefore, a good cohomology theory for X should
capture all physically present massless particles. This is the case for intersection
cohomology in type ITA theory, but is not the case for ordinary cohomology, nor for
intersection cohomology or L?-cohomology, in type IIB theory, as we shall see in the
next section.

3.7. The Homology of Intersection Spaces and Massless D-Branes

In the present section, homology will be understood with rational coefficients.
Let

X~ S~Y
be a conifold transition as in Section 3.3, with some of the 3-cycles (3-spheres) B?

collapsing to points. Let ¥ C S be the singular set of S and let n = card(X) denote
the number of nodes in S. Let X, — S denote the collapse map. Set

p= bQ(XE), q = I‘k(Hg(S — Z) — Hg(S)) = I‘kIHg(S),

and
m = rk coker(Hy(X) — Hy(S5)).

(Here, b;(-) is the i-th ordinary Betti number of a space and IH, = ITH[" denotes
middle-perversity intersection homology.)

LEMMA 3.7.1. The conifold transition is accompanied by the following Betti num-
bers:
(1) The map Hs(X.) — Hs(S) is surjective.
(2) The map Hy(X.) — H4(S) is injective.
(3) tk Hy(S) =p+m.

(4) tkker(H3(X.) — H3(S)) =n—m.
(5) tk Hao(Y )—rkH4(Y)—p+m.
(6) tk H3(Y') =

(7) tk Hs( 6)—q+2(n7 m).

(8) tk H3(S) = g+ (n — m).

(9) k Hy(S) =

ProoF. We shall briefly write X for X.. Let C' = |_|;L=1 S? C X be the dis-
joint union of those 3-spheres S? that are collapsed to the n nodes in S. The
collapse map X — X/C = S induces an isomorphism H,(X,C) —» H,(S). Let
D= [_|?:1 (CPJ-1 C Y be the disjoint union of those 2-spheres (CPJ-1 that are collapsed
to the n nodes in S by the small resolution Y — S. The collapse map Y — Y/D =S
induces an isomorphism H, (Y, D) = H.(S).
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(1): The diagram
H3(X) —— H3(9)

IR

H3(X,C)

commutes. Consequently, it suffices to show that H3(X) — H3(X,C) is surjective.
This follows from the exactness of the homology sequence of the pair (X, C),

Hs(X) — H3(X,C) 25 Hy(C) = éHz(S]) =

(2): Asin (1), it suffices to show that H4(X) — H4(X,C) is injective. This follows
from the exactness of the sequence
(3): Consider the exact sequence

Hy(X) % Hi(8) 5 H(C) D H(X) 5 Hy(S).

(The first map, «, is injective by (2).) By Poincaré duality in the manifold X,
rk Hy(X) =tk H2(X) = p and by (2) and the definition of m, rk H4(S) = p + m.

(4): By exactness of the sequence in (3),

rkker 5 = r1kO,
= 1k Hy(S) — rkker d,
= p+m-—-rka
= p+m—p
= m.

Since
n

rk H3(C) = >tk H3(S3) =
j=1
we have
rkkery =1k 8 =rk H5(C) — rkker 8 = n —m.
(5): The exact homology sequence of the pair (Y, D),
shows that the small resolution Y — S induces an isomorphism Hy(Y) = Hy(S). In
particular, rk Hy(Y') = rk H4(S) = p + m, see (3). By Poincaré duality, rk Hy(Y') =
rk Hy(Y).

(6): The intersection homology does not change under a small resolution of singular-
ities, and the intersection homology of a manifold equals the ordinary homology of
the manifold. Thus

rk H3(Y) =rk IH3(S) = q.
(7): The Euler characteristic of X is given by

X(X) =2+ 2p —b3(X).
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By (5) and (6), the Euler characteristic of Y is given by
X(Y)=2+42(p+m)—q.

By the Mayer-Vietoris sequence,

X(Y) =x(Y = D)+ x(D) - x(|_|$% x S})
and
X(X) = x(X = C) + x(C) — x(|_|S7 x $2).

Subtracting these two equations and observing that X —C =2 S - 2 Y — D, we
obtain

YY) = x(X) = x(D) — x(C) = 2n,
as noted also in [Hiib92]. Therefore,
2m — q + by(X) = 2n,
that is, b3(X) = ¢+ 2(n — m).
(8): By (1), H3(X) — H3(S) is surjective. Thus
tk H3(S) =tk H3(X) —rkker(H3X — H3S) =q¢+2(n—m)—(n—m) =g+ (n—m),
using (7) and (4).
(9): This follows from the exactness of the sequence
0= Hy(C) — Ha(X) — Ho(S) % Hi(C) = 0.
]

In general, the set of the n collapsed 3-spheres does not define a set of linearly
independent homology classes. The number

m = rk coker(H4(X.) — H4(S))

is precisely the number of homology relations between these 3-spheres. In type IIB
theory, there will therefore, as we have already mentioned in Section 3.5, be n — m
massless threebranes present, since a D-brane is a homological object. Similarly, the
set of the n two-spheres collapsed by the resolution map does not generally define
a set of linearly independent homology classes. The number of homology relations
between these two-spheres is

rk coker(H3(Y) — H3(9)).

From the exact homology sequence of the pair (Y, D) (notation as in the proof of
Lemma 3.7.1) we see that Hs(Y) — Hs(.S) is injective. So the rank of the cokernel is
g+ (n—m)—q = n—m using Lemma 3.7.1. Hence there are n two-spheres with n—m
relations between them. Consequently, in type ITA theory, the number of twobranes is
n—(n—m) =m. By Lemma 3.7.1 and Section 3.6, we obtain the following summary
of the topology and physics of the conifold transition.
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’ Type \ dim \ X \ S \ Y
2 p p p+m
Elem. Massless | 3 q+2(n—m) g+ (n—m) q
4 p p+m p+m
m m
2 (massless) (ITA 2-Branes,
D-Branes massive)
n—m n—m
3 (IIB 3-Branes, (massless)
massive)
2 D p+m p+m
Total Massless | 3 g+2n—m) | g+ (n—m) q
IIA 4 P p+m p+m
2 p p p+m
Total Massless | 3 qg+2n—m) | g+ 2(n—m) q
11IB 4 P p+m p+m
2 p p p+m
rk H, 3 q+2(n—m) g+ (n—m) q
4 P p+m p+m
H.(Y)=1H.(S)

In type IIB string theory, a good homology theory H!B for singular Calabi-Yau
varieties should ideally satisfy Poincaré duality (actually the entire K&hler package
would be desirable) and record all massless particles. But as we see from the above
table, these two requirements are mutually inconsistent; the total IIB numbers of
massless particles do not satisfy Poincaré duality. Thus one has a choice of modifying
one of the two requirements. Either we do not insist on Poincaré duality or we omit
some massless particles. In the present monograph we investigate theories that do
possess Poincaré duality. Which massless particles, then, should be omitted? Clearly
the ones that have no geometrically dual partner in the singular space. As the table
suggests, in the IIB regime, these are m 4-dimensional classes that are not dually
paired to classes in dimension 2. But these classes correspond to elementary massless
particles. Thus the n — m threebrane classes that repair the physical inconsistencies
discussed in Section 3.4 are recorded by such a theory, as required, and they will have
geometrically Poincaré dual classes in the theory.

An analogous discussion applies to type IIA string theory. If we do insist on
Poincaré duality for a good homology theory 4 for singular Calabi-Yau varieties,
then, according to the above table, we must omit those n — m 3-dimensional classes
that do not have dual partners. Again, these correspond to elementary massless par-
ticles and the m twobrane classes that repair the physical inconsistencies are recorded
by H!A, We thus adopt the following axiomatics.

Let C be a class of possibly singular Calabi-Yau 3-folds such that the singular
ones all sit in the middle of a conifold transition.

DEFINITION 3.7.2. A homology theory K4 defined on € is called IIA conifold
calibrated, if
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(CCA1) for every space S € C, HIA(S) (or its reduced version) satisfies Poincaré
duality; for singular S € € one has

(CCA2) tk HIA(S) = p+m,

(CCA3) rk HI4(S) = ¢; and

(CCA4) it agrees with ordinary homology on nonsingular S € C.

A homology theory HI'B defined on @ is called IIB conifold calibrated, if

(CCB1) for every space S € €, HIB(S) (or its reduced version) satisfies Poincaré
duality; for singular S € € one has

(CCB2) tk HIB(S) = p,

(CCB3) rk HIB(S) = ¢ + 2(n — m); and

(CCB4) it agrees with ordinary homology on nonsingular S € C.

ExAMPLES 3.7.3. If S sits in the conifold transition X ~» S ~» Y, then setting

HA(S) = Ho(Y;Q)
and

3P (S) = Hu(X;Q)
yields conifold calibrated theories according to the above table. However, these the-
ories are not intrinsic to the space S as they use extrinsic data associated to the
surrounding conifold transition. A mathematically superior construction of such the-
ories should have access only to S itself, not to its process of formation. (For example,
one advantage is that such an intrinsic construction may then generalize to singular
spaces that do not arise in the course of a conifold transition.) In type ITA the-
ory, a solution is given by (middle perversity) intersection homology IH,(S). Since
IH,.(S)= H.(Y), taking

JCIA(S) = TH.(S)

gives us a ITA conifold calibrated theory which only uses the geometry of S. A
solution for type IIB theory is given by taking the homology of the (middle perversity)
intersection space IS of S.

PROPOSITION 3.7.4. The theory
3G (S) = H.(15;Q)
is IIB conifold calibrated on C.
PROOF. Axiom (CCB4) follows from I.S = S for a one-stratum space S. Poincaré
duality (CCB1) is established in Theorem 2.2.5. Let M denote the exterior manifold

of the singular set with boundary M and let S = M/OM, see Section 2.6.2 for this
“denormalization”. Axiom (CCB2) is verified by

rk Hy(IS) = rk Ho(M,0M) = rk Ho(S) = rk H2(S) = p,
using Lemma 3.7.1. By Theorem 3.7.7 below, there is a short exact sequence
0 —~ K — H3(IS) — H3(S) — 0,

where K = ker(H3(S —X) — H3(S)). Each of the n singular points has a small open
neighborhood of the form coche(S3 x §2). Thus the singular set ¥ possesses an open
neighborhood U of the form U = |_|;;1 coonej(S3 x §?). Removing this neighborhood,
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one obtains a compact manifold M® with boundary OM consisting of n disjoint copies
of S3 x S2%. From the exact sequence

0= Hg(U) — H3<S) — Hg(S, U) — HQ(U) =0

we conclude that

n
Hy(S) 2 Hs (S, | | cone;(S? x %)) = Hy(M,0M),
j=1
where the second isomorphism is given by excision and homotopy invariance. By
Poincaré duality and the universal coefficient theorem,

rk H3(M,0M) =tk H*(M) = rk H3(M).

Since M and S — ¥ are homotopy equivalent, we have rk H3(M) = rk H3(S — X).
Hence

rk H3(S — X) =rk H3(S) = g+ (n — m),
and consequently,

rk H3(IS) = rtkH3(S)+rkK
= ¢+ (n—m)+rkH5(S —X) —rk(H3(S — ) — H5(9))
= 2¢+2(n—m)—gq
= q+2(n—m).

Thus (CCB3) holds. O

How would one characterize theories that faithfully record the physically correct
number of massless D-branes if one does not know that the singular space sits in a
conifold transition? Let C be any class of 6-dimensional compact oriented pseudo-
manifolds with only isolated singularities and simply connected links, not necessarily
arising from conifold transitions.

DEFINITION 3.7.5. A homology theory HIA defined on € is called ITA-brane-
complete, if

(BCAL1) for every space S € C, HIA(S) (or its reduced version) satisfies Poincaré
duality,

(BCA2) HIA(S) is an extension of Ho(S) by ker(Hy(S — ) — Hy(S)) for singular
S €€, and

(BCA3) HI'A agrees with ordinary homology on nonsingular S € €.

A homology theory H!!B defined on € is called IIB-brane-complete, if

(BCB1) for every space S € @, HUIB(S) (or its reduced version) satisfies Poincaré
duality,

(BCB2) HIB(9) is an extension of H3(S) by ker(Hs(S — ) — H3(S)) for singular
S €€, and

(BCB3) H!B agrees with ordinary homology on nonsingular S € C.

In the ITA context, provided all links have vanishing first homology, there is
actually an obvious candidate for the extension required by axiom (BCA2), namely

Hy A (S) = Ha(S — 3),
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as follows from identifying the map Ho(S — X) — H3(S) up to isomorphism with
Hy(M) — Hy(M,0M) and observing that the latter is onto, since Hy(OM) vanishes.
Since intersection homology satisfies

IH,(S) = Hy(S - %),
as well as (BCA1) and (BCA3), we obtain
PROPOSITION 3.7.6. Middle perversity intersection homology is IIA-brane-complete

on the class C of 6-dimensional compact oriented pseudomanifolds with only isolated
singularities and simply connected links (or more generally, links with zero first ho-

mology).
In the IIB situation, on the other hand, there is a priori no obvious space around,
whose homology gives the sought extension.
THEOREM 3.7.7. The theory
5I%($) = H.(IS; Q)

1s IIB-brane-complete on the class C of 6-dimensional compact oriented pseudomani-
folds with only isolated singularities and simply connected links.

PRrROOF. Axiom (BCB3) follows from I.S = S for a one-stratum space S. Poincaré
duality (BCB1) is established in Theorem 2.2.5. To prove (BCB2), we observe that
the diagram

H;(
i
Hy(L) ——= H3(195) > Ha(j) = Hs(M,0M) = Hz(S) — 0,

MY,
<

with exact bottom row (L = M), yields a short exact sequence

0 — im(a_j,) — Hs(IS) 5 Hy(S) — 0.
Since «_ is injective, it induces an isomorphism im j, = im(a_j.). By the exactness
of the sequence

Hy(OM) =5 Hs(M) —» Hs(M,0M),
we have
im j, = ker(H3(M) — H3(M,0M)).

From the commutative diagram

Hy(M) — Hy(M,0M)

IR
IR

Hs(S —X) —— H3(S)
we see that

ker(Hs(M) — Hs(M,9M)) = ker(Hs(S — ) — Hs(S)).
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3.8. Mirror Symmetry

Let us turn to the behavior of these theories with respect to mirror symmetry.
We begin by reviewing this phenomenon briefly, following [CK99]. Supersymmetry
interchanges bosons and fermions. The Lie algebra of the symmetry group of a super-
symmetric string theory contains two generators Q, Q called supersymmetric charges
that are only well-defined up to sign. Replacing @ by —@Q and leaving @ unchanged is
a physically valid operation. Regarding @, @ as operators on a Hilbert space of states,
e.g. some complex of differential forms on a manifold, particles are assigned eigen-
values of (@, Q) that indicate their charge. A given Calabi-Yau threefold M together
with a complexified Kahler class w determines such an algebra. In particular, it deter-
mines the pair (Q, @), and for p,q > 0, the (p, q)-eigenspace can be computed to be
HY9(M; A\PTM), while the (—p, ¢)-eigenspace turns out to be H9(M;Q4,). Replacing
Q by —Q (leaving @ unchanged), the (p, ¢)- and (—p, q)-eigenspaces are interchanged.
Roughly, a space M° together with a complexified Kéhler class w® is called a mirror
of (M,w) if the supersymmetry charges determined by (M°,w®) are (—Q, Q) and the
field theories of (M,w) and (M°,w®) are isomorphic. This implies identifications

HI(M;NPTM) = HI(M°; Q8 0),

HIY(M;Q8,) = HI(M°; NPT M°®).
Using the nonvanishing holomorphic 3-form on M,

HY(M; ANPTM) = HY(M; Q3 7).
We obtain thus isomorphisms

HI(M; Q5 P) = HI(M®; Q).

The two interesting Hodge numbers b, ,(M) = dim H?(M; Q%) of a simply connected
smooth Calabi-Yau threefold M are by 1(M) and ba 1 (M). We have seen that mirror
symmetry interchanges these:

b1,1 (M) = b1 (M®), bz 1 (M) = b1 1(M°).
For the ordinary Betti numbers
by =b1,1 =by, b3 =2+ 2by 1,
this means
b3 (M) = by(M®) + ba(M°) + 2,
b3(M°®) = ba(M) + by(M) + 2.

In the conifold transition context, we shall answer below the following question: What
is the correct version of these formulae if M is allowed to be singular and in either
the left or right hand side, the ordinary Betti numbers are replaced by intersection
Betti numbers?

DEFINITION 3.8.1. A class € of possibly singular Calabi-Yau 3-folds is called
mirror-closed, if it is closed under the formation of mirrors in the sense of mirror
symmetry.
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DEFINITION 3.8.2. Let € be a mirror-closed class and (HUA, 3(I'B) a pair of
homology theories on C. We call (HI4, HI'BY a mirror-pair, if

rkHIA(S) = rkHIB(S°) + rk HIB(S°) + 2,
tkHA(S°) = tkFHEB(S) + rk HIB(S) + 2,
rkHIB(S) = 1k HIA(S®) + rk HIA(S°) + 2, and
tkHEB(S°) = rkHIA(S) + rk HIA(S) + 2,

where S° denotes any mirror of S, for all S € C.

EXAMPLE 3.8.3. Let € be any mirror-closed class of smooth Calabi-Yau 3-folds.
Then ordinary homology defines a mirror-pair (HIA = H,, HUIB = H.,), as we have
seen above.

It is conjectured in [Mor99] that the mirror of a conifold transition is again
a conifold transition, performed in the reverse direction. Thus it is reasonable to
consider mirror-closed classes € of Calabi-Yau 3-folds all of whose singular members
sit in a conifold transition.

PROPOSITION 3.8.4. Let C be a mirror-closed class of possibly singular Calabi- Yau
3-folds such that all singular members of C arise in the course of a conifold transition.
Then any pair of homology theories (HIA HIBY with HIA I1A conifold calibrated and
HUB IIB conifold calibrated is a mirror-pair.

Proor. If S € C is nonsingular, the statement follows from axioms (CCA4),
(CCB4) and Example 3.8.3. Let S € € be singular with conifold transition X ~»
S ~ Y. If §° is a mirror of S, then by assumption it sits in a conifold transition
Y° ~s §°~s X° where X° is a mirror of X and Y° is a mirror of Y. According to
the table on page 162, the ordinary homology ranks of these spaces are of the form

X S Y Ye S° X°
by P D p+m P P P+ M
bs || g+2n—m) | g+n—m)| ¢ [[Q+2(N-M)|Q+N-M)| Q
by P p+m p+m P P+M P+M

Since X and X° are smooth,
Q =b3(X°) = ba(X) + bs(X) +2=2p+2
and
g+2(n—m) =b3(X) =ba(X°) +bs(X°)+2=2(P+ M)+ 2.
Since Y and Y° smooth,
q= bg(Y) = bQ(Yo) + b4(Y0) + 2= 2P + 2

and
Q+2(N—-M)=0b3(Y°) =ba(Y)+bs(Y)+2=2(p+m) + 2.

Thus, by axioms (CCA3), (CCB2) and (CCB1),

rk HIA(S°) = Q = 2p + 2 = rk HEB(S) + rk HIB(S) + 2,
and, by axioms (CCB3), (CCA2) and (CCA1),

rk HYB(S) = g+ 2(n —m) = 2(P 4+ M) + 2 = tk HIA(S°) + rk A (5°) + 2.

Furthermore, by axioms (CCA3), (CCB2) and (CCB1),

rk HEA(S) = ¢ = 2P + 2 = rk 35" (S°) + rk HYP(5°) + 2,
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and, by axioms (CCB3), (CCA2) and (CCA1),
rkHEB(S°) = Q + 2(N — M) =2(p +m) + 2 = tk HIA(S) + rk HIA(S) + 2.
0

COROLLARY 3.8.5. Intersection homology and the homology of intersection spaces
are a marror-pair on any mirror-closed class of possibly singular Calabi- Yau 3-folds
all of whose singular members arise in the course of a conifold transition.

PrOOF. We have observed above that intersection homology is ITA conifold cal-
ibrated on such a class of spaces. By Proposition 3.7.4, the homology of intersection
spaces is IIB conifold calibrated on such a class. The statement follows by applying
Proposition 3.8.4. (]

In [Hiib97], T. Hiibsch asks for a homology theory SH, (“stringy homology”)
on 3-folds with only isolated singularities such that

(SH1) SH., satisfies Poincaré duality;

for singular S:

(SH2) SH,.(S) =2 H,(S —X) for r < 3,

(SH3) SH3( ) is an extension of H3(S) by ker(H3(S — X) — H;3(S9)),
(SH4) SH,.(S) = H,(S) for r > 3; and

(SH5) SH. agrees with ordinary homology on nonsingular S.

(In fact, one may of course ask this more generally for n-folds.) Such a theory
would record both the type ITA and the type IIB massless D-branes simultaneously.
Intersection homology satisfies all of these axioms with the exception of axiom (SH3),
and is thus not a solution. Regarding (SH3), Hiibsch notes further that “the pre-
cise nature of this extension is to be determined from the as yet unspecified general
cohomology theory.” Using the homology of intersection spaces, H, (IS), we have
now provided an answer: By Theorem 3.7.7, the group H3(I.S) satisfies axiom (SH3)
for any 3-fold S with isolated singularities and simply connected links. The pre-
cise nature of the extension is given in the proof of that theorem. However, setting
SH,(S) = H.(IS) does not satisfy axiom (SH2) (and thus, by Poincaré duality, does
not satisfy (SH4)), although is does satisfy (SH1), (SH3) and (SH5). The mirror-pair
(IH.(S), H.(IS)) does contain all the information that a putative theory SH.(S) sat-
isfying (SH1)—(SH5) would contain and so may be regarded as a solution to Hiibsch’
problem. In fact, one could set

IH.(S), r#3,

SH:(5) = { H.(IS), r=3.

This SH, then satisfies all axioms (SH1)—(SH5).

Since the intersection space IS has been constructed not just for singular spaces
S with only isolated singularities, but for more general situations with nonisolated
singular strata as well (see Section 2.9), one thus obtains an extension of the sought
theories to these nonisolated scenarios.

An Ansatz for constructing S H,, using the description of perverse sheaves due to
MacPherson-Vilonen [MV86], has been given by A. Rahman in [Rah07] for isolated
singularities.
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3.9. An Example

Let us return to the quintic X, in P* from the introduction (Section 3.1), and
consider the conifold transition

X~ S~Y.

The conifold transition for this well-known quintic is described in [Hiib92], see also
[Pol00]. We have seen that S has n = 125 nodes. Any smooth quintic hypersurface
in P* (is Calabi-Yau and) has Hodge numbers by ; = 1 and by ; = 101. Thus for € # 0,

p= bZ(Xe) = bl,l(Xe) = 17

g+2(n—m) =0b3(X.) =2(1+by1) = 204
By [Sch86], b;,1(Y) = 25 for the small resolution Y. Hence
p+m="0(Y)=0,.:10) =25,
and so m = 24. From
204 = g+ 2(n —m) = q + 2(125 — 24) = q + 202

we see that ¢ = 2. So in this example the third homology of the intersection space
1S sees

rk H5(IS) = ¢+ 2(n —m) = 204

independent cycles, of which 202 remain invisible to intersection homology because
the latter sees only

vk TH3(S) = ¢ = 2

independent cycles. On the other hand, the second and fourth intersection homology
of S sees

rk I Hy(S) + rk TH,(S) = 50

independent cycles, of which 48 remain invisible to the homology of the intersection
space because the latter sees only

rk Hy(1S) + rk Hy(IS) = 2

independent cycles. The above table for this example is:
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’ Type ‘ dim ‘ X ‘ S Y
2 1 1 25
Elem. Massless | 3 204 103 2
4 1 25 25
24 24
2 (massless) | (ITA 2-Branes,
massive)
D-Branes 01 T
3 (IIB 3-Branes, | (massless)
massive)
2 1 25 25
Total Massless | 3 204 103 2
ITA 4 1 25 25
2 1 1 25
Total Massless | 3 204 204 2
1B 4 1 25 25
2 1 1 25
rk H, 3 204 103 2
4 1 25 25
2 25
rk TH,(S) 3 2
4 25
2 1
rk H, (IS) 3 204
4 1
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