ISOMETRIC GROUP ACTIONS AND THE COHOMOLOGY OF FLAT FIBER

BUNDLES

MARKUS BANAGL

ABSTRACT. Using methods originating in the theory of intersection spaces, specifically a de
Rham type description of the real cohomology of these spaces by a complex of global differ-
ential forms, we show that the Leray-Serre spectral sequence with real coefficients of a flat
fiber bundle of smooth manifolds collapses if the fiber is Riemannian and the structure group
acts isometrically. The proof is largely topological and does not need a metric on the base
or total space. We use this result to show further that if the fundamental group of a smooth
aspherical manifold acts isometrically on a Riemannian manifold, then the equivariant real co-
homology of the Riemannian manifold can be computed as a direct sum over the cohomology
of the group with coefficients in the (generally twisted) cohomology modules of the manifold.
Our results have consequences for the Euler class of flat sphere bundles. Several examples are
discussed in detail, for instance an action of a free abelian group on a flag manifold.
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A fiber bundle with given structure group is flat, if the transition functions into the structure
group are locally constant. We show that the method of intersection spaces introduced in
[Ban10], specifically the de Rham description of intersection space cohomology given in

[Banl11], implies the following result, by a concise and topological proof:

Theorem. (See Theorem 5.1.) Let B,E and F be closed, smooth manifolds with F oriented.

Let T : E — B be a flat, smooth fiber bundle with structure group H. If
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(1) H is a Lie group acting properly (and smoothly) on F (for example H compact),
or

(2) F is Riemannian and the images of the monodromy homomorphisms
m (B,b) — H act by isometries on F, where the base-point b ranges
over the connected components of B,

then the cohomological Leray-Serre spectral sequence of T for real coefficients collapses at
the Ey-term. In particular, the formula

HYE;R) = B HP(B;H!(F:R))
p+q=k

holds, where the H1(F;R) are local coefficient systems on B induced by T, whose groups are
the real cohomology groups of the fiber:

By a result of R. Palais ([Pal61]), condition (1) implies that F can be endowed with a
Riemannian metric such that (2) holds. The isometry group of an m-dimensional, compact,
Riemannian manifold is a compact Lie group of dimension at most %m(m +1). Thus (2)
implies (1) by taking H to be the isometry group of F', and the two conditions are essentially
equivalent. In Section 6, we provide an example of a flat, smooth fiber bundle whose struc-
ture group does not act isometrically for any Riemann metric on the fiber, and whose spectral
sequence does not collapse at E;. Hence, conditions (1), (2) in the theorem cannot be deleted
without substitution.

Let us indicate two immediate consequences of the theorem. Let 7w : E — B be an ori-
ented, flat sphere bundle with structure group SO(n) over a closed, smooth manifold B. The
transgression

dyEY" ' =H'BH (8" R)) = H" 1 (S" LiR)

— EpY = H"(B;H (8" ;R)) = H"(B:R)

sends a certain element ¢ € E?""il, which corresponds to local angular forms on the sphere

bundle, and which survives to E,, to the Euler class of the sphere bundle. Since SO(n) is
compact, the spectral sequence of the bundle collapses at E,, by the theorem. Thus d, =0
and we obtain the following corollary:

Corollary. The real Euler class of an oriented, flat, linear sphere bundle (structure group
SO(n)) over a closed, smooth manifold is zero.

We thus obtain a topological proof, without using the Chern-Weil theory of curvature
forms, of a result closely related to the results of [Mil58, Section 4], which do rely on Chern-
Weil theory.

By [Smi77], there is a flat manifold M>" with nonzero Euler characteristic for every n > 1.
If the associated tangent sphere bundle of M, with structure group SO(2n), were flat, then the
Euler class of such a sphere bundle would vanish according to the above corollary. We arrive
at:

Corollary. For every n > 1, there is a flat manifold M*" whose linear tangent sphere bundle
is not flat.
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For the tangent bundles of these manifolds M>", the structure group GL™ (21, R) can be
reduced to GL™(2n,R) with the discrete topology and can also be reduced to SO(2n) (by
using a metric), but there are no further reductions to SO(2n) with the discrete topology.

Our theorem may be applied to the equivariant cohomology H2(—;R) of certain discrete
groups G:

Theorem. (See Theorem 7.1.) Let F be an oriented, closed, smooth manifold and G a dis-
crete group, whose Eilenberg-MacLane space K(G, 1) may be taken to be a closed, smooth
manifold. If for a smooth action of G on F,

(1) the action factors through a proper, smooth Lie group action,
or
(2) F is Riemannian and G acts isometrically on F,

then there is a decomposition

HE(F:R)= P HP(GHY(F;R)),
p+q=k
where the H?(F;R) are G-modules determined by the action.

The assumption on G can be paraphrased as requiring G to be the fundamental group of
a closed, (smooth) aspherical manifold. Examples of such groups include finitely generated
free abelian groups, the fundamental groups of closed manifolds with non-positive sectional
curvature, the fundamental groups of surfaces other than the real projective plane, infinite
fundamental groups of irreducible, closed, orientable 3-manifolds, torsionfree discrete sub-
groups of almost connected Lie groups, and certain groups arising from Gromov’s hyper-
bolization technique. Only torsionfree G can satisfy the hypothesis of the above theorem.
Note that in (1) we do not assume that the image of G is closed in the intermediary Lie group,
nor that one can identify G with a subgroup of the intermediary group, and in (2) we do not
assume that the image of G is closed in the isometry group of F, nor that one can identify
G with a subgroup of the isometries. For instance, the integers G = Z with K(Z,1) = S,
the circle, act isometrically and freely (and ergodically) on the unit circle by powers of a
rotation by an angle which is an irrational multiple of 27. Theorem 7.1 thus emphasizes the
discrete dynamical systems viewpoint. This example also satisfies (1), since the powers of
the irrational rotation are a subgroup (which is not closed) of the compact Lie group ' which
acts on itself by (e.g. left) multiplication. The actions to which the theorem applies need not
be proper, nor need our G-spaces be G-CW complexes, but in many geometric situations,
nonproper actions factor through proper actions in a natural way. (The above Z-action on the
circle is not proper, since e.g. the orbit space is not Hausdorff and orbits are not closed in S'.)
Section 7 contains a number of corollaries to, applications of, and examples illustrating The-
orem 7.1. For instance, if an integral Heisenberg group §),, acts isometrically on an oriented,
closed, connected, Riemannian manifold F, then

kHE (F)>2, k=12,
and H%n (F;R) does not vanish (Corollary 7.8).

In Section 8, we illustrate the use of our results by calculating explicitly an equivariant co-
homology group of a certain action of a free abelian group on the flag manifold Fy = U (8) /T3
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of real dimension 56. The outcome is verified by an alternative, logically independent, com-
putation of the same group, relying on a recursive scheme introduced in the appendix (Section
9). This recursive scheme is only available for finitely generated free abelian groups.

The proof of Theorem 5.1 relies on the complex of multiplicatively structured forms con-
structed in [Ban11], and the fact that fiberwise truncation in both directions, yielding a sub-
complex in both cases (and not a quotient complex in one case), can be performed on the
multiplicatively structured forms. Such truncations, carried out homotopy theoretically on
the space level (generally a much harder problem), are also required to build the intersection
space I”X of a stratified pseudomanifold X. The only analytic tool we need to prove the
theorem is the classical Hodge decomposition — hence the assumption that the fiber must be
closed, oriented and Riemannian. Otherwise, our argument is purely topological in nature,
using Cech complexes. No connections, tensor fields, etc. are used on the base or total space;
in particular we need not assume that B and E are Riemannian. The combinatorial nature of
our proof may lend itself to an extension of our theorem to nonsmoothable PL. manifolds B
and E and flat PL bundles & : E — B. In this situation, smooth forms have to be replaced by
Sullivan’s complex g’(K ) of piecewise C-forms on a simplicial complex K. We may also
recall at this point that there are closed, aspherical PL manifolds which are not homotopy
equivalent to closed, smooth manifolds, [DH89].

Our Theorem 5.1 is closely related to results of [Dai91] and [Miil11]. Dai and Miiller work
with Riemannian E, B and a Riemannian submersion 7 : E — B. Their metric on F is allowed,
to a certain extent, to vary with points in the base. Using Dai’s spectral sequence degeneration
result from [Dai91], Miiller proves that if a flat Riemannian submersion 7 is locally a warped
product, or has totally geodesic fibers, then the spectral sequence of 7 collapses at E;. Let
us put this into perspective. A Riemannian submersion whose total space is complete is a
locally trivial fiber bundle. The geometry of a Riemannian submersion is largely governed
by two tensor fields 7" and A. Let V and H denote the vertical and horizontal distributions,
respectively, that is, at each point x € E there is an orthogonal decomposition V, & H, = T,E
of the tangent space and V, is tangent to the fiber over m(x). Let V and H also denote the
projection of a vector onto V, and 3, respectively. With V the Levi-Civita connection of the
metric on E, one sets for vector fields V,W on E,

TvW = J'CVVVVW + VVVVJ{W

and
AyW = ﬂ-CVj_(VVW + VVJ{VH-CW.

If V,W are vertical, then Ty W is the second fundamental form of each fiber. The identical
vanishing 7' = 0 is equivalent to each fiber being totally geodesic, that is, geodesics in the
fibers are also geodesics for E. This implies that all fibers are isometric and the holonomy
group (which agrees with the structure group of 7, at least when E is complete) is a subgroup
of the isometry group of the fiber. The identical vanishing A = 0 is equivalent to the integra-
bility of J. If J is integrable, then E is locally isometric to B X F with a metric g + grp,
where gp is a metric on B and {gF }pcp is a smooth family of metrics on F'. In this situation,
the horizontal foliation yields a flat (Ehresmann) connection for 7. For a flat connection,
the holonomy along a path depends only on the homotopy class of the path. Indeed, for
path-connected B, flat bundles with structure group G acting effectively on a fiber G are in
one-to-one correspondence with homomorphisms 7; (B) — G. In particular, one may take
G to be discrete. A warped product is a Riemannian manifold B x F, whose metric has the
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form gp + fgr, where g is a fixed metric on F and f : B — R is a positive function. If the
Riemannian submersion 7 is locally a warped product, then J{ is integrable. When T = 0
and A =0, the total space E is locally a product gg + gr, where gr does not depend on points
in the base. From [Dai91], Miiller isolates a technical condition, called condition “(B)” in
[Miill 1, Section 2.3], which for a flat Riemannian submersion implies collapse of the spectral
sequence at E>. He shows that this condition is satisfied for locally warped products as well
as for totally geodesic fibers, while Dai shows that collapse at E»> happens for flat Riemannian
submersions satisfying (B).

2. A COMPLEX OF MULTIPLICATIVELY STRUCTURED FORMS ON FLAT BUNDLES

This section reviews the multiplicatively structured form model introduced in [Banl1].
The proofs of the cited results can be found in that paper. For a smooth manifold M, Q*(M)
denotes the de Rham complex of smooth differential forms on M. Let F be a closed, oriented,
Riemannian manifold and 7 : E — B a flat, smooth fiber bundle over the closed, smooth 7-
dimensional base manifold B with fiber F and structure group the isometries of F. An open
cover of an n-manifold is called good, if all nonempty finite intersections of sets in the cover
are diffeomorphic to R". Every smooth manifold has a good cover and if the manifold is
compact, then the cover can be chosen to be finite. Let $4 = {Ugy} be a finite good open
cover of the base B such that 7 trivializes with respect to l. Let {@q } be a system of local
trivializations, that is, the ¢, are diffeomorphisms such that

U(x %—UQXF

\/

commutes for every . Flatness implies that the transition functions
Ppo = Pplodal ' (UaNUp) x F — &~ (U NUp) — (UaNUg) X F
are of the form
pﬁa([,X) = (tvgﬁ(x(x))'
The maps ggq : F' — F are isometries.

If X is a topological space, let m, : X X F — F denote the second-factor projection. Let
V C B be a $l-small open subset and suppose that V C Uy,.

Definition 2.1. A differential form @ € Q4(n~!(V)) is called o-multiplicatively structured,
if it has the form

@ =05 Y TN ATSY;, n; € Q(V), 1 € Q°(F)
J

(finite sums).
Flatness is crucial for the following basic lemma.

Lemma 2.2. Suppose V.C Uy NUp. Then @ is o-multiplicatively structured if, and only if,
o is B-multiplicatively structured.

The lemma follows from the transformation law

(D %Z”l AT Y = ¢ﬁ2”1 N AT (86p7))-
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The lemma shows that the property of being multiplicatively structured over V is invari-
antly defined, independent of the choice of o such that V C U,. We will use the shorthand
notation

Ugy..acp = Uy N+ NUg,
for multiple intersections. (Repetitions of indices are allowed.) Since il is a good cover, every
Ug...a,, is diffeomorphic to R”, n = dim B. A linear subspace, the subspace of multiplicatively
structured forms, of Q4(E) is obtained by setting

Qls(B) ={w € QUE) | ®|-1y, is a-multiplicatively structured for all oc}.
The exterior derivative d : Q4(E) — Q4+ (E) restricts to a differential
1
d:Q%s(B) — Q%5 (B).

Thus Q3;5(B) C Q*(E) is a subcomplex. We shall eventually see that this inclusion is a
quasi-isomorphism, that is, induces isomorphisms on cohomology. For any o, set

Qs (Ug) = {0 € Q*(n7'Uy) | ® is a-multiplicatively structured }.
Let r denote the obvious restriction map
r:Q%\s(B) — HQMS Ug).

If p is positive, then we set

Qs Uay...ap) = {we Q’(nfanO_,_ap) | @ is o-multiplicatively structured }.
Lemma 2.2 implies that for any 1 < j < p,

Qs (Usy..a,) = {0 € Q'(nflU%_,_ap) | @ is oj-multiplicatively structured }.
In particular, if ¢ is any permutation of 0, 1,..., p, then

Ms (U‘xo'(O)“'o‘o(P)) = s (Uao...(x,,)~

The components of an element

will be written as
Sap...0p € s (Ugg...t )-

We impose the antisymmetry restriction & ¢, a;.. = —& q;..q;... upon interchange of two
indices. In particular, if op,...,04 contains a repetition, then 5%_._05,{ = 0. The difference
operator

§:[]Q(n ' Ugy...ap) — []Q° (7 'Usy...0r,1,):
defined by
p+1

(6§>0(O~~ap+l = Z (_] )jgao.-.dj.-.ap+1 |”71U%---°‘p+

=0
and satisfying 62 = 0, restricts to a difference operator
6 HQMS UU‘O a,, — HQMS (UO‘O"'(X;H»I )

Since the de Rham differential d commutes with restriction to open subsets, we have d§ = §d.
Thus

CP QY s) = [ Qs (Vay...ap)



ISOMETRIC GROUP ACTIONS AND THE COHOMOLOGY OF FLAT FIBER BUNDLES 7

is a double complex with horizontal differential & and vertical differential d. The associated
simple complex C3¢({1) has groups
CrsW) = P CP(: Q)
p+q=j
in degree j and differential D = & + (—1)7d on CP(44; Q). We shall refer to the double
complex (C*(Q%s),8.d) as the multiplicatively structured Cech-de Rham complex.

Lemma 2.3. (Generalized Mayer-Vietoris sequence.) The sequence
0 — Qs (B) — CO(:Q3s) — CM (1 Q3 cs) —2 CP (8 Qs )~
is exact.
Let us recall a fundamental fact about double complexes.

Proposition 2.4. If all the rows of an augmented double complex are exact, then the aug-
mentation map induces an isomorphism from the cohomology of the augmentation column to
the cohomology of the simple complex associated to the double complex.

This fact is applied in showing:
Proposition 2.5. The restriction map r : Q35 (B) — C°(U; Q8s) induces an isomorphism
#H Qs (B)) > H* (Ches (40).D).
The double complex (C'( n'4;Q%),8,d) given by
! -1
Q) HQ" Uny...ct,)
can be used to compute the cohomology of the total space E. The restriction map
) — HQ' 1 WUy =CO(n 1, Q%)
makes C*(7~'4(; Q*) into an augmented double complex. By the generalized Mayer-Vietoris

sequence, Proposition 8.5 of [BT82], the rows of this augmented double complex are exact.
From Proposition 2.4, we thus deduce:

Proposition 2.6. The restriction map 7: Q*(E) — C%(n~'4;Q®) induces an isomorphism
7 H*(E)=H*(Q*(E)) — H*(C*(n~'u),D),
where (C* ('), D) is the simple complex of (C*(x~';Q*),8,4d).

Regarding R” x F as a trivial fiber bundle over R"” with projection 71, the multiplicatively
structured complex Q3¢ (R") is defined as

Q5s(R") ={w € Q*(R" x F) | 0 =} a{n; ATy, n; € Q°(R"), 75 € Q°(F)}-
J

Lets:R""! <5 R x R"~! = R" be the standard inclusion s(u) = (0,u), u ¢ R" ! Let¢g: R" =
R x R"~! — R"~! be the standard projection q(¢,u) = u, so that gs = idpa—1 . Set

S=sxidp :R"!'xF 3 R'xF, Q=¢gxidp :R"xF - R" ! xF
so that OS = idgs-1 7 . The induced map §* : Q*(R" x F) — Q*(R"~! x F) restricts to a map
571 Q4 (R") > Qs (B )
The induced map Q* : Q*(R"~! x F) — Q*(R" x F) restricts to a map
0" Qs (R"™) = Qs (R").
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Proposition 2.7. The maps

S*
Qs (R) —_~ Q55 (R")
Q*

are chain homotopy inverses of each other and thus induce mutually inverse isomorphisms
_s
H* (Q5(R") 7 H(Q45 ("))
Q*

on cohomology.
Let So: F = {0} x F — R" X F be the inclusion at 0, inducing a map Sj : Q35 (R") —

Q°*(F). The map 75 : Q*(F) — Q*(R" X F) restricts to a map 75 : Q*(F) — Q3,3 (R"). An
induction on n using Proposition 2.7 shows:

Proposition 2.8. (Poincaré Lemma for multiplicatively structured forms.) The maps

S
Qs (R") __~Q(F)

T
are chain homotopy inverses of each other and thus induce mutually inverse isomorphisms

50
H*(Q3s(R")) " H*(F)

-
*

)
on cohomology.
Using the classical Poincaré lemma, this Proposition readily implies:
Proposition 2.9. The inclusion Q54 (R") C Q*(R" x F) induces an isomorphism
H* (@5 (R") = H (R x F)
on cohomology.

Proposition 2.10. For any Ug,...a,,, the inclusion Q5 ¢ (Uao...ocp) — Q'(ﬂ_anO‘_‘ap) induces
an isomorphism on cohomology (with respect to the de Rham differential d).

Since d and § on C*(41;Q35) were obtained by restricting d and § on C*(7~'4;Q°),
the natural inclusion C*(4;Q%g) < C*(7~'4;Q*) is a morphism of double complexes. It
induces an isomorphism on vertical (i.e. d-) cohomology by Proposition 2.10. Whenever a
morphism of double complexes induces an isomorphism on vertical cohomology, then it also
induces an isomorphism on the D-cohomology of the respective simple complexes. Conse-
quently, using Propositions 2.5 and 2.6, one gets:

Theorem 2.11. The inclusion Qg (B) — Q*(E) induces an isomorphism

o

H*(Qys(B)) — H*(E)

on cohomology.
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3. FIBERWISE TRUNCATION

Before we discuss fiberwise (co)truncation, we must first discuss (co)truncation over a
point. Again, we refer to [Banl1] for complete proofs of the facts cited in this section. We
shall use the Riemannian metric on F to define truncation T and cotruncation T4 of the
complex Q*(F). The bilinear form

() QF)xQ(F) — R,
(wan) = wa/\*TL

where * is the Hodge star, is symmetric and positive definite, thus defines an inner product
on Q°*(F). The codifferential

d* = (—1)"0 D g QF (F) — Q1(F)

is the adjoint of the differential d, (dw,n) = (®,d*n). The classical Hodge decomposition
theorem provides orthogonal splittings

Q'(F) = imd*®Harm'(F)®imd,
kerd = Harm'(F)®imd,
kerd®* = imd* @ Harm'(F),

where Harm’ (F') = kerd Nkerd* are the closed and coclosed, i.e. harmonic, forms on F. In
particular,

Q'(F) =imd* @ kerd = kerd” & imd.
Let k be a nonnegative integer.

Definition 3.1. The rruncation 1 Q*(F) of Q°*(F) is the complex
k—1
T4 QN (F) = — QF2(F) — QF1(F) e imd* ! 50— 00— ,
where imd*~! € Q¥(F) is placed in degree k.
The inclusion 7, Q*(F) C Q°*(F) is a morphism of complexes. The induced map on
cohomology, H" (1 Q°*F) — H'(F), is an isomorphism for r < k, while H"(1,Q°*F) =0
forr > k.

Definition 3.2. The cotruncation 1> Q°*(F) of Q°*(F) is the complex

k k+1
T QO (F) = —50— 0 —s kerd" s @F1(F) 25 F+2(F) — ...

)

where kerd* C Q(F) is placed in degree k.

The inclusion 7>, Q°*(F) C Q°*(F) is a morphism of complexes. By construction, we have
H"(15;Q°F) = 0 for r < k and the inclusion 75;Q°*(F) — Q°*(F) induces an isomorphism
H' (154 Q°F) = H "(F) in the range r > k. A key advantage of cotruncation over truncation
is that 75, Q°F is a subalgebra of (Q°*F, A), whereas T Q°F is not.

Proposition 3.3. The isomorphism type of T Q°F in the category of cochain complexes is
independent of the Riemannian metric on F.

Lemma 3.4. Let f: F — F be a smooth self-map.
(1) f induces an endomorphism f* of T Q°F.
(2) If f is an isometry, then f induces an automorphism f* of T Q°F.
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We shall next define the fiberwise truncation fto; Q3 (R") C Q35 (R") and the fiberwise
cotruncation ft>; Q3¢ (R") C Qs (R"), depending on an integer 7. Set

fie, Qs(R) ={w e Q*(R"xF) | 0= annJMtzyj,

n; € Q*(R"), y; € 7 Q*(F)}.
The complex ft; Q35 (R") is a subcomplex of Q35 (R"). Define

fto, Qs(R") = {0 € Q*(R" X F) | 0 = ann,Anzy,,

nj € Q*(R"), v € =, Q% (F)}.

Again, this is a subcomplex of Q3 g(R"). Similarly, a subcomplex ft, Q;WS(UOCO_,_%) -
Qs (Uo...a,) of fiberwise truncated multiplicatively structured forms on x! (Uay...ct,) 18
given by requiring every ¥; to lie in 7.,Q*(F). This is well-defined by the transformation
law (1) together with Lemma 3.4 (1). A subcomplex ft>; Q35 (Ug...c,) € Q315 (Ugg...t,,) Of
fiberwise cotruncated multiplicatively structured forms on 77! (Uao_._ap) is given by requiring
every ¥; to lie in 7>,Q°(F). This is well-defined by the transformation law and Lemma 3.4
(2). (At this point, it is used that the transition functions of the bundle are isometries.)

Let S:R"™ I xF - R'xF, Q:R"xF — R" ! x F be as in Section 2. The induced
map S* : Q3 (R") — Q3 (R"1) restricts to a map

S ftey Q%g (R") — fto, Qs (R,
The induced map Q* : Q8 (R"™!) — Q35 (R") restricts to a map
Q" ft, MS(R”_I) — fto; Qg (R").
Lemma 3.5. The maps
S*
fro, Qg (R") _ ft, Q% (R 1)
Q*
are chain homotopy inverses of each other and thus induce mutually inverse isomorphisms
S*
He (ft, Q55 (R") _—— H*(ft, Q3 (R" 1))
Q*
on cohomology.

As in Section 2, let Sp : F = {0} x F — R" x F be the inclusion at 0. The induced
map Sj; 1 Qg (R") — Q°(F) restricts to a map S : ft; Q3g(R") — 7,Q°(F). The map
T QN (F) — Qg (R") restricts to a map 75 : 7, Q°(F) — ft-, Q35 (R"). An induction on
n using Lemma 3.5 shows:

Lemma 3.6. (Poincaré Lemma for truncated forms.) The maps
5o

5

T
are chain homotopy inverses of each other and thus induce mutually inverse isomorphisms
5
. S . H'(F), r<t
H (1 Qs (RY) — HY(2,07(F)) = {0 e
, >t.

5

)
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on cohomology.

An analogous argument, replacing 7.,Q°*(F) by 7>,Q°(F), proves a version for fiberwise
cotruncation:

Lemma 3.7. (Poincaré Lemma for cotruncated forms.) The maps
50
ft> Q55 (R") 7 Q°(F)

-
*

)

are chain homotopy inverses of each other and thus induce mutually inverse isomorphisms

Sh ,
R H'(F), r>t
H’(ft>tQ3\{8(R”))%H’(TZ,QY(F))%{O (F) o

*

T
on cohomology.

4. CECH PRESHEAVES

Let M be a smooth manifold and U = {V} be a good open cover of M. The cover U
gives rise to a category C(0), whose objects are all finite intersections Voy...a, Of Open sets
Vg in U and an initial object @, the empty set. The morphisms are inclusions. A Cech
presheaf H on 0 is a contravariant functor H : C(J) — R-MOD into the category R-MOD
of real vector spaces and linear maps, such that H(@) = 0. A homomorphism H — G of
Cech presheaves on U is a natural transformation from H to G. The homomorphism is
an isomorphism if H(V%_._%) — G(Vao,_.ap) is an isomorphism for every object Ve, o, in
C(%0). Let H be a real vector space. The presheaf H is said to be locally constant with group
H, if all H(Ve,...a, ), for Vi .o, # 9, are isomorphic to H and all linear maps H(Ve,...a,) —
H(Vp,... ﬁq) for nonempty inclusions Vy..8, € Voy...a, are isomorphisms. A Cech presheaf H
on U possesses p-cochains

c’(U:H) = [] H(Va..q,)
oty

and a Cech differential § : C?(U;H) — CP*!(0; H) making C*(U;H) into a complex. Its
cohomology H?(U;H) is the Cech cohomology of the cover 0 with values in H. An iso-
morphism H =5 G of two presheaves on *U induces an isomorphism of cohomology groups
H*(0;H) — H*(;G). Let L be a locally constant sheaf on M. Then L defines in particular
a locally constant presheaf on U (since U is good, L|y is constant for every V € ObC(0)) so
that H*(%0; L) is defined. Then, as H?(Vy,_.q, ;L) = 0 for g > 0, there is a canonical isomor-
phism Hg, (M;L) = H*(0; L) according to [Bre97, Thm. II1.4.13], where H§, (M;L) denotes
sheaf cohomology. In particular, the Cech cohomology groups of 2 with values in L are in-
dependent of the good cover used to define them. By [Bre97, Cor. I1I1.4.12], these groups
are furthermore canonically isomorphic to the Cech cohomology of M with coefficients in
L, H *(M;L). If we view L as a local coefficient system on M, then the singular cohomol-
ogy H®*(M;L) is defined and a canonical isomorphism Hg, (M;L) = H*(M;L) is provided by
[Bre97, Thm. III.1.1].

Let us return to the good cover il on our base space B. We shall define three Cech
presheaves on il. Define HY(F) by

HY(F)(U) = HY(z~'U), U € ObC(4)).
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The structural morphisms associated to inclusions are given by restriction of forms. Since
all nonempty objects U in C(4) are diffeomorphic to R”, and the bundle 7 : E — B trivial-
izes over every such U, the classical Poincaré lemma implies that HY(F) is a locally con-
stant presheaf with group H9(F ), the de Rham cohomology of the fiber. Define the presheaf
H(lets (F) by

HY s (F)(U) = (@5 (U)), U € ObC(4).
According to Proposition 2.10, the inclusion Q35 (U) C Q*(x~!U) induces an isomorphism

H s (F)(U) =5 H9(F)(U) for every nonempty U € ObC(Ll). If V € ObC(Y) is an open set
with V C U, then the commutative square

Qs (U)—Q*(n'U)
Qs (V)——=Q*(x~'V)

induces a commutative square

Thus the inclusion of multiplicatively structured forms induces an isomorphism
HY o (F) 5 HY(F)
of presheaves for every ¢. In particular, Hgv[s (F) is also locally constant with group H7(F).
The isomorphism induces furthermore an isomorphism
2 HP (4 H g (F)) — HP (8 HI(F))
of Cech cohomology groups. Define the presheaf qut (F) by
HY,(F)(U) = H(fts; Q35 (U)), U € ObC(41).U # 2.

Since U # @ is diffeomorphic to R” and the bundle x : E — B trivializes over U, the Poincaré
Lemma 3.7 for cotruncated forms implies that the restriction S; of a form to the fiber over the
origin of U = R" induces an isomorphism

HL, (F)(U) ——— HO(F)
for g > 1, whereas HL,(F)(U) = 0 for g <. If V € ObC(4l) is a nonempty open set with
V C U, then the commutative diagram

S*
ftZl QB\/[S (U) L> thQ. (F)

restr *
S 0

ft>r Q5 (V)
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(assuming, without loss of generality, that the origin of U lies in V) induces a commutative
diagram

H.,(F)(U) — H4(F)

0

5o

HZ,(F)(V)

for g > 1. It follows that the restriction induces an isomorphism HZ, (F)(U) = HL, (F)(V).
Therefore, when g > ¢, HZ, (F) is a locally constant presheaf with group H?(F). Moreover,
the commutative diagram

s*
ftsr Q% (U) —— Q°(F)
S5
Qs (U)

induces, for ¢ > ¢, a commutative diagram

H.,(F)(U) —— H4(F)

|
50
ngs (F)(U)v

using Proposition 2.8. Thus HZ (F)(U) — HY¢(F)(U) is an isomorphism for g > 7. Since
it commutes with restriction to smaller open sets, we obtain the following result.

Lemma 4.1. For q <1, the presheaf H.,(F) is trivial, H. (F) = 0. For g > t, H (F) is
locally constant with group H(F) and the inclusion ft>; Q5 s(—) C Q3g(—) induces an
isomorphism

of presheaves.

5. THE SPECTRAL SEQUENCE OF A FLAT, ISOMETRICALLY STRUCTURED BUNDLE

Let (K, 0,d) be the double complex

KP4 =CP(n~ ', Q) = H Qq(ﬂ"UaO...a,,)
sty

defined in Section 2. The spectral sequence of the fiber bundle @ : E — B is the spectral
sequence E(K) = {E,,d, } of K. Its E|-term is

EM=H)K)= [] HY 7 'Ug..,) =CPLHI(F)).
oy

Since di = 6 on E|, the E,-term is
E{ = HY (W HY(F)) = HY (B;HY(F)),

the (singular) cohomology of B with values in the local coefficient system HY(F').
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Theorem 5.1. Let F be a closed, oriented, Riemannian manifold and m : E — B a flat, smooth
fiber bundle over the closed, smooth base manifold B with fiber F and structure group the
isometries of F. Then the spectral sequence with real coefficients of . E — B collapses at
the E,-term.

Proof. Using multiplicatively structured forms, we first build a smaller model Ky g of K.
The spectral sequences of Ky g and K will be shown to be isomorphic (from the E,-term on).
In Section 2, we introduced the multiplicatively structured Cech - de Rham double complex
Kyis = (C*(U;Q5,g),0,d). In bidegree (p,q) it is given by

KJ’;/[qS _Cp(u 'QMS H QMS UO‘O 0‘19)

op

The vertical cohomology of Ky g is

H} ! (Kyis) = H H Qs (Ugy...ar,)) = CP (U H 5 (F)).-

The core of the argument is the construction of a filtration of Kjg by cotruncated double
complexes K>; C Kyg, where 7 is an integer. The group in bidegree (p,q) is

KEY = CP (W (fe Q3s)") = T (Ftor Qs (Uog.r,))*.
0, ,0p

The vertical differential is given by the (restriction of the) de Rham differential d, and the
horizontal differential is given by the Cech differential §. The vertical cohomology of K>, is

H(er) =TT HI( D03V ) = C (S HE (F))
0o,

The double complex Ky determines a spectral sequence E(Kys) = {Ens rdvs,r}; the
double complex K>, determines a spectral sequence E(K>;) = {E>; ,d> ,}, cf. [BT82, Thm.
14.14, page 165]. The inclusions of complexes

fto: Qs (U) C Qs (U) € Q°(n'U), U € 0bC(41),
induce inclusions of double complexes
Kz,« C Kyis CK.

A map of double complexes induces a morphism of the associated spectral sequences. Thus
the above inclusions induce morphisms

E(Ks) — E(Kys) — E(K).

Let us show that the differentials dy s » vanish. This will then provide the induction basis for
an inductive proof that all dyys ,, r > 2, vanish. The term Ey s 1 is given by

Ejfs, = Hy " (Kys) = CP (4 HY 5 (F)).
Since dys,1 = 8, we have
Efs o = H (W HY 5 (F)),
the Cech cohomology of 4 with values in the presheaf Hgvts (F). The term E>;  is given by
EZY) = Hy' (K>) = CP (8 HE, (F)).

Since d>; 1 = &, we have
EZY, = H ({GHL, (F)).
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Set t = g. Since e is a morphism of spectral sequences, we have a commutative square

el’«‘l
P4 2 120)
ESfy ———Eyso

p:q 1%
dzt,Z l ldMS,Z
p+2.9—-1

p24-1%2  ppt2g-1
Ezz,z EMS,Z .

In view of the above identifications of E>-terms, this can be rewritten as

P-q

e
HP (4 HL, (F)) —— HP (4 H 4 (F))
aZ, l i dys 5
ep+2,q—l

2

HP2(WHE, (F)) ——= HPP2 (8 HY 4 (F)).

Our choice of ¢ together with Lemma 4.1 implies that eg 4 is an isomorphism. Therefore, we
can express dh ik , as the composition

pq _ ,pt2.49-1_ ;pgq P:qy\—1
&) dyis o =€ Odztﬁzo(ez )

Since ¢ — 1 <, we have Hgl(F) =0 by Lemma 4.1, and thus Hp”(u;H‘gl(F)) =0,
dgt({z =0and e§+2’q71 =0.By (3), dqus,z =0.

We shall next show that for arbitrary , d>,» = 0. Given any bidegree (p,q), there are two
cases to consider: g— 1 <randg—1>1r. If g—1 <1, then Eggq*l = H”“(u;Hgl(F)) =
0, so that a2, : EX) — Egg’q_l — 0is zero. If g— 1 > ¢, then €57 ! is an isomorphism
by Lemma 4.1 and

Pq  _ (,pT2,9—1\—1 _ 1p.q Did __
dzz,z—(ez ) OdMS,zoez =0,

since dy% , = 0. Thus d>; » = 0 for any 7.

For r > 2, let P(r) denote the package of statements

o dys,=0andd>;, =0foralls,
o Exfs . =HP(SH] g (F)) and EZ, = HP (W HL, (F)) for all 7, and
° ¢ =en.

We have shown that P(2) holds. We shall now show for r > 3 that if P(r — 1) holds, then P(r)
holds. The vanishing of the differentials in the E,_;-terms implies that

ENds., = Enis, = HP (S5 HY 5 (F))
and
ELf =EZ7, | =HP(HL, (F)).
Furthermore, as e is a morphism of spectral sequences, we have

P — FIp — P P
Pl =HP(e,_1) =" =e5".



16 MARKUS BANAGL

Hence the commutative square

efﬁq

Pq P:q
EZt,r > EMS,r
. 1
diﬁri \LdMS.r
ptrg—r+l
p+rg—r+1 6r ptrg—r+1
EZt,r EMSJ
can be rewritten as
P
.39 2 .39
HP (U HE,(F)) HP (4 Hy 5 (F))
dgtqu id;v.[qs,r
ep+r<,£17r+l

2

HP(SHL(F)) HP (s HE T (F)).

Again take 7 = g. Then €57 is an isomorphism and the factorization

P4 _ ptrg—r+l _ pgq g\ —1
dMSJ = OdZIJ © (62 )

shows that d5 7 = 0 because HP*"(4l; ngﬂ (F))=0by g—r+1<t(r>3). For arbitrary
t.d>, =0.Forif g—r+1 <, then EZ; 79" = grtr (4 HL, ™ (F)) = 0 50 that a7, =0,
while for g —r+1 >t, the map e§+r’q_r+1
factorization dgf, = (eg+r’q7r+1)_1 o d;\;[qs,r oeh? and the fact that dyys , = 0. This induction
shows that dy s, = 0 for all r > 2. We conclude that E(Kyg) collapses at the E>-term. This

will now be used to prove that E(K) collapses at E.

is an isomorphism and % = 0 follows from the

Since f is a morphism of spectral sequences, we have for every (p,q) a commutative
square

LN
3

Episy —————E}*
Odﬁ/‘[qs,zl ldf N
p+2,9—1 -fé'7+2'q71 +2.9—1
Enis? EyTT,
which can be rewritten as
i

HP (W HY (g (F)) ———— HP (L HY(F))

Pq
ol ldz
fp+24q—1

HPP2(WGHE L (F)) —— HPP2 (S HI(F)).

By (2), f3*? is an isomorphism for all (p,q). Thus d, =0 on E;. The fact that f> is an
isomorphism implies that f; is an isomorphism for all » > 2. This shows, since dys , = 0 for
all » > 2, that @77 = 0 for all r > 2. Consequently, E(K) collapses at the E,-term, as was to
be shown. O
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6. NONISOMETRICALLY STRUCTURED FLAT BUNDLES

We construct an example of a flat, smooth circle bundle whose Leray-Serre spectral se-
quence with real coefficients does not collapse at the E>-term. The example shows, then,
that in Theorem 5.1 one cannot delete without substitution the requirement that the structure
group act isometrically. The example is based on constructions of J. Milnor, cf. [Mil58],
[MS74].

Let B be a closed Riemann surface of genus 2. Its universal cover Bis conformally dif-
feomorphic to the complex upper half plane H = {z € C | Imz > 0}. The fundamental group
m (B) acts on H biholomorphically as the deck transformations. The group of biholomorphic
automorphisms of H is PSL(2,R), acting as M6bius transformations

. az+b
cz+d’

This yields a faithful representation ;B — PSL(2,R). The operation of PSL(2,R) on H
extends naturally to the closure H = H UR U {eo} of H in CU {eo}. In particular, PSL(2,R)
acts on the boundary circle JH = RU {0} and we can form the flat circle bundle y with
projection 7 : E = B X 7,5 (RU {o0}) — B and structure group PSL(2,R). Recall that any
orientable, possibly nonlinear, sphere bundle & with structure group Diff(5" ') has a real
Euler class e¢(&) € H"(M;R), where M is the base manifold. Since our bundle ¥ can be
identified (though not linearly) with the tangent circle bundle S(7B) of B (see [MS74]), the
Euler number (e(7y),[B]) of y is the Euler characteristic y(B) = —2. As the Euler class is
transgressive and not zero, the differential d» : Eg’l — E%’O is nontrivial and the spectral
sequence of ¥ does not collapse at E,. In more detail, let ¢ € E?’l = CO(L; H'(S)) be the
element corresponding to the usual angular forms on E ([BT82, Remark 14.20]). Since ¥ is
orientable, d) (¢') = 8(¢) = 0 and & determines a class [6] € Ey"' = HO(B;H'(S")). We have
e(y) = dy|o] for the transgression

a,b,c,d e R, ad —bc =1.

dr: Ey' = HO(B;H'(S")) — E;° = H*(B;H(S")) = H*(B;R).

It follows from Theorem 5.1 that there is no Riemannian metric on S' = R U {0} such that
the action of 7 (B) on RU {eo} is isometric. This statement will now be affirmed directly,
without appealing to the theorem.

Proposition 6.1. There is no Riemannian metric on RU{eo} such that the Fuchsian group
given by the image of the representation T B — PSL(2,R) acts isometrically on RU {eo}.

Proof. By contradiction; suppose there were such a metric. The image I' C PSL(2,R) of the
faithful representation ;B — PSL(2,R) is a cocompact surface Fuchsian group and hence
all nontrivial elements of I are hyperbolic, that is, [trX| > 2 for X € I'— {1}. Let X be such
an element. Any hyperbolic element of PSL(2,R) has precisely two fixed points in H, both
of which lie in RU {eo}. In particular, X has a finite, real fixed point x. Let v € T,(RU {eo})
be any nonzero tangent vector at this fixed point. If

X, : Te(RU{oo}) — Ty (RU{eo}) = T(RU{o})

denotes the differential of X : RU {eo} — RU {eo} at x, then X, (v) = Av for some nonzero
scalar A € R and

(AL vl = vl = 1X )l = [Vl
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where || - ||, is the putative I'-invariant norm, evaluated at x. Consequently, X, (v) = £v. Let ¢
be the standard coordinate in R C RU {eo} and write

t+b
X(t) = i, a,b,c,deR, ad—bc=1, la+d|>2.
ct+d
Taking v to be the standard basis vector v = d;, we have X, (d;) = %(x) - 0; and thus
dX
—_ =1.
)

In fact, however, the derivative of a hyperbolic Mébius transformation in PSL(2,R) at a finite,
real fixed point is never +1. Indeed, if ¢ # 0, then

1
=—(a—dxVvA
x 2C(a d+VA),

where A is the discriminant A = tr>X —4 > 0, and if ¢ = 0, then x = —b/(a — d). (Note
that ¢ = 0 and X hyperbolic implies that a # d.) The derivative of X is given by dX /dt =
(ct +d)~2. Brief calculations verify that (cx+d)? cannot be 1 at the above points x, for
hyperbolic X. (]

This example illustrates that when modifying the structure group of a fiber bundle, there
is a tension between flatness and compactness of the structure group: For a flat bundle with
noncompact structure group, one can often reduce to a compact group, but in doing so may
be forced to give up flatness. Conversely, given a compactly structured bundle which is not
flat, one may sometimes gain flatness at the expense of enlarging the structure group to a
noncompact group. For example, identifying the flat PSL(2,R)-bundle y with S(TB), one
may give ¥ the structure group SO(2), but one loses flatness (S(7'B) is not a flat SO(2)-
bundle).

7. EQUIVARIANT COHOMOLOGY

We turn our attention to isometric actions of discrete, torsionfree groups. The actions con-
sidered here are usually not proper, and our G-spaces are generally not G-CW complexes.
Concerning condition (1) of Theorem 7.1 below, we remark again that a nonproper action
factors in many geometric situations through a proper action; for instance, a discrete, torsion-
free group may act nonproperly on a closed manifold, but in such a way that the manifold can
be endowed with an invariant Riemannian metric — in that case, the action factors through
the (proper) action of the compact isometry group.

Theorem 7.1. Let F be an oriented, closed, smooth manifold and G a discrete group, whose
Eilenberg-MacLane space K(G,1) may be taken to be a closed, smooth manifold. If for a
smooth action of G on F,

(1) the action factors through the proper, smooth action of a Lie group,
or

(2) F is Riemannian and G acts isometrically on F,

then the real G-equivariant cohomology of F' decomposes as

HE(F:R)= P HP(G;HY(F;R)),
p+q=k
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where the H(F;R) are G-modules determined by the action.

Proof. If (1) is satisfied, that is, the action of G on F factors as G — H — Diffeo(F) with H
a Lie group acting properly, then F can be equipped with an H-invariant Riemannian metric,
by [Pal61]. Then H, and thus also G, acts isometrically on F so that it suffices to prove the
theorem assuming hypothesis (2). Let B~ K (G, 1) be an aspherical, closed, smooth manifold
with fundamental group G. The universal cover B — B can serve as a model for the universal
principal G-bundle EG — BG because it is a principal G-bundle with contractible total space
B, as follows from the fact that B is a simply connected CW-complex and ;(B) 2 m;(B) = 0
for i > 2. We recall that the Borel construction F X EG is the orbit space (F X EG)/G,
where G acts diagonally on the product F' x EG. The G-equivariant cohomology of F is the
cohomology of the Borel construction,

H(F) =H*(F xgEG).
Using the model B— B, this may be computed as
HE(F) = H*(F xgB).
The space F X¢ B is the total space of a flat fiber bundle

FC—>FX(;E

|

B,

whose projection is induced by the second-factor projection F X B — B. Since G acts isomet-
rically on F, Theorem 5.1 applies and we conclude that the Leray-Cartan-Lyndon spectral
sequence for real coefficients of the G-space F collapses at the E>-term. In particular,

HE(F:R) = HYFxgB;R)= (P HF(B;H(F:R))
ptq=k
= @HP(G;H‘I(F;R)).

p+a=k
g

Remark7.2. If F - E — Bis any fibration with B path-connected such that i* : H*(E;R) —
H*(F;R) is surjective (i.e. the fiber is “totally nonhomologous to zero in E”), then the action
of mB on H*(F;R) is trivial (see [Hat04, p. 51, Ex. 2]) and the spectral sequence of the
fibration collapses at E», yielding the Leray-Hirsch theorem. Our results apply to situations
where i* needs not be surjective. In Section 8, we consider an example of a certain 7Z3-action
on the flag manifold Fy = U(8)/T®. We compute (in two different ways) that Hég (F3) has
rank 5, while H? (F3) has rank 7. Thus i* is not surjective in this example. Moreover, in the
context of the present paper, the action of m;B on H*(F;R) is typically nontrivial.

Let us discuss some immediate consequences of Theorem 7.1. For a G-module H, let
HY ={ve H|gv=vforall g € G} denote the subspace of invariant elements.

Corollary 7.3. Let F be an oriented, closed, connected, smooth manifold and G a discrete
group as in Theorem 7.1, acting smoothly on F so that hypothesis (1) or (2) is satisfied. Then
there is a monomorphism

H"(G;R) ® H*(F;R)® — HL(F;R)
fork>1.
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Proof. For k > 1, the direct sum of Theorem 7.1 contains the term H*(G;H°(F;R)) and
the term H°(G;H¥(F;R)). The former is isomorphic to H*(G;R), since G acts trivially on
HO(F;R) and H°(F;R) =R as F is connected. The latter is isomorphic to H*(F;R)Y; see
the appendix. O

In particular, we obtain lower bounds for the ranks of the equivariant groups in terms of
the ranks of the group cohomology.

Corollary 7.4. In the situation of Corollary 7.3, the inequalities
tk H*(G) <tk HE(F)
hold for k > 0.

If a G-space F has a fixed point, then 7 : F xg EG — BG has a section given by [e] —
[(f,e)], where f is a fixed point. Consequently, 7* : H*(G) — H}(F) is a monomorphism.
Note that our results concern group actions that may be fixed-point-free, even free. (See
Example 7.6 below.) Let cdgr G denote the R-cohomological dimension of a group G, that is,
the smallest n € NU {0} such that H*(G;R) vanishes for all k > n. For a topological space X,
let cdg X be the smallest n € NU {eo} such that the singular cohomology H*(X;R) vanishes
for all k > n.

Corollary 7.5. In the situation of Corollary 7.3, the inequality
CdR G < CdR(F XGEG)
holds.

Proof. Suppose that n = cdr G is finite. Then H"(G;R) is not zero. By Corollary 7.4,
HJ.(F;R) is not zero and it follows that cdgr (F X EG) > n. If cdr G = oo, then for every
n € N, there exists an N > n such that HY (F x g EG;R) # 0, whence cdg (F XxGEG) =c. [

Although the underlying spaces of the G-actions considered in this paper are smooth man-
ifolds, and hence can be given a (regular) CW structure, no such structure can usually be
found that would make the G-space into a G-complex. A G-complex is a CW complex to-
gether with a G-action which permutes the cells. If X is a G-complex on which G acts freely,
then HZ(X) = H*(X/G). Thus, if F were a free G-complex satisfying the hypotheses of
Corollary 7.3, then, by Corollary 7.5,

()] cdr G < Cd]R(F/G).

The following example of a free G-action shows that this inequality is generally false in the
context of Theorem 7.1.

Example 7.6. Let G = Z act freely on F = S! by powers of a rotation by an angle which
is an irrational multiple of 27. The quotient topology on the orbit space S' /7 is the coarse
topology, that is, the only open sets in S! /Z are the empty set and S' /Z. The coarse topology
on a set X has the property that any map ¥ — X is continuous. In particular, the map H :
X xI— X given by H(x,t) =xfort € [0,1) and H(x,1) = xo for all x € X, where xp € X is
a base-point, is continuous. Thus X is homotopy equivalent to a point and therefore acyclic.
This shows that cdg (S' /Z) = 0. Since cdg Z = cdr S' = 1, inequality (4) is violated.

This also emphasizes that it is prudent to observe carefully the hypotheses of the Vietoris-
Begle mapping theorem in attempting to apply it to the map F xg EG — F /G for a free
action.

Example 7.6 illustrates once again that the actions considered in the present paper are
generally not proper, since their orbits need not be closed. Furthermore, the isotropy groups
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for a proper G-CW complex are compact (so finite if G is discrete). The isotropy groups
arising for our actions can be infinite. (Consider the trivial Z-action, or a Z-action that factors
through a finite cyclic group.) For a proper G-CW complex X, a result of W. Liick [Liic07,
Lemma 6.4], based on [LRV03, Lemma 8.1], asserts that the projection X xg EG — X/G
induces an isomorphism

Hy(X xg EG;Q) — Hy(X/G: Q).

For the actions arising in our Theorem 7.1, the groups H,(X X EG;Q) and H,(X/G;Q) are
generally not isomorphic, as Example 7.6 shows.
Let us consider some specific groups.

Corollary 7.7. If Z" acts isometrically on an oriented, closed, connected, Riemannian man-
ifold F, then

tk H, (F) > (Z) :
with equality for k = 0.

Proof. The inequality follows from Corollary 7.4 by observing that we may take K(Z",1) =
T", the n-torus, and tk H*(T") = (}). O

Corollary 7.8. If a discrete, integral Heisenberg group $,, n a positive integer, acts isomet-
rically on an oriented, closed, connected, Riemannian manifold F, then rkH%’l (F)=1,

kHE (F)>2, fork=1,2,
and H 535;7 (F;R) does not vanish.

Proof. Let $H(R) C GL3(R) be the continuous Heisenberg group, i.e. the subgroup of upper
triangular matrices of the form

1 x z
01 y|,xyzeR
0 0 1

This is a contractible Lie group. The discrete Heisenberg group §3,, can be described as the
subgroup of $H(R) generated by the matrices

110 100 1 0 1
x=|0 1 0),v,=(0 1 n]|,z=[0 1 0
00 1 00 1 00 1

It is a torsionfree, nilpotent group and a central extension of Z? by Z with relations [X,¥,] =
7", [X,Z] =1, [Yy,Z] = 1. Being a subgroup of $(R), £, acts freely (and properly discontin-
uously and cocompactly) on $(R). Thus the quotient map $(R) — B is the universal cover
of the orbit space B = $(R)/$),, and B is a closed, orientable, smooth 3-manifold, in fact, an
orientable circle-bundle over the 2-torus. Moreover, 7;(B) = $), and m(B) = m$H(R) =0
for k > 2. Hence B = Bf),, = K($),,,1) and we have

Hi(9,) = H(B)=mB/[mB,mB|=5:/[9n,5]
= XY.Z|X.Y] =1, [X.Z]=1, [\,,Z] =1, Z" = 1)
7’7/,

(See also [AM94, Chapter I, Section 3].) Thus
tkH' ($9,) =tk H; ($,) = 2.
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By Poincaré duality, rk H>($),,) = tk H' ($),)). Furthermore, tk H3($),,) = 1, as B is connected,
closed, and orientable. The result follows from Corollary 7.4. O

8. AN EXAMPLE: GROUP ACTIONS ON FLAG MANIFOLDS

We will compute the equivariant second real cohomology of a certain isometric Z>-action
on a (complete) flag manifold, using our Theorem 7.1. The result will then be independently
confirmed by employing the recursive scheme introduced in the appendix. The flag manifold
F,, is the space of all decompositions Cv; @ - -- @ Cv,, of C" into lines, where {v;,...,v,} is
an orthonormal basis of C". Let U = U (n) be the unitary group and 7 = T" C U the maximal
torus given by the diagonal matrices. Writing each v; as a column vector and using these as
the columns of a matrix, we obtain an element u of U. If CV| @ ---® Cv), = Cv; & -+ - ® Cyy,
then u' = ur withr € T. Thus {v1,...,v,} — u induces a well-defined map F,, — U /T, where
U/T denotes the space of left cosets uT. This map is a diffeomorphism and exhibits F; as
a homogeneous space. The symmetric group S, acts on F, by permuting the lines Cv;. In
terms of unitary matrices, this can be described as follows. Since every permutation is a
product of transpositions, it suffices to describe the action of a transposition 7. Let p; be the
corresponding permutation matrix. The normalizer N(T) of T in U consists of all generalized
permutation matrices, that is, matrices whose pattern of zero entries is the same as the zero-
pattern of a permutation matrix, but whose nonzero entries can be any complex number of
modulus one. In particular, p; € N(T). Using this, the map 7: U/T — U/T induced by
right-multiplication with pr, T(uT) = up-T, is seen to be well-defined. The diagram

Fn41>Fn

Nl lN

U/T —=U/T

commutes. Up to homotopy, T can also be described by conjugation: Given an element
v € N(T), conjugation by v yields a well-defined map ¢y : U/T — U /T, ¢y (uT) = vuv~—'T.
While right multiplication by an element generally only induces a map on U /T if the element
lies in N(T), left multiplication by any element of U induces an automorphism of the homo-
geneous space. However, all these maps f, : U/T — U/T, f,(uT) = guT, are homotopic
to the identity, since in U we can choose a path g, ¢ € [0, 1], from g to the identity (U is
connected) and uT" — g,uT is a homotopy from f; to the identity. This shows that for v = p,
¢y is homotopic to T, as ¢y (uT') = f,, (up:T). (A similar argument cannot be used to show
that right multiplication uT — uvT for fixed v € N(T'), is homotopic to the identity because
a path v, from v to the identity would have to be chosen within N(T'), but N(T) is discon-
nected.) Permutation matrices define a splitting of the Weyl group N(T')/T = S, into N(T').
Then the Weyl group acts on U /T by conjugation, and this is up to homotopy the action of
Sy on F, that permutes the lines.

The effect of this action on the real cohomology H*(F,) is easily determined. Let x €
H?(CP"1) be the standard generator. There are 1 projection maps 7; : F,, — CP"~! given by
taking the i-th line of an orthogonal decomposition. With x; = 7 (x) € H*(F,), we have

H*(F,) =Rlx1,...,xq]/(ei(x1,...,x4) =0, i=1,...,n),

where ¢;(x1,...,x,) is the i-th elementary symmetric function in x1, ...,x,. The action of the
Weyl group S, on F,, induces the action on H*(F,) which permutes the x;.
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If a compact Lie group G acts smoothly on a smooth manifold, then that manifold can be
equipped with a smooth G-invariant Riemannian metric. Thus, as S, is finite, there exists a
Riemannian metric on F, such that S, acts by isometries. We endow F, with such a metric.

Next, let us determine which elements of S,, preserve the orientation of F,,. Let &; € QZ(F,,)
be a closed form representing x;, i = 1,...,n. The flag manifold F, is a complex manifold of
complex dimension d = n(n —1)/2. By [HH84, Theorem 2.3], there is a nonzero constant C
such that for scalars A1,...,A,,

5) /(xlgl+...+zn§n)d:c.n(x,-—zj).

£ i<j
Thus if the A; are all distinct, then (A& +. ..+ 4,&,)¢ is a generator of the real top-dimensional
cohomology group H%?(F,) = R. When a permutation acts on the scalars A; by permuting
them, then the right hand side of (5), and therefore also the left hand side, changes sign if
and only if the permutation is odd. Consequently, the subgroup of orientation preserving au-
tomorphisms in S, is the alternating group A,,.

To illustrate the use of our results, we turn to a specific example of a 7Z3-action on Fy =
U(8)/T?, a manifold of real dimension 56. Let Ry, R»,R3 be the following elements of Ag:

R =(1,2)(3,4), R, = (1,3)(2,4), R3 = (5,8,6).

Since these form a commuting set, they define an isometric, orientation preserving Z>-action
on Fg. The set {R;,Ry,R3} generates an abelian subgroup of order 12 in Ag. We shall de-
termine the equivariant cohomology group Hé3 (Fy). The classifying space is BZ> = T3.
The group H?(Fy) has rank 7 and is linearly generated by xq,...,xs subject to the relation
e1 =x1+...+xg3 =0. An element

y=Mx1+...+Agxg € HO(Ts;Hz(Fg)) & Hz(Fg)Z3

must satisfy the system of equations

(ll — 2.2))61 + ()1.2 — )1.1))62 + ()1.3 — )1.4))63 + (14 — 13))64 = l(xl +... +)Cg),

(M =)+ A=A+ (B -+ RAa—2A)x = A(x+...+x),

(15 — 15))(5 + (A6 — Ag)x + (Ag — As)xg = ),”(xl +... —I—XS),
for some A,A',A” € R, if we regard xy,...,xg as linearly independent generators of an 8-
dimensional vector space V with V /Re; = H?(Fg). Thus y is of the form

y = Alxr+...+xa)+As(xs +x6 +x3) + A7x7
= M=) +...+x1)+ (As — A7) (x5 +x6 +x3).-

The twisted group H(T3; H?(Fg)) thus has rank 2 and basis {x; + x5 +x3 +x4,x5 + X6 +x3}.
Since H'(F) = 0, we have H'(T?;H' (Fg)) = 0. Furthermore, as H’(Fg) is a constant local
system of rank one on T3, the group H*(T3;H°(F3)) = H?(T?;R) has rank 3 generated by

the dual basis of the homology basis S! x S! x pt, S' x pt xS', and pt xS' x S'. By Theorem
7.1,
HZ,(Fg) HO(T3;§2(F8)) ©HYT*H (F)) o H(T3H(F))
H*(F)Z @09 H*(T3)
R3.
We shall confirm this result by applying the recursive scheme of the appendix. Let B} =
R! x 7 Fy be the Borel construction of the Z-action on Fg by powers of R, B, = R! x 7 B; the

(6)

11l
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Borel construction of the Z-action on B by powers of R,, and B3 = R! x7 B, the Borel con-
struction of the Z-action on B, by powers of R3 (notation as in the appendix). As explained
in the appendix, Hé3 (Fg) = H?(B3) can then be found by carrying out the following steps:

1. Determine the action of R},R; and Rj on both HO(F) (trivial) and H?(Fy). (Note
H'(F)=0.)

2. Compute (Derz, /Princz)H®(Fg) and H?(Fy)%.

Compute the action of R, and R; on both (Derz, / Princz)H(Fy) and H?(Fg)Z.

4. Step 3 determines the action of R, and R; on both H'(B}) and H?(B). The action of
R5, R; on HO(By) is trivial.

5. Compute (Derz, / Princz)H®(B;), (Derz, / Princz)H' (By), H'(B)% and H*(B;)%.

6. Using the results of steps 4 and 5, determine the action of R; on the four groups
computed in step 5.

7. The result of step 6 determines the action of R3 on H'(B,) and H?(B5).

Compute (Derz, /Princz)H' (B,) and H?(B;)”.

9. The direct sum of the two groups obtained in step 8 is HZ(B3).

W

*

We shall now carry out these steps.
Step 1. For y = Ayx + ...+ Agxg € H*>(Fg), we have

RT (y) = Aaxi+Aixp+ Aaxs + Azxa + Asxs + ... + Agxs,
Ry (y) = Azxi+Agxa +Aixs + Aoxg + Asxs + ... + Agaxs,
R3(y) = Axi+... 4 Aaxg + Asxs + Agxg + A7x7 + Asxs.

Step 2. If a group G acts trivially on a vector space V, then Princg(V) = 0. Moreover,
if G = Z acts trivially, then Derz (V) 2 V, where the isomorphism is given by f — f(1).
We conclude that (Derz, / Princz)H(Fy) = HO(F). If y € H?(Fg) and R}(y) =y, then by
step 1, A1 = A2, A3 = Aq. The set {x1 +x2,x3 +x4,X5,X6,%7 } is a basis for H>(Fg)” so that
H?(FK)Z = R>.

Step 3. The automorphisms R,, R; act trivially on (Derz / Princz)H?(Fy). The action of
R5 on H?(Fy)” is given by

X1 +X2 —> X3 +X4, X3+ X4 > X1 +X2, X5 — X5, X¢ — X6, X7 —> X7,

while R; acts on H2(Fg)” by

X1 +Xx2 = X1 +X2, X3+ X4 —> X3+ Xgq, X5 — Xg§ = —(x1 +)C2) — ()C3 +X4) — X5 — Xg — X7,

X6 F> X5,X7 > X7.
Step 4. Since by Proposition 9.3,
Derz o

H'(Fg) =

Princy, ~ Princy,

Der
H' (B1) = H' ()" & —HO(Fy),

17; and R; both act trivially on H'(By), using step 3. Again by Proposition 9.3,
Dery,
Princy,

The action of F;,Ez on H?(B)) is thus given by the assignments listed in the previous step.

Step 5. We have (Dery, / Princz)H®(By) = H°(B)), since R, acts trivially on H%(By).
Since R, acts trivially on H'(By), (Dery, /Princz)H' (B;) = H'(B;) and H' (B,)* = H' (B)).
If

H*(B)) =H*(RR)o H'(R) = H*(R)Z.

y=2A1(x1 +x2) + A3(x3 +x4) + Asxs + Aexg + A7x7
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is any element of H%(B;) and R;(y) = y, then A; = A3. A basis of H>(B;)Z is thus given by
{x1 +x2 +x3 + x4, X5,%6, X7 }; H*(By)% = R*.

Step 6. The map Rj acts trivially on (Derz, / Princz)H°(B;), (Derz /Princz)H' (B;) and
H'(B1)%. The action of R; on H>(B)” is given by

X1+...+x4 = X1+...+Xx4,

X5 —(X1—|-...+X4)—JC5—X6—X7
X6 > X5

X7 = X7

Step 7. As
Dery,
H'(By)=H'(B))?® —=H°(B
(B2) (B1) D brincy (B1),

R; acts trivially on H'(Bs) by step 6 and Proposition 9.3. Let {X} be a basis for

Der Der
——Z2 gY(B,) =H"(B)) = — 2~ H"(F) = H*(F).
Princy, Princy,
Since b
H(By) = H*(B\)* & —Z H'(B
(B2) (B1) @Princz (B1),

a basis for H?(B,) is given by
{xl +... +X47X57.X67.X77X}7

and R; transforms this basis according to step 6 and X — X.

Step 8. We have (Derz, / Princz)H' (B,) = H' (B, ), for R; acts trivially on H'(B,). If

y=A(x1+...+x4) + Asxs + Aexg + A7x7 + AX

is any element of H?(B;) such that R;(y) = y, then A5 = Ag = 0. A basis of H>(B,)” is given
by {x1+...+x4,%7,X }; H*(B2)? = R3.

Step 9. Proposition 9.3, Lemma 9.4, and

Dery, Dery,

H'(B)=H'(B,) 2 H'(B))" & H°(By)

Princy,
~H'(B))®H’(B)) 2 H(F;) ®R =~ R?

Princy,

show that

Dery,

HZ,(Fy) = H*(B3) 2 H*(B))* @ H'(By) =R,

Princy,
in agreement with (6).

9. APPENDIX: THE CASE OF THE FREE ABELIAN GROUP

We shall describe a recursive scheme for calculating the equivariant cohomology of an
isometric action of Z" on a closed, oriented, path-connected, Riemannian manifold F. We
begin with some remarks on calculating the action of the homomorphism induced on low-
degree local system cohomology by a fiber preserving map. We shall think of a local system
H on a base space B as a functor H : IT; (B) — R — MOD from the fundamental groupoid
I1;(B) to the category R — MOD of real vector spaces and linear maps. Thus H assigns
to every b € B a real vector space H(b) and to every homotopy class [@] € 7 (B;b1,b2),
where @ is a path @ : I — B, ®(0) = b, @(1) = by, an isomorphism H[®] : H(b,) — H(by).
The functor H satisfies H([w][n]) = H[w] c H[n]. Let ey, e, . .. be the canonical orthonormal
basis for R”. The standard simplex A” is the convex hull of {eo,...,e,}. Let C”(B;H)
be the set of all functions ¢, which assign to each singular simplex u : AP — B an element
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c(u) € H(u(ep)). This set CP(B;H) is an abelian group under addition of function values.
Let 0, be the homotopy class of the path 7 — u((1 —1¢)e; +teg), defining an isomorphism

H(o,) : H(u(eo)) — H(u(e, ). Taking cohomology with respect to the coboundary operator
8 :CP(B;H) — CP*(B;H) given by
pt1 '
(=1)P8c(u) = H(o,) 'c(dou) + Y (—1)c(du)
i=1
yields H? (B;H), the cohomology of B with coefficients in H.

The recursive scheme concerning Z"-actions only requires being able to compute in the
degrees p =0 and p = 1. Assume that B is path-connected and endowed with a base-point
bo. Let G = 71 (B, by) be the fundamental group and let H(bo)® denote the G-invariants of
H(by), that is,

H(bo)¢ = {v€H(by) | g-v=vforall g € G}.
Here we wrote g-v=H(g)(v), H(g) : H(bo) — H(by), g € m1(B;bo,bo) = G. Let us recall
the well-known isomorphism

k% :H(by)® = H(B;H) = Z°(B;H).
For every b € B, choose a path-class &, € m (B; b, by) starting at b and ending at the base-point
by. Define a map
x: H(by) — C°(B;H)
by
K(v)(b) = H(G)(v) € H(D),

where H(&,) : H(by) —» H(b). (Zero-simplices u are points b in B.) If v € H(b)¢ C H(by)
is a G-invariant vector, then 6x(v) = 0, that is, k(v) is a cocycle. Hence K restricts to a map

k% :H(by)® — Z°(B:H) = H*(B:H).

If k6(v) =0, then H(&,)(v) = 0 and thus v = 0 as H(&,) is an isomorphism. This shows
that ¥ is injective. If ¢ € Z°(B;H) is a cocycle, then v = ¢(by) is a G-invariant vector with
k% (v) = c. Thus kY is surjective as well, hence an isomorphism. This isomorphism will be
used to compute H? (B;H) for p =0.

The group H' (B;H) (p = 1) will be computed as derivations modulo principal derivations.
A derivation is a function f: G — V, where V is a real G-vector space, such that f(gh) =
f(g)+g- f(h) for all g,h € G. The set of all functions from G to V is a real vector space
under pointwise addition and scalar multiplication. The derivations form a linear subspace
Derg(V). A principal derivation is a derivation f of the form f(g) = g-v—v forsome v eV
and all g € G. The principal derivations form a subspace Princg (V) C Derg(V). We shall
recall the well-known isomorphism

DergH(by) =~
i ———~ — H (B;H).
Princg H(by) (B:H)

Observe that H'!(B;H) can be computed by only considering singular 1-simplices that close
up. Given a derivation f: G — H(by), set

Of1(u) = f(o, ")

onaclosed 1-simplex u: (A", dA!) — (B, by). If f is principal, then u — f(o; ') is a cobound-
ary. Thus 6 is well-defined and it is readily verified that it is an isomorphism.
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Let us discuss the naturality of the above constructions. Suppose H and G are local coeffi-
cient systems on B. A homomorphism ¢ : H — G of local systems is a natural transformation
of functors. Thus for every point b € B there is a linear map ¢ () : H(b) — G(b) such that

H(b2) ey H(b)

¢(b2)l \L¢(b1)
(@)

G(b2) e G(b1)
commutes for every @ € m (B;b1,b2). This implies in particular that ¢ (by) : H(bg) — G(bo)
is a G-equivariant map. A homomorphism ¢ of local systems induces a cochain map
¢": CP(B;H) — C”(B;G)
by
(9"c)(u) = ¢ (ueo))(c(u).

Here, ¢ € CP(B;H) is a cochain, u : A? — B is a singular simplex, and ¢ (u(eo)) : H(u(ep)) —
G(u(ep)), c(u) € H(u(ep)). This cochain map in turn induces a map

0" : H?(B;H) —> H"(B;G)

on cohomology.

For p = 0,1 we wish to understand ¢* in terms of the above identifications k¢ and . Let
us discuss p = 0. The image of a G-invariant vector v € H(bg) under ¢ (bg) : H(by) — G(bo)
is again G-invariant, since ¢ (bg) is G-equivariant. Therefore, ¢ (by) restricts to a map

0" = ¢(bo)| : H(bo)? — G(bo)“.
The calculation

K99 v)(b) = K%(9(bo)(v

shows that

Jo )
G ¥ 10
G(bo)” —— H"(B;G)
commutes. Thus k© is a natural isomorphism. Let us turn to p = 1 and 8. Composing

a derivation f : G — H(bg) with ¢(bo) : H(bg) — G(bo) yields a derivation ¢(by)f : G —
G(bo). Hence, composition with ¢ (bg) defines a map

0" : Derg H(by) — Derg G(bp).
Moreover, if f is principal, say f(g) =gv—v=H(g)(v) —v forall g € G, then

(0(bo)f)(8) = 9(bo)(H(g)(r) )
= Glg)(w)—w
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with w = @(bg)(v). Thus ¢*(f) is again principal and ¢* induces a map

%éﬁinw_ﬁéﬁiGw”
For [f] € DergH(by)/ Princg H(by), we have
(076[f1)(w) = ¢(bo)(6[f](x))
= (ko) (f(0, 1))
= 0[9(bo) o fl(u)
= (007[f])(w),
which proves that
panc; H(bo) —"— H' (B:H)

wl iq,*

DerG G(b())

Princg

commutes.

Let (F,gr) be a closed, oriented, path-connected, Riemannian manifold. Let R and S be
commuting orientation preserving isometries of ', RS = SR, defining a Z>-action on F. We
endow the real line R! with the canonical metric g; = d¢? and give R! x F the product metric
g1+ gr. Using S, we define a diffeomorphism S : R! x F — R! x F by S(t,x) = (¢ +1,5(x)),
t € R!, x € F. This map defines a Z-action on R! x F. Let E be the orbit space of this action.
Since the action is properly discontinuous, the quotient map R! x F — E is a regular covering
map and E is a smooth manifold, the mapping torus of S. If M, N are Riemannian manifolds
and f: M — M, g: N — N isometries, then fx g: M xM — N x N is an isometry for
the product metric. Since the translation ¢ — ¢ + 1 is an isometry and S is an isometry, we
conclude that S is an isometry. Thus Z acts by isometries on R' x F and there exists a unique
metric gz on E such that the quotient map R! x F — E is a local isometry. The projection
(t,x) + t induces a fiber bundle projection p : E — S' such that

RlxF——FE

L)

Rl ——R!/Z =5

commutes. Using the isometry R, define a fiber-preserving diffeomorphism R : E — E by

R[t,x] = [t,R(x)]. This is well-defined as R and S commute:
R[t+1,8(x)] =[t+1,RS(x)] = [t + 1,SR(x)] = [t,R(x)] = R[t,x].

Moreover, R is an isometry of (E,gg), since (¢,x) — (¢,R(x)) is an isometry of R! x F. Our
next goal is to describe the induced map R* : H*(E) — H*(E) in terms of a calculation of
H*(E) through the Leray-Serre spectral sequence of p: E — S!. Let K C HY(E) be the
subspace

K =ker(HY(E) — HI(F)).
Since S is orientation preserving, E is orientable and receives an orientation from the canon-
ical orientation of R! and the given orientation of F'. Thus E is a closed, oriented manifold
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and Hodge theory applies. On the vector space Q4(E) of smooth g-forms on E, an inner
product is given by

(w,m) :/Ea)/\*n.

The Hodge theorem asserts that with respect to this inner product, there is an orthogonal
decomposition

QI(E) = AQ4(E) ®Harm?(E),
where A is the Hodge Laplacian on E and Harm?(E) are the harmonic ¢g-forms. The inner
product restricts to an inner product on Harm?(E), which yields an inner product on H?(E)

via the isomorphism Harm?(E) = HY (E) induced by the inclusion. Let K* be the orthog-
onal complement of K in H?(E) with respect to this inner product.

Lemma 9.1. The subspaces K,K~ C HY(E) are both R -invariant.

Proof. Leti: F — E be the inclusion of the fiber over the base-point. By the definition of R,
the square

F—*oF
E-—2sE

commutes. On cohomology, it induces the commutative diagram

R
i

|

HU(F) <% pga(p)

If v € K = keri*, then
"R’ (v) =R*i*(v) = 0.
Thus R"(v) € K and K is R -invariant.

In fact, K is invariant under (R")~
[t,R~'(x)]. Thus

I as well: The inverse of R is given by R ' [t,x] =

-1
FXoF
7!

E E

_

|

commutes, inducing

If v € K, then
i"(R)"'(v) = (R) " (v) =0,

proving the (R*)~'-invariance of K.
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Since R is an orientation preserving isometry, its induced map commutes with the Hodge
star, R o x = xoR". Thus, for harmonic forms @,n € Harm?(E) = H%(E),

®RoRn) = /Eﬁ*wA*(ﬁ*n):/Eﬁw@*(*n)
= /Eﬁ*(co/\*n):/Ea)A*n
= <w»77>

Consequently, R” is an orthogonal transformation on H4(E), and so is (R")~!. For v € K and
we KL7
Rw,v) = (R)"'R (w),([®R) ' (v)) = (w.(R) "' (v)) =0,
since (R")~!(v) € K. Hence R'w € K* and K™ is R -invariant. 0O
By Lemma 9.1, R" restricts to maps
Ry:K — K, R, : K+ — K+,
It follows that R : H9(E) — H(E) splits as an orthogonal sum
(7) R =R ®R}.

Orthogonal projection defines a map H?(E) — K. There is a unique isomorphism 7 : K- —
HY(E)/K such that the diagram

0—> K — HI(E) K" 0
'
0 ——> K ——> HI(E) —> H(E) /K —>0,

with exact rows, commutes. Since K is R -invariant, R~ induces a map Ry, : H/(E)/K —
HI(E)/K.

Lemma 9.2. The diagram

K+ ——HI(E)/K

Rzl le

o

K+ ——HY(E)/K
commutes.

Proof. The diagram

T

E)/K

K

1 H(
HY(E)

R l Ry

HY(E)
y quot
\ \Hq(

E

*

|

T

K E)/K
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commutes. Given v € K+ C HY(E), we have proj(v) = v and thus 7(v) = quot(v). Therefore,

Ryt(v) = Rpquot(v) =quotR (v) = ToprojoR (v)
ToRY oproj(v) = TR (v).

Using (7) and Lemma 9.2, the diagram

bid
HUE) ==K oK ——* TE g

7 l R ©Ry L \LR*&&BR;}

Kl oK Tdhidg HY(E)

commutes. We have constructed an explicit isomorphism f = t®idg : H(E) = (H UE)/K)®
K such that

~

HI(E) == (HY(E)/K) & K
R*i \LR*QGDR;(
HO(E) == (HI(E)/K) & K

commutes. Therefore, the action of R~ on H? (E) is completely determined by RZ and Ry.

The Leray-Serre spectral sequence {(E;**,d,)} of a fibration f : X — B with fiber F has
the following properties. With B,, the p-skeleton of the CW-complex B, X, = f (B ), and

JP =ker(HPT(X) — HPM(X,-1)),
there is an isomorphism
a(f) :Jp,q/JpH.q—l >~ EPa
and an isomorphism
Y(f)  HY (B;H(F)) = E)Y,

where HY(F) is the local system on B induced by f with group HY(F') over a point in B.
Suppose f : X — B is another fibration having fiber, say, F, associated spectral sequence
{(E}*,d,)} and filtration J*°. Suppose furthermore that ¢ : X — X is a fiber preserving
map. Then ¢(X,) C X, and on cohomology ¢*(J”?) C JP4 so that ¢* is filtration preserving
and induces a morphism ¢* : E — E of spectral sequences. A morphism of spectral sequences

induces a morphism ¢, : E.. — E.. such that the diagram with exact rows

0 . ijr] q—1 jp’q Eiq 0

|

0 —— jgrtlg-1 Jrd EPA4 0
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commutes, see [McC835, page 49]. Thus a(f) is natural — the square

o

N /7p+ l,g—1 > g

afy T
7

Jpa Jerl.,qfl ;E&q
/ a(f)

commutes. The map ¢ induces furthermore a homomorphism ¢ : HY(F) — HY(F) of lo-
cal systems, which in turn induces a map ¢* : H?(B;H4(F)) — H?(B;H4(F)). By [Whi78,
Chapter XIII, Theorem 4.9 (6)], v is natural: The diagram

IR

H?(B;H4(F)) — EX*

v(f)
‘| o

HP?(B;H4(F EP4
(B:H(F)) > E}

=
=l

lz

commutes.

Let us specialize to our bundle E over the circle B = S' and the fiber preserving map
® =R : E — E. We give the circle its minimal cell structure. Then the filtration J consists of
two possibly nontrivial pieces,

J = HUE), J" = K, (2172 =0),

and we have
E04 o Jo _ HI(E) Ela-1 Jha! _
< 7 Jlg-l Y J2.4-2 -

1%

K.

Since the base is one-dimensional, only the p = 0 and p = 1 columns can contain nonzero
entries. Thus the spectral sequence collapses at E> (not using our main Theorem 5.1) and
EY? =EL?, ¢ = ¢, (i.e. Ry = R..). Putting the above isomorphisms ¥, o, B together, we
obtain a commutative diagram

HO(S';HY(F)) @ H' (s ;B9 (F)) 225 go

%l?’@?’

(SLHY(F)) & H' (S";HI" ' (F))

%iyﬂ%’

0,9 l,g—1 RyoRy 0,q l,g—1
E,®E, Ey!&®E,
EX o ELT! EX@EL!

NTa@a '\‘Taasa
R} ®Rx
HI(E) g9 K HI(E)
LY L oK
NTﬁ NTﬁ

=

HI(E).
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Using the isomorphisms k¢, for G = 7 (S 1) = Z, and 0, we obtain a commutative diagram

HU(F)2 g 2oz pga-t(p) — ROR pga(p)Zg P go-1(F)

Princy, Princy,

NJ/KZGJS Nixzﬁe

HO(SYHY(F))®H' (S HI" ! (F)) LELE HO(SYHY(F)) o H' (S'; HI7!(F)),

which computes the twisted cohomology terms. Appending the above two diagrams, we have
shown:

Proposition 9.3. Let F be a closed, oriented, path-connected, Riemannian manifold and R, S
two commuting, orientation preserving isometries of F. Let E be the mapping torus of S and
R : E — E the fiber preserving isometry induced by R, R[t,x] = [t,R(x)],t € R', x € F. Then
there is an isomorphism

D
prine. H' ()
Princy,

which is independent of R, identifies Derz H1~' (F) / Princz, H1~' (F) with ker(HY(E) — H4(F)),
and makes the diagram

HY(E) =~ H!(F)" @

HY(E) HY(F)" @ g H1~! (F)
R J{R*EBR*
HY(E) == HY(F)% & 222 HI~!(F)

commute.

With this proposition in hand, we are in a position to describe the recursive scheme calcu-
lating the equivariant cohomology of isometric Z"-actions on F'. For notational convenience,
we are content with describing the method for n = 3 isometries. It will be apparent to every-
one how to proceed if n is larger. Let F be a closed, oriented, path-connected, Riemannian
manifold. Let R, R»,R3 be commuting orientation preserving isometries of F, determining
a Z3-action on F. We wish to calculate the equivariant cohomology H7; (F). Let By be the
Borel construction of the Z-action on F' by powers of Ry, that is, By is the mapping torus
B =R! X7 F. The closed, oriented manifold B; is a fiber bundle over the circle with fiber
F. The isometry R, defines a fiber preserving isometry R; : B; — By by Ra[t,x] = [t,Ra(x)].
Since the monodromy of the mapping torus Bj is R;, the monodromy of the induced local
system H?(F') is Rj. Thus, assuming that the action of R} on H*(F), defining a Z-action on
H*(F), as well as the action of R on H*(F), are known, the automorphism R, of H9(B;)
can be computed, using Proposition 9.3, via the diagram

HY(By) === HY(F)* & prai- H1~ (F)
RS iRE@Rz
HY(By) === H(F)" & gee H™\(F),

By the same method, the action of the automorphism induced on H*(B;) by [t,x] — [t, R3(x)]
can be determined.

Let B; be the Borel construction of the Z-action on By by powers of R, that is, B; is the
mapping torus B, = R! xz By. The closed, oriented manifold B, is a fiber bundle over the
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circle with fiber B;. The isometry R3 defines a fiber preserving isometry Rz : By — B by
Rslt1,[t2,x]] = [t1,[t2, R3(x)]]. This is well-defined, since R3 commutes with Ry and R,: For
integers m and n, we have

Ri[ty +n,§§[t2 +m,R'(x)]] = Ra[t;+n,[tr+m,R5R (x)]]
= [t1+n,[t2+m R3R5RY (x)]]
= [t +n [ +m R3RTR3 (x)]]
= [t1+n,Rs[tr +m,RT'R3(x)]]

11, 12, R3 (x)]

= Rg[tl,[tz,xﬂ.

Using Proposition 9.3, we compute R : H*(B,) — H*(B) by

X

HY(B,) == H(B))" © g H1~' (By)
R; iRﬁ@Rﬁ
HY(By) === H(B))" & ol HT™\(By).

Here, the Z-action on H*(B;) is given by powers of R, : H*(B;) — H*(B;), which we com-
puted in the previous step. Since the action of the automorphism induced on H*(B;) by
[t,x] — [t,R3(x)] is also known from the previous step, the right hand side of the diagram can
indeed be computed.

Finally, let B3 be the Borel construction of the Z-action on B, by powers of R3, that is, B3
is the mapping torus B3 = R! x7 Bs.

Lemma 9.4. The manifold B is diffeomorphic to the Borel construction F3 = E 73 x =
R3 X g3 F of the Z3-action on F.

Proof. A smooth map ¢ : B3 — Fy;3 is given by

Oltr, [, [13,x]]] = [(11,12,23) . x].
This is well-defined because
ol +n Rl +m By s+ p, RN = Ol +n Ryl +m, 13+ p, RERY ()]
= o[ +n [ +m, i3+ p, RERYRY (x)]]]
= [(n+nn+mi+p),RERYRY (x)]
= [(t1,02,13) 4]
= 0l [, [13,x]]).
A smooth map y : F;3 — B3 is given by
vl(t1,0,13),x] = 11, 12, [13, 4],
which is also well-defined as
V[t +n,n+mt3+p),RERYRY (x)] = [t1+n,[ta+m, (534 p, RERSRY (x)]]]
= [ +nRsfe+m Ry i3+ p,RY (x)]]
(11,12, 13, x]]]
= y[(t1,n,13),x].

The maps ¢ and y are inverses of each other. ]
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Then the equivariant cohomology of F is given by

Dery, _
HY,(F)=HY(F,;) >~ HYB;) 2 H!By)*® —=HT (B
3 (F) (Fz3) (B3) (B2) ® brincy (B2),

where the Z-action on H*(B;) is given by powers of ﬁ;, computed in the previous step.
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