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Hodge Theory For Intersection Space Cohomology

M. BANAGL
E. HUNSICKER

Given a perversity function in the sense of intersection homology theory, the
method of intersection spaces assigns to certain oriented stratified spaces cell com-
plexes whose ordinary reduced homology with real coefficients satisfies Poincaré
duality across complementary perversities. The resulting homology theory is
well-known not to be isomorphic to intersection homology. For a two-strata pseu-
domanifold with product link bundle, we give a description of the cohomology of
intersection spaces as a space of weighted L?> harmonic forms on the regular part,
equipped with a fibred scattering metric. Some consequences of our methods for
the signature are discussed as well.

55N33; 58A14

1 Introduction

Classical approaches to Poincaré duality on singular spaces are Cheeger’s L?> cohomol-
ogy with respect to suitable conical metrics on the regular part of the space ([14], [13],
[15]), and Goresky-MacPherson’s intersection homology, depending on a perversity
parameter. Cheeger’s Hodge theorem asserts that the space of L?> harmonic forms on
the regular part is isomorphic to the linear dual of intersection homology for the middle
perversity, at least when X has only strata of even codimension, or more generally, is
a so-called Witt space.

More recently, the first author has introduced and investigated a different, spatial per-
spective on Poincaré duality for singular spaces ([1]). This approach associates to
certain classes of singular spaces X a cell complex I”X, which depends on a perver-
sity p and is called an intersection space of X. Intersection spaces are required to
be generalized geometric Poincaré complexes in the sense that when X is closed and
oriented, there is a Poincaré duality isomorphism H'(/PX; R) 2 H,_;(IX; R), where n
is the dimension of X, p and ¢ are complementary perversities in the sense of intersec-
tion homology theory, and H*, H, denote reduced singular (or cellular) cohomology
and homology, respectively. The present paper is concerned with X that have two
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strata such that the bottom stratum has a trivializable link bundle. The construction
of intersection spaces for such X, first given in Chapter 2.9 of [1], is described here
in more detail in Section 3. The fundamental principle, even for more general X
(see [7]), is to replace links by their Moore approximations, a concept from homo-
topy theory Eckmann-Hilton dual to the concept of Postnikov approximations. The
resulting (co)homology theory HIx(X) = H*(IPX;R), HI?(X) = H.(IPX;R) is not
isomorphic to intersection (co)homology IH;(X ;' R), IHE(X ;R). The theory HI* has
had applications in fiber bundle theory and computation of equivariant cohomology
([3]), K-theory ([1, Chapter 2.8], [35]), algebraic geometry (smooth deformation of
singular varieties ([8], [9]), perverse sheaves [5], mirror symmetry [1, Chapter 3.8]),
and theoretical Physics ([1, Chapter 3], [5]). Note for example that the approach of in-
tersection spaces makes it straightforward to define intersection K -groups by K*(I7X).
These techniques are not accessible to classical intersection cohomology. There are
also applications to Sullivan formality of singular spaces: Given a perversity p, call
a pseudomanifold X p-intersection formal if IPX is formal in the usual sense. Then
the results of [8] show that under a mild torsion-freeness hypothesis on the homology
of links, complex projective hypersurfaces X with only isolated singularities, whose
monodromy operators on the cohomology of the associated Milnor fibers are trivial, are
middle-perversity () intersection formal, since there is an algebra isomorphism from
HI} (X) to the ordinary cohomology algebra of a nearby smooth deformation, which is
formal, being a Kdhler manifold. This agrees nicely with the result of [12, Section 3.4],
where it is shown that any nodal hypersurface in CP* is “totally” (i.e. with respect to
an algebra that involves all perversities at once) intersection formal. Rational Sullivan
models of intersection spaces have been investigated by M. Klimczak in [27].

A de Rham description of HI;(X ) has been given in [2] for two-strata spaces whose link
bundle is flat with respect to the isometry group of the link. Under this assumption, a
subcomplex QI;(M ) of the complex Q2*(M) of all smooth differential forms on the top
stratum M = X — 3, where 3 C X is the singular set, has been defined such that for
isolated singularities there is a de Rham isomorphism HI;RJ)(X) ~ [ *(IPX;R), where
HI{iRﬁ(X )= HI (QI;(M )). This result has been generalized by Timo Essig to two-strata
spaces with product link bundle in [16]. In [2] we prove furthermore that wedge
product followed by integration over M induces a nondegenerate intersection pairing
Nar e HIQRJ)(X) ® HI;’I;%(X) — R for complementary p and g. The construction of
QI;(M) for the case of a product link bundle (i.e. the case relevant to this paper) is
reviewed here in detail in Section 6.2.

In the present paper, we find for every perversity p a Hodge theoretic description of the
theory HI;(X ); that is, we find a Riemannian metric on M (which is very different from
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Cheeger’s class of metrics) and a suitable space of L? harmonic forms with respect to
this metric (the extended weighted L* harmonic forms for suitable weights), such that
the latter space is isomorphic to FII;(X) = HIéRﬁ(X). Assume for simplicity that X
is connected. If L denotes the link of > in X and M is the compact manifold with
boundary OM = L x ¥ and interior M (called the “blowup” of X), then a metric g
on M is called a product type fibred scattering metric if near OM it has the form
2
8fs = % +gx + %7

where g; is a metric on the link and gx; a metric on the singular set, see Section 2. If
) is a point, then gy is a scattering metric.

;ﬁ(M) are defined in Section 7. The
space 3}, (M, g5, ) of extended weighted L? harmonic forms on M consists of all
those forms w which are in the kernel of d 4+ § (where ¢ is the formal adjoint of the

exterior derivative d and depends on gz and ¢) and in xC*GLéfS Q . (M) forevery € > 0,

cf. Definition 7.1. Extended L? harmonic forms are already present in Chapter 6.4 of
Melrose’s monograph [30]. Then our Hodge theorem is:

Given a weight ¢, weighted L? spaces xCLgﬁQ

Theorem 1.1 Let X be a (Thom-Mather) stratified pseudomanifold with smooth,
connected singular stratum 3 C X. Assume that the link bundle Y — ¥ is a product
L x 3 — X, where L is a smooth manifold of dimension I. Let g be an associated
product type fibred scattering metricon M = X — 3. Then

I—1
HIgg 5(X) = 3G, (M & —— — Pl 1)) .

Aside from giving an analytic description of HI cohomology in terms of harmonic
forms, a nice aspect of this result is that it shows that there is a natural topological
description of the space of extended harmonic forms on the right hand side. In [25],
the second author obtained a Hodge theorem for these spaces of forms, but thought of
as relating to a conformally equivalent metric and with a different weight. However,
the topological description in that paper is in terms of the topologically less natural
IG spaces we consider below. Thus it is satisfying here to see that there is a natural
cohomology describing these forms.

As a corollary to this description, we find that the spaces H,, (M y 8fs» % —pl+ 1))
satisfy Poincaré duality across complementary perversities. We can see this duality
achieved on forms using an appropriate Hodge star operator, as has been shown by
the second author in [25]. Finally, it is worth noting that on the space of extended
harmonic forms, integration does not give a natural well-defined intersection pairing
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on the right hand side. Thus it would be interesting in the future to consider how to
realise the intersection pairing on extended harmonic forms.

The strategy of the proof of Theorem 1.1 is as follows: First we relate HI:;Rﬁ(X) and

H.(I’X;R) to intersection cohomology and intersection homology, respectively. To do
this, we introduce in Section 2 the device of a conifold transition CT(X) associated to
an X as in the Hodge theorem. The conifold transition arose originally in theoretical
Physics and algebraic geometry as a means of connecting different Calabi-Yau 3-folds
to each other by a process of deformations and small resolutions, see Chapter 3 of [1]
for more information. Topologically, such a process also arises in manifold surgery
theory when Y is an embedded sphere with trivial normal bundle. The relation of HI
to IH is then given by the following theorem.

Theorem 1.2 (Homological version.) Let X be an n-dimensional stratified pseudo-
manifold with smooth nonempty singular stratum ¥ C X. Assume that 3 is closed as
a manifold and the link bundle Y — 3. is a product bundle L x 3 — 33, where the link
L is a smooth closed manifold of dimension I. Then the reduced homology HE(X)
of the intersection space of perversity p is related to the intersection homology of the
conifold transition CT(X) of X by:

fHJﬁ(X) o~ IG]('n_l_ﬁ(Hl)_j)(CT(X)),
where for a pseudomanifold W with one singular stratum of codimension c,
IH (W)
Im(HI (W) — IH! (W)’

IGP(W) = IHI(W) &
with g(c) = k — 1 and g'(c) = k.

Note that when both p(/+ 1) and the degree j are large, one must allow negative values
for k in the quotient IG](.k). Therefore, the perversity functions g considered in this
paper are not required to satisfy the Goresky-MacPherson conditions, but are simply
arbitrary integer valued functions. This, in turn, necessitates a minor modification in
the definition of intersection homology. The precise definition of IH? used in the above
theorem is provided in Section 4 and has been introduced independently by Saralegi
[31] and by Friedman [17]. In the following de Rham version of the above result,
the link and the singular stratum are assumed to be orientable, as our methods rely on
the availability of the Hodge star operator. When an intersection cohomology group
Hpi(W) depends only on the value of the perversity p at one particular codimension,
it will frequently be more convenient to label the group directly by the cutoff degree
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determined by the perversity. Thus we use the notation IH{ q)(W) to mean that the
integer ¢ is the cutoff degree in the local cohomology calculation on the link. The
Poincaré lemma for a cone on a closed manifold L then has the form:

IH] (°L) = { H(L) j<q

? 0 Jj>q

Theorem 1.3 (De Rham Cohomological version) Let X be an n-dimensional stratified
pseudomanifold with smooth nonempty singular stratum > C X. Assume that 3. is
closed and orientable, and the link bundle Y — % is a product bundle L X ¥ — X,
where the link L is a smooth closed orientable manifold of dimension [. Then the de
Rham cohomology HI;R’E(X ) can be described in terms of the intersection cohomology
of the conifold transition by:

HEy 5(X) 2 IG);,_, (CT(X)),
where k = [ — p(I + 1) and for a pseudomanifold W with one singular stratum,
J
IH (W)
- .
(W) — IH] (W)

IG. (W) =IH, _ (W)& .
(@) (g—1) Im(IH]

(g—1
We do not deduce the cohomological version from the homological one by universal
coefficient theorems, but prefer to give independent proofs for each version. The
proof of the homological version uses Mayer- Vietoris techniques while the proof of the
cohomological version compares differential forms in the various de Rham complexes
on M. (The regular part of the conifold transition coincides with the regular part M
of X.) Finally, we appeal to a result (Theorem 7.2 in the present paper) of the second
author ([25]), which relates extended weighted L? harmonic forms with respect to a
fibred cusp metric gy to the / G{ 2 arising in Theorem 1.3 above. This leads in a natural
way to fibred scattering metrics because fibered cusp metrics
dx? 5
8fc = 3 TELTXEL

on the conifold transition are conformal to

1 dx* 1
xﬁgfc 'y + ;gL + 8=,

which is precisely a fibred scattering metric on X.

For n divisible by 4, and either / odd or HY 2(L) = 0 (i.e. X a Witt space), the
nondegenerate intersection pairing My : ng]é?m(X) ® nglé?m(X) — R on the middle

Seometry & bpology XX (20XX)



1006 M. Banagl and E. Hunsicker

dimension n/2 for the middle perversity has a signature og;(X). In the setting of
isolated singularities, the signature of the homological intersection form H, /Z(IWX ) ®
H, ,(I"X) — R has been shown in [1, Theorem 2.28] to be equal to the Goresky-
MacPherson signature coming from intersection homology of X. Theorem 11.3 and
Corollary 11.4 of [7] generalize this result to a class of nonisolated singularities. We use
Theorem 1.3 to obtain results about the intersection pairing and signature on HIj, (X).
This turns out to be related to perverse signatures of the conifold transition, which needs
not be Witt even when X is. Perverse signatures are defined for arbitrary perversities
on arbitrary compact oriented pseudomanifolds from the extended intersection pairing
on intersection cohomology. These signatures are defined in the two stratum case in
[24] and more generally in [18].

Theorem 1.4 Let n be divisible by 4 and let X be an n-dimensional compact oriented
stratified pseudomanifold with smooth singular stratum > C X. Assume that the link
bundle Y — ¥ is a product bundle L x ¥ — Y. Then the intersection pairing Mgy :
HI{.iRJ;@HIgE%(X) — R for dual perversities p and g is compatible with the intersection
pairing on the intersection cohomology spaces IG* appearing in Theorem 1.3. When
X is an even dimensional Witt space, then the signature op;(X) of the intersection

form on ngézm(X) is equal both to the signature oy (X) of the Goresky-MacPherson

intersection form on IH%/ Z(X), and to the perverse signature oy 7z(CT (X)), that is, the
signature of the intersection form on

(CT(X) — HHY(CTX)) |

m

Image (IH"/ 2
where m is the lower middle and n the upper middle perversity. Further,
onr(X) = o(X) = oy m(CT(X)) = 01u(Z) = op(Z) = o (M),

where Z is the one-point compactification of X — Y. and o(M) is the Novikov signature
of the complement M of an open tubular neighborhood of the singular set.

Remark 1.5 The compactification Z appearing in Theorem 1.4 has one isolated
singular point. Since X is even-dimensional, Z is thus a Witt space and has a well-
defined IH -signature and a well-defined HI-signature. However, if X satisfies the
Witt condition, then CT(X) need not satisfy the Witt condition and o;5(C7T(X)) and
opr(CT(X)) are a priori not defined. Therefore, we must use the perverse signature
o for CT(X) as defined in [24], [18].

We prove Theorem 1.4 using de Rham theory, Siegel’s work [33], Novikov additiv-
ity and results of [6]. Using different, algebraic methods and building on results of
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[1], parts of this theorem were also obtained by Matthias Spiegel in his dissertation [35].

General Notation. Throughout the paper, the following notation will be used. If f is
a continuous map, then cone(f) denotes its mapping cone. For a compact topological
space X, cX denotes the closed cone and ¢°X the open cone on X. Only homology
and cohomology with real coefficients are used in this paper. Thus we will write
H.(X) = H«(X;R). When M is a smooth manifold, H*(M) is generally, unless
indicated otherwise, understood to mean de Rham cohomology. The symbol H.(X)
denotes the reduced (singular) homology of X H*(X) is the reduced cohomology.

2 The Conifold Transition and Riemannian Metrics

Let X be a Thom-Mather stratified pseudomanifold with a single compact smooth
singular stratum, Y. Let M = X — X. Assume that the link bundle of ¥ is a product,
L x 3. Let N C X be an open tubular neighborhood of 3. Fix a diffeomorphism

O:N—-X=2LxXx(@01
that extends to a homeomorphism

5 LxYXx][0,1)

~

= % CO(L) X 2
(z,,0) ~ (Z,y,0)

Define the blowup
M=X-X)Uy (L x X x[0,1)),

with blowdown map 3 : M — X given away from the boundary by the identity and near
the boundary by the quotient map from L x 3 x [0, 1) to (L x X x [0, 1))/((z,y,0) ~
(<, y,0)). The blowup is a smooth manifold with boundary ¥ = OM = L x X. Let
inc : 9M — M be the inclusion of the boundary, and denote the projections onto the
two components by 7y : ¥ — L and 7y : ¥ — 3. By an abuse of notation, we will
also use 7z and 7y, to denote the projections from N — 3 = L x 3 x (0,1) to L and
>, respectively. Let 7wy denote the projection from N — X to ¥ =L x 3.

The conifold transition of X, denoted CT(X), is defined as
CT(X) = (X — ) Up (L x X x [0, 1))/((z,y,0) ~ (z,),0)).

The conifold transition is a stratified space with one singular stratum L, whose link is
3. However, CT(X) is not always a pseudomanifold: If X has one isolated singularity
Y = pt, then CT(X) = M is a manifold with boundary, the boundary constitutes
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the bottom stratum and the link is a point. Since the singular stratum does not have
codimension at least two, this is not a pseudomanifold. If ¥ is positive dimensional,
then CT(X) is a pseudomanifold. All of our theorems do apply even when dim > = 0.
Let ' : M — CT(X) be the blowdown map for the conifold transition of X, given by the
quotient map. Note also the involutive character of this construction, CT(CT (X)) = X.

The coordinate x in (0, 1) above may be extended to a smooth boundary defining
function on M, that is, a nonnegative function, x, whose zero set is exactly OM, and
whose normal derivative does not vanish at M. We can now define the metrics we
will consider on M, which may in fact be defined on a broader class of open manifolds.

Definition 2.1 Let M be the interior of a manifold M with fibration boundary OM =
Y % S with fibre L and boundary defining function x. Assume that Y can be covered
by bundle charts U; = V; x L whose transition functions f;; have differentials df;
that are diagonal with respect to some splitting 7Y = TL & H. A product type fibred
scattering metric on M is a smooth metric that near M has the form:

dx? h
s — *dz “H
g6 = g+ U +

where £ is positive definite on 7L and vanishes on H.

Examples of such metrics are the natural Sasaki metrics [32] on the tangent bundle of
a compact manifold, X. In this case, the boundary fibration of M = T is isomorphic
to the spherical unit tangent bundle $” — Y — 3. We note that the condition on Y in
this definition is necessary for it to make sense. If the coordinate transition functions
do not respect the splitting of 7Y, then we cannot meaningfully scale in just the fibre
direction. This is different from the four types of metrics below, which can be defined
on any manifold with fibration boundary.

A special sub-class of these metrics arises when the boundary fibration is flat with
respect to the structure group Isom(L) for some fixed metric ds? on L. In this case,
we can require the metric gy to be a product metric

_ dx?

8fs = 4
on each chart (0,¢) x U; = (0,¢) x V; x L for the given fixed metric on L. In this
case, we say that gz is a geometrically flat fibred scattering metric on M. This flatness
condition arises also in the definition of HI cohomology, see [2]. This of course can
be arranged when the boundary fibration is a product, as in the case we consider in this

paper.

1
2 2
+dsy, + 2 dsy
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Note that in the case that OM is a product L x 3, it carries two possible boundary
fibrations: either ¢ : ¥ — X or ¢ : ¥ — L. A fibred scattering metric on M associated
to the boundary fibration 1) : OM — ¥ is a fibred boundary metric on M associated
to the dual fibration ¢ : M — L. Fibred boundary metrics on M associated to ¢ are
conformal to a third class of metrics, called fibred cusp metrics. These two classes
may be defined as follows:

e gy is called a (product type) fibred boundary metric if near M it takes the form
dx*  ¢*ds?
=—F+—-+k
&= A + x2 +5
where k is a symmetric two-tensor on OM which restricts to a metric on each
fiber X of ¢: Y — L;

e gy is called a (product type) fibred cusp metric if near M it takes the form

dx?
— + ¢*dst + x*k,

8fe = 2

where k is as above.

In the case that X is a point, these two metrics reduce to the well-studied classes of
b-metrics and cusp-metrics, respectively, see, eg [23] for more, and g5 becomes a
scattering metric.

3 Intersection Spaces

Intersection homology groups of a stratified space were introduced by Goresky and
MacPherson in [20], [21]. In order to obtain independence of the stratification, they
imposed on perversity functions p : {2,3,...} — {0, 1,2,...} the conditions p(2) = 0
and p(k) < p(k + 1) < p(k) + 1. Theorems 1.2 and 1.3, however, clearly involve
perversities that do not satisfy these conditions. Thus in the present paper, a perversity
P is just a sequence of integers (p(0), p(1),p(2),...). (This is called an “extended”
perversity; it is called a “loose” perversity in [26].)

Let p be an extended perversity. In [1], the first author introduced a homotopy-theoretic
method that assigns to certain types of n-dimensional stratified pseudomanifolds X
CW-complexes

10¢
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the perversity-p intersection spaces of X, such that for complementary perversities p
and g, there is a Poincaré duality isomorphism

H'(IPX) = H,—(I"X)
when X is compact and oriented, where H(IPX) denotes reduced singular cohomology

of IPX with real coefficients. If p = i is the lower middle perversity, we will briefly
write IX for X . The singular cohomology groups

HIZ(X) = H*(IPX), HI;(X) = H*(IX)

define a new (unreduced/reduced) cohomology theory for stratified spaces, usually not
isomorphic to intersection cohomology [Hz(X). This is already apparent from the
observation that HI;(X) is an algebra under cup product, whereas it is well-known that
IH;(X) cannot generally, for every p, be endowed with a p-internal algebra structure.
Let us put HI*(X) = H*(IX).

Roughly speaking, the intersection space IX associated to a singular space X is defined
by replacing links of singularities by their corresponding Moore approximations, i.e.
spatial homology truncations. Let L be a simply-connected CW complex, and fix an
integer k.

Definition 3.1 A stage-k Moore approximation of L is a CW complex L., together
with a structural map f : Ly — L, so that f, : H.(L.x) — H,(L) is an isomorphism if
r <k,and H(L) =0 forall r > k.

Moore approximations exist for every k, see e.g. [1, Section 1.1]. If k¥ < 0, then we
take L, = &, the empty set. If k = 1, we take L to be a point. The simple connec-
tivity assumption is sufficient, but certainly not necessary. If L is finite dimensional
and k£ > dimL, then we take the structural map f to be the identity. If every cellular
k-chain is a cycle, then we can choose Ly = L%~ the (k — 1)-skeleton of L, with
structural map given by the inclusion map, but in general, f cannot be taken to be the
inclusion of a subcomplex.

Let X be an n-dimensional stratified pseudomanifold as in Section 2. Assume that
the link L of ¥ is simply connected. Let / be the dimension of L. We shall recall
the construction of associated perversity p intersection spaces IPX only for such X,
though it is available in more generality, see e.g. [7]. Set k = [ — p(l 4+ 1) and let
f : Ly — L be a stage-k Moore approximation to L. Let M be the blowup of X with
boundary OM = Y = L x ¥. Let

g:L<kXZ—>M
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be the composition
L<k><EfX—ld§L>< Y =0M— M.

The intersection space is the homotopy cofiber of g:

Definition 3.2 The perversity p intersection space IPX of X is defined to be

IPX = cone(g) = M Uy c(Log X X).

Poincaré duality for this construction is Theorem 2.47 of [1]. For a topological space
Z,let Z* be the disjoint union of Z with a point. Recall that the cone on the empty set
is a point and hence cone(@ — Z) = Z*.

Proposition 3.3 Let p be an (extended) perversity and let ¢ be the codimension of the
singular stratum ¥ in X. If p(c) < 0, then HIE(X) =~ H,(M,0M), andif p(c) > c—1,
then HIZ(X) = H.(M).

Proof If p(c) <O, then k > [ and L, = L with f : L, — L the identity. It follows
that I’X = M Ugg; ¢(OM) and

HIP(X) = H.(M Ugy; c(0M)) = H,(M, OM).

If p(c) > ¢ — 1, then k < 0, so L.y = @. Consequently, I’X = cone(@ — M) = M

and
HIP(X) = H.(M ") = H,(M).

Example 3.4 Consider the equation

Y =2x—1)

2w = u*(u — w), defining a curve X in CP?. A local

or its homogeneous version v
isomorphism
g2 2 22
V={ " =xa-D} —{n =¢}

near the origin is given by £ = xg(x), n =y, with g(x) = v/x — 1 analytic and nonzero
near 0. The equation 1> = ¢ describes a nodal singularity at the origin in C?, whose
link is I x S', two circles. All other points on the curve are nonsingular, as is easily
seen from the gradient of the defining equation. It is homeomorphic to a pinched torus,
that is, 72 with a meridian collapsed to a point, or, equivalently, a cylinder I x S'
with coned-off boundary, where I = [0, 1]. The ordinary homology group H;(X) has
rank one, generated by the longitudinal circle (while the meridian circle bounds the
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cone with vertex at the singular point of X'). The intersection homology group IH/(X)
agrees with the intersection homology of the normalization % of X (the longitude in
X is not an “allowed" 1-cycle, while the meridian bounds an allowed 2-chain), so:

IH\(X) = IH(5?) = H{(§*) = 0.

The link of the singular point is 91 x S', two circles. The intersection space IX of X
is a cylinder I x S! together with an interval, whose one endpoint is attached to a point
in {0} x S! and whose other endpoint is attached to a point in {1} x S'. Thus IX is
homotopy equivalent to the figure eight and

Hi(IX) =R®R.

Remark 3.5 As suggested by the previous example, the middle homology of the
intersection space IX usually takes into account more cycles than the corresponding
intersection homology group of X. More precisely, for X>* with only isolated singular-
ities X2, IHy(X) is generally smaller than both Hy(X — X)) and Hy(X), being a quotient
of the former and a subgroup of the latter, while Hy(IX) is generally bigger than both
Hi(X — %) and H(X), containing the former as a subgroup and mapping to the latter
surjectively, see [1].

One advantage of the intersection space approach is a richer algebraic structure: The
Goresky-MacPherson intersection cochain complexes IC;(X) are generally not alge-
bras, unless p is the zero-perversity, in which case IC;(X) is essentially the ordinary
cochain complex of X. (The Goresky-MacPherson intersection product raises perver-
sities in general.) Similarly, Cheeger’s differential complex 27, (X) of L?-forms on the
top stratum with respect to his conical metric is not an algebra under wedge product of
forms. Using the intersection space framework, the ordinary cochain complex C*(IPX)
of I’X is a DGA, simply by employing the ordinary cup product.

Another advantage of introducing intersection spaces is the possibility of discussing the
intersection K-theory K*(I”X), which is not possible using intersection chains, since
nontrivial generalized cohomology theories such as K-theory do not factor through
cochain theories.

4 Intersection Homology

We need to use a version of intersection homology that behaves correctly for extended
perversities. More precisely, the singular intersection homology of [26], which agrees
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with the Goresky-MacPherson intersection homology, displays the following anomaly
for very large perversity values: If A is a closed (n — 1)-dimensional manifold and
c®A the open cone on A, then the intersection homology of ¢°A vanishes in degrees
greater than or equal to n — 1 — p(n), with one exception: If the degree is 0 and
0 > n — 1 — p(n), then the intersection homology of the cone is Z. Now if the
perversity p satisfies the Goresky-MacPherson growth conditions, then this exception
can never arise, since p(n) < n — 2. But if p is arbitrary, the exception may very well
occur.

To correct this anomaly, we use the modification of Saralegi [31] and, independently,
Friedman [17]. Let A; denote the standard i-simplex and let Ai C A; be the j-
skeleton of A;. Let X be any stratified space with singular set > and p be an arbitrary
(extended) perversity. Let C.(X) = C.(X;R) denote the singular chain complex with
R-coefficients of X. A singular i-simplex o : A; — X is called p-allowable if for
every pure stratum S of X,

o 1(§) ¢ AITHP® | \where k = codim S.

(This definition is due to King [26].) For each i = 0,1,2,..., let C?(X) C Ci(X)
be the linear subspace generated by the p-allowable singular i-simplices whose image
is not entirely contained in X. If £ € C‘? (X), then its chain boundary 0¢ € C;_1(X)
can be uniquely written as 9§ = By + (3, where [y is a linear combination of
singular simplices whose image lies entirely in 3, whereas [ is a linear combination
of simplices each of which touches at least one point of X — 3. We set 9’ = 3 and

ICP(X) = {¢ € CP(X) | € € C7_,(X)}.

It is readily verified that & is linear and (IC’Z (X), @) is a chain complex. The version
of intersection homology that we shall use in this paper is then given by

[H? (X) = H/(ICP(X)).

Friedman [17] shows that if p(k) < k — 2 for all k, then IH‘L7 (X) as defined here agrees
with the definition of singular intersection homology as given by Goresky, MacPherson
and King. If A is a closed a-dimensional manifold, then

~ 0, i>a—pla+1)
1 IHP(cCA) = {7
= H(cA) {IHg’(A), i<a—pla+l),

and this holds even for degree i = 0, i.e. the above anomaly has been corrected. If A is
unstratified (that is, has only one stratum, the regular stratum), then IH? (A) = HigA).
If A is however not intrinsically stratified, then one can in general not compute IH%(A)
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by ordinary homology, since IH is not a topological invariant anymore for arbitrary
perversities p.

According to [17], IHfZ has Mayer-Vietoris sequences: If U,V C X are open such that
X = U UV, then there is an exact sequence

2) - — IHI(UNV) — IH/(U) ® IH(V) — IHP(X) — IH? (UNV) = -

Furthermore, if M is any (unstratified) manifold (not necessarily compact) and X a
stratified space, then the Kiinneth formula

3) IHP(M x X) = H, (M) ® IH'(X)

holds if the strata of M x X are the products of M with the strata of X. (When
p(k) < k — 2 for all k, this is Theorem 4 with R-coefficients in [26].)

Proposition 4.1 Let g be an (extended) perversity and let ¢ be the codimension of the
singular stratum L in the conifold transition CT(X). If g(c) < 0, then TH{(CT(X)) =
H,(M), and if g(c) > ¢ — 1, then IH(CT(X)) = H.(M,OM).

Proof Set [; = IH?(L x ¢°Y) and let s = ¢ — 1 be the dimension of 3. Then by (1)
and (3),

L. = H (L) ® IHE(COZ) =H. (L) ® TSS—l—ﬁ(S+1)H*(Z) =H.(L)® TSC—Z—E(C)H*(E)-

If g(c) > ¢ — 1, thatis, c — 2 — g(c) < 0, then I, = 0, so [HI(CT(X)) = H.(M,0M)
by the Mayer-Vietoris sequence of the open cover CT(X) = M U (L x ¢°¥) and
the five-lemma. If g(c) < 0O, thatis, ¢ —2 — q(c) > s, then I, = H.(L X XJ), so
IHz(CT(X)) ~ H,.(M), again by a Mayer-Vietoris argument. O

5 Proof of Theorem 1.2

Let j be any nonnegative degree. Throughout this entire section, j will remain fixed
and we must establish an isomorphism ITI/If X)) = IGJ(-"_l_IT7 (l+1)_j)(CT(X)), where
[ =dim L. Let M be the blowup of X and M its interior. Let ¢ be the codimension of
the singular set L in CT(X) and ¢ be the codimension of the singular set X in X, that
18,

c=n—1Ilc=1+1.
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Set k =¢—1—p() and let f : L.y — L be a stage-k Moore approximation of
L. Then the intersection space 17X is the mapping cone I’X = cone(g) of the map
g : Loy x ¥ — M given by the composition

L<k><2]fx—id§L><E:8M<—>M.

Let vy : IH?(CT(X)) — IH?I(CT(X)) be the canonical map, where g(c) = n—2 —p(l+
1) —j and ¢'(c) = g(c) + 1. Note that the perversities g, g’ depend on the degree ;.
Then by definition

IG(n l—p(l+1)—J)(CT(X)) IHq (CT(X)) & coker(7).

The strategy of the proof is to compute intersection homology and HI near the singular
stratum using Kiinneth theorems (“local calculations”), then determine maps (“local
maps”’) between these groups near the singularities, and finally to assemble this infor-
mation to global information using Mayer-Vietoris techniques. Our arguments do not
extend to integer coefficients; field coefficients are essential.

We begin with the local calculations. Let B, be the homology of the boundary,
B, =H, (L x ), T« = H.(M) the homology of the top stratum, I, = IHq(L X ¢°Y),
Je = IHq (L x ¢°%) and R, = H.(cone(f x idy)). Again, we stress that the graded
vector spaces I and J, depend on the degree j.

Lemma 5.1 The canonical inclusion L — cone(f) induces an isomorphism

TskH. (L) = H.(cone(f)).

Proof The reduced homology of the mapping cone of f fits into an exact sequence
= Hi(Lg) 5 Hi(L) — Hi(cone()) — Hi1(La) L Hia(L) = -+

We distinguish the three cases i = k, i > k and i < k. If i < k, then f, on

Hi(L.t) and on H;_1(L<) is an isomorphism and thus H;(conef) = 0. If i = k, then

H;(L.;) =0 and f, on H;_1(L<g) is an isomorphism. Therefore, H;(L) — H;(conef)

is an isomorphism. Finally, if i > k, then both H;(L.;) and H;_(L<;) vanish and

again H;(L) — H;(conef) is an isomorphism. O

Remark 5.2 If k <0, then L, = @ and cone(f) = L™ . It follows that in degree 0,
(TskH.(L))o = Ho(L) = Ho(L") = Hy(cone(f)),

in accordance with the Lemma.
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Let v € cone(f) be the cone vertex and let Q = (cone(f) x ¥)/({v} x X), which is
homeomorphic to cone(f x idy;). As the inclusion {v} x 3 — cone(f) x X is a closed
cofibration, the quotient map induces an isomorphism

H,((cone(f), {v}) x &) = H,(cone(f) x &, {v} x ¥) = H,(Q) = H,(cone(f x idx)).
By the Kiinneth theorem for relative homology,
H.((cone(f), {v}) x ¥) = H,(cone(f), {v}) ® H(X) = H.(cone(f)) @ Hy(D).
Composing, we obtain an isomorphism
H.(cone(f X ids)) = H,(cone(f)) ® Hy ().
Composing with the isomorphism of Lemma 5.1, we get an isomorphism
4) H,(cone(f x idx)) = (sxHy (L)) ® H,(%).

Remark 5.3 If k <0, then L x ¥ = @ and thus cone(f x idy) = (L x X)T. This
is consistent with

cone(f) x ¥ LT xY {v}xXULXY
ixy  {px3 {v} x X

cone(f x idy) = Q = =L xD)".

It will be convenient to put a = p(/ + 1) 4+ j — /; then the relation
) atk=j

holds. We compute the terms R, :

Lemma 5.4 Ifj > 0, then the isomorphism (4) induces an isomorphism

R = P H; (L) @ H/(D).
=0

(If a < 0, this reads R; = 0.) Furthermore,

Ro o , k>0
TR e HL) ® Hy(Z)), k< 0.

Proof We start by observing that k is independent of j. Now for j > 0, reduced and
unreduced homology coincide, so

J
R; = Hj(cone(f x ids)) = @) (rsxH. (L)) ® H(X).
t=0

Seometry & Dpology XX (20XX)



Hodge Theory For Intersection Space Cohomology 1017

Using (5), j —t > k if and only if @ = j — k > ¢. Thus

R = P Hi_(L) ® H(),
t=0

since if @ > j and j <t < a, then j —t < 0 so that H;_,(L) = 0.
In degree 0, we find
Ry = R @ Hy(cone(f x idy)) = R @ (TsxH« (L))o @ Ho(X))
and (7> H« (L))o = 0 for k > 0, whereas (7>rH.(L))o = Ho(L) for k < 0. O

With s = dim X, we have s + 1 = n — [ = ¢ and thus according to (1),
IHI(c°%) = 7oy g4 ) Hu(D) = T<aH (D),
for
s—1—-gs+1)=s—1—-qglc)=n—1-2—-—n-2-p(l+1)—j)=a.
Consequently by the Kiinneth formula (3) for intersection homology,

I; = (Ho (L) @ IH1(c°X)); = (HA (L) ® T<HW()); = @ H; (L) ® H/(X).
=0

and

Iioy = (H (L) @ IH(c°X))j—1 = (Hu(L) ® T<H(2))j—1 = ) Hi—1 (L) @ Hi(S).

=0
Similarly for ¢’,
a—1
J; 2 (Hy(L) @ IHY (¢°)); = (Hu(L) ® T<a—1 Hu(D)); = @D H—(L) @ H(D),

t=0

a—1

i1 =2 (H (L) @ IHT (°X));-1 = P Him1 (L) @ Hi(D).
t=0

This concludes the local calculations of groups. We can get a bit of help understanding
how these pieces fit together, at least when j # 0 by setting P, = H;_,(L) ® H,(3)
and letting [j,a] : 69/;:0 P, — @/, P: be the standard projection if j > a, the
identity if j < a. (Recall that when j < a and j < t < a, then P; = 0 since then
J—t<0and H;_,(L) = 0.) Analogously, let P, = H;_1_(L) ® H/(X) and define
—1,da]: @i;(]) P, — @;_, P, be the standard projection if j — 1 > a, the identity if
j—1<a.
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Pa+l

a-1

Figure 1: Local Kiinneth factor truncations when j # 0.

We picture how these pieces fit together in Figure 1.

We commence the determination of various local maps near the singularities. Let

¢ : I; — J; the canonical map. Using the collar associated to the boundary of the

blowup, the open inclusion L x 3 x (0,1) < M induces a map
gl B, — T,
while the open inclusion L x ¥ x (0, 1) < L X ¢°¥ induces maps

gl:B, — I, B’ B, — J,

such that
74
6) B, -1,
A i,yloc

J
commutes. The canonical inclusion L X Y — cone(f X idy) induces a map

g B, — R,.
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The diagram

@ﬁ:opt W@Lopt»

where the vertical isomorphisms are given by the cross product, commutes. For j > 0,
let ¢! : I; — R; be the unique isomorphism such that

Do P Do P

commutes, using Lemma 5.4. Since

5

B—— >R

commutes, we know that

5
@ B———1,
o~ loc
Br F

commutes as well. For j > 1, let 1!° I;i_1 — R;_ be the unique epimorphism such
that

wlnc
li-1 === >R

X | = = | X

la,a—1] -1
a / L a /
@[:O Pt =0 Pt
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commutes, using Lemma 5.4. Under the cross product, the commutative diagram

[j—Lal
Do P> By P,

-1
[1‘_17‘1\1]‘\ i[aﬂ ]
-1
D= P
corresponds to

!
j—1

(8) B 1 ——1i,

wluc
N

Rj—] )
which therefore also commutes.

For any j, the diagrams

L
lj————j
o
a—1
@t O [a,a— 1] =0 Pt
and
,lencl

D

[a,a—1]

loc loc

commute, showing that both ~;
be the unique isomorphism such that

and ;% are surjective. For j > 1,let Rj_| — J;j_;

R ——Ji
XTg gTX
a—1 pr a—1 pr
=0 Pt - @t:O Pt

loc

commutes. Then, since 4'°° and 7,2 are both under the Kiinneth isomorphism given
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by the projection [a,a — 1], the diagram

) Iy Jic1

7
IR

commutes (j > 1).

Lemma 5.5 When j > 1, the identity ker BJ.CI = ker BR holds in B;_

Proof By diagram (9), in the case j > 1 there is an isomorphism v : R;_; — J;j_;

such that 1/1/11‘” = 'leC . According to diagram (8), BJR_I = wlocﬁjl_l. Furthemore,

Bjj_l = 'y]locl i by dlagram (6). Hence ,BJR () = ¢1°°B}71(x) vanishes if and only if
vl Bl () = 7% B0 = B ()

vanishes. O

This concludes our investigation of local maps.

We move on to global arguments. The open cover CT(X) = M U (L x ¢°X) with
MN(Lxc®Y)=LxXx(0,1) ~ L x X yields a Mayer-Vietoris sequence for
intersection homology

B -2y n - o) 2 By P ar

see (2). Similarly, there is such a sequence for perversity ¢':

/

B 6’ q O Bi-y
Bi — T; & Jj — IH; (CT(X)) — Bj—1 — Tj—1 & Jj-1.
The canonical map from perversity g to g’ induces a commutative diagram

10 B— 1o — - micTe) B — Ty e 0

6/ 8* 18/

B; — T; & J; —>1Hq(CT(X))—>B] 1—>T] 1B Jj-1.

id @,Yloc

The subset

U =((0,1] X L x ¥) Urpyxrxs cone(f X idy) ~ cone(f X idy)
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is open in the intersection space I’X. The open cover I’X = M U U with MN U =
L x ¥ x(0,1) ~ L x % yields a Mayer-Vietoris sequence

Bt ar Y uroo P, AT oR
i — T, O R — j( ) —Bj_1 — Tj_1 ®Rj_1.

This is the standard Mayer-Vietoris sequence for singular homology of topological
spaces.

We shall prove Theorem 1.2 first for all j > 1. Using the commutative diagrams (7)
and (8), we obtain the following commutative diagram with exact rows:

8 - a. 8-
() B—>T@ L — = IH(CTX) "B — = Tj_1 ® i
glid EBQOlOC lid @¢loc
8y o B,

J D Ox .
Bi—=>T ®R; HI (X) By —>T_1 ®Rj_;.
There exists a (nonunique) map p : IH?(CT(X)) — HI]“7 (X) which fills in diagram (11)
commutatively, see e.g. [1, Lemma 2.46]. By the four-lemma, p is a monomorphism.
This shows that HIJ’-7 (X) contains IH;’(CT(X)) as a subspace. Hence the theorem will
follow from:

Proposition 5.6 Ifj > 1, there is an isomorphism coker p == coker .

Proof Let us determine the cokernel of . Let vz be the restriction of id : Bj_; —
Bj_1 to yp : ker 3,1 — kerﬂj_l, i.e. 7p is the inclusion ker 8j_; C kerﬁ}_l. Let
Yo : imf — im 6@’ be obtained by restricting v. Applying the snake lemma to the
commutative diagram

0 im 6 IH(CT(X)) > ker | —0
lw | |
. , q Ox ,
0——=imf —— IH; (CT(X)) — kerﬂj_1 —0
yields an exact sequence
0 — ker~yy — ker~y — keryp — coker vy — coker~y — cokeryp — 0.
Since keryg = 0, we can extract the short exact sequence

0 — coker vy — coker~y — coker~yp — O.
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As yloc

;¢ 1s surjective, the diagram

T, @ I — im0

I

T & J; > im ¢/
shows that =y is also surjective and thus cokervy = 0. Therefore, we obtain an
isomorphism
ker i,  kerfBl Nkerp/
ker 3i_1  ker ,BjT_l N ker le_l ’

since /ijl = (B]T_pﬁj[_l) and B;_1 = (ﬁjT_la jJ,])-

In a similar manner, we determine the cokernel of p. Let pg be the restriction of id :
Bj_1 — Bj_; to pp : ker Bj_; — ker BJ{LI, i.e. pp is the inclusion ker 81 C ker J{Ll.
Let py : im6 — im 6" be obtained by restricting p. Applying the snake lemma to the

commutative diagram

coker y =5 coker B =

0 im ¢ IHY(CT(X)) 2 ker | — 0

L

0> im " HI(X) —" = ker 81| ——>0

yields an exact sequence
0 — ker pg — ker p — ker pg — coker py — coker p — coker pp — 0.
Since ker pp = 0, we can extract the short exact sequence

0 — coker pg — coker p — coker pp — 0.

loc

As ©°¢ is an isomorphism, the diagram

Ty & I ——im4

id @@IOCLN po
9// . 17
T, ® R — im0
shows that pg is also surjective and thus coker pg = 0. Therefore, we obtain an
isomorphism
ker ;’_ q

ker ,3]‘_1 ’

R

coker p — coker pp =
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As ]”,1 = (/BJ'T,p ﬁ;il)a we have
ker 3/ | =ker 8/ | Nker B .
By Lemma 5.5, ker BjJ_l = ker ,B}i | and hence
ker ﬁjT_l N ker ﬁf_l ker BjT_l N ker Bjj_l

cokerp & = = coker .
P= Yer ﬂjT_] N ker ﬁjl_l ker ﬂjT_l N ker 5}_1 i

O

Now assume that j = 1. We need to consider the subcases kK < 0, k=1 and k > 1
separately. We start with £ < 0. In principle, we shall again use a diagram of the
shape (11), but the definition of wloc changes. In this case, Loy = &, cone(f X idy) =
(LxX)", Rp =R® Ho(L) @ H(X)), a > 1 and Iy = Jy = Hy(L) ® Ho(X). The
maps of the commutative diagram

By——1D

Jo

are all isomorphisms. The map L x ¥ < cone(f x idy;), which induces S%, is the
inclusion L x ¥ — (L x ¥)* and thus Bg : Bo — Ry is the standard inclusion Hy(L) ®
Hy(X) — R @ (Hy(L) @ Hy(X)). Let 4'°° : Iy — Ry be the unique monomorphism
such that

ﬁl
By — Iy

I
| wl(yc
%X\ y

Ro

commutes. (Note that for j > 2, 1!° was known to be surjective, which is not true
here.) Diagram (11) becomes

B — 1y @ 1, — O IHCT(X) " By— Ty @ Iy

glid @Sploc {\id @wluc
;. o 5o 5
BlﬁTl@Rlﬁ-Hll(X) By To & Ro.

There exists a (nonunique) map p : IH?(CT(X)) — HI‘;7 (X) which fills in the diagram
commutatively. By the five-lemma, p is an isomorphism. To establish the theorem, it
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remains to be shown that coker v vanishes. Since diagram (10) is available for any j,
the argument given in the proof of Proposition 5.6 still applies to give an isomorphism
ker 3,  ker B Nker 3}

ker By  ker 3l Nker g}’

cokery =

Since B(I) and B(J) are isomorphisms, we deduce that cokery = 0, as was to be shown.
This concludes the case k£ < 0.

We proceed to the case k = 1 (and j = 1). By Lemma 5.4, Ry = R, generated by the
cone vertex. We have a = 0 and thus still [y = Ho(L) ® Ho(32), but Jy = 0. Therefore,
ker 3] = By. The map 3§ : By — Ry can be identified with the augmentation map
€ : By — R, a surjection. Let ¢'°° : [ — Ry be the unique epimorphism such that

ey}
o=

By——=1

I
| w]nc
% v

Ro =R

R

commutes. There exists a map p filling in diagram (11) commutatively. Such a p is
then injective. Using arguments from the proof of Proposition 5.6, we have

ker 50T N ker ﬂé

— 0 =70 _ ker 8T N By = ker BT
ker BOT N ker Bé er B 0 er

cokery =

and
coker p = ker ] Nker B = ker 5§ Nkere.
We recall from elementary algebraic topology:

Lemma 5.7 If A and B are topological spaces and h : A — B a continuous map, then
the diagram

Ho(A) = Hy(B)

N

R
commutes. In particular, ker h,, C ker(e : Hy(A) — R).

Applying this lemma to h, = 1, we have ker 3] C ker € and thus coker p = ker 3} =
coker 7. This concludes the proof in the case k = 1.
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When k£ > 1 (and j = 1), then Rp = R (Lemma 5.4), a < 0, and Iy = Jyp = 0. As
in the case k = 1, the map ﬁ(’f : Bp — R can be identified with the augmentation
epimorphism € : By — R, but this time, there does not exist a map '°° such that
wlocﬂé = ﬁ(lf. We must therefore argue differently. By exactness and since ﬁ(l) =0,
we have

im(d, : IH!(CT(X)) — Bo) = ker(BY, 55) = ker 57 .

Also,
im(0, : HIY(X) — By) = ker(5), B§) = ker B} Nkere.

By Lemma 5.7, ker 3] C ker e and hence
im(, : IH!(CT(X)) — By) = im(, : HI!(X) — By).
For the diagram
B — 1 on — % HICTX) &~ imd, — =0

o

id @@loc
B{' 1

B — LT, &R, HE(X) —2—~imd, —=0,

there exists a (nonunique) map p : IH?(CT(X)) — HI‘I7 (X) which fills in the diagram
commutatively. By the five-lemma, p is an isomorphism. The cokernel of ~,

kerﬁg N kerﬁg) B kerﬁg NBy
ker 8 Nker B ker I N By
vanishes and thus the theorem holds in this case as well. This finishes the proof for
j=1.

cokery = 0,

It remains to establish Theorem 1.2 for j = 0. We shall write E*, 7"*, 73* for the

reduced homology groups. We have a = —k,
I~ Hy(L) ® Hy(¥), k<0
0 =
0, k>0

and by Lemma 5.4,

Ry

~ Hy(L) ® Hy(X), k<0
0, k> 0.

Thus Iy and Ry are abstractly isomorphic. Recall that for a topological space A, the
reduced homology Hy(A) is the kernel of the augmentation map ¢ : Hyp(A) — R, so
that there is a short exact sequence

0 — Hy(A) —= Hp(A) - R — 0.
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Let E{f : By — Ry be the map induced by 3 between the kernels of the respective
augmentation maps. If k£ < 0, then L., = & and the exact sequence

Ho(Lex X X)) — Ho(L X ¥) — Ry — 0
shows that By — Ry is an isomorphism. Since the composition
is BR, we deduce that SF is injective for k < 0. Inverting SR on its image and

composing with 3}, then extending to an isomorphism using dim/y = dim Ro, we
obtain a (nonunique) isomorphism & : Rg — Iy such that

.
(12) By——=Ry

|
Li\ | K

Y
By——=1

By

commutes. When k > 0, let % : Ry — Iy be the zero map (an isomorphism). Then
diagram (12) commutes also in this case. As for the above open cover PX=MUU,
the intersection M N U = L x % x (0, 1) is not empty, so there is a Mayer-Vietoris
sequence on reduced homology:

By s Ty Ry X HIE(X) — 0.
Using k, we get the following commutative diagram with exact rows:
By—L Ty @ Ry — HII(X) —— 0
¢ K
By —2 Ty @ Iy — % IHI(CT(X)) — 0,
from which we infer that
fllg(X) >~ coker 3, IHg(CT(X)) =~ coker f3.

Let Ty & Ip — R be the composition of the standard projection Ty & Iy — T with the
augmentation € : Tp — R. Applying the snake lemma to the commutative diagram

0 Bo : By——=R 0
L

OHTQ@kQﬂTo@IOHRHO
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we arrive at the exact sequence

0 — ker ,5%’ — ker By — keridg — coker gé’ — coker 3y — cokeridr — 0.

2N A

As keridg = 0 and cokeridg = 0, we obtain anisomorphism coker 3, = coker Sy, i.e.
HIS(X) & IHg(CT(X)). It remains to be shown that - : IHg(CT(X)) — IHg/(CT(X))

is surjective. This follows from the surjectivity of w})"c and diagram (10).

5.1 Example

We may consider the following example to illustrate Theorem 1.2. Consider the two-
sphere, as a stratified space, thought of as the suspension of S!. So the two poles are
the “singular" stratum, with link L = S', and we will denote these by + pt. Now take
X = S? x T? with the induced stratification, ¥ = {4 pt} x T? C X. The codimension
of ¥ in X is 2, and any standard perversity takes p(2) = 0. We will first calculate
H,(I’X). Let M = X — N(X), where N is an open normal neighborhood of Y. Note
that OM = S' x {&pt} x T?. The cutoff degree here is k = 1 — p(2) = 1, so
IPX = M Uy c(L<y x T?), where Loy C L = S'. For any path connected space, L] is
just a point ¢” in the space. Thus g is the inclusion map g : e x {£pt} x T? — M.
The reduced homology is given by

A (X) = H.(IPX) = H.(M, ¢® x {£pt} x T?)

Then using the relative exact sequence on homology, we can calculate this as:

0 i=0

B R? i=1
HX)={ R* i=2
R? i=3

0 i=4

Theorem 1.2 states that there is a relationship between the ITI‘? (X) we just calculated and
intersection homology groups for CT(X). The conifold transition of X is CT(X) =
((T? x D/ (T? x 9I)) x S', whose normalization is the suspension of T? times S':
a"(X) = S(T?) x S'. This has singular stratum B = {#£pt} x §' with link F = T2,
so the codimension of B is 3. This means there are two possible standard perversities
m (lower middle) and 7 (upper middle), where m(3) = 0 and n(3) = 1. By [20,
Theorem 4.2] and [19, Lemma C.1], the intersection homology does not change under
normalization and thus IHE(CT(X)) = IH?(ET (X)). The intersection homology groups
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of CT (X) for the perversities 7 and 7 are calculated in [1], p. 79, which also indicates
the generators of the classes.

In order to illustrate Theorem 1.2, we also need to understand IHg(C T(X)) where ¢ is an
extended perversity, asin [18], and we need to understand the maps between consecutive
perversity intersection homology groups to calculate the groups IGik)(CT(X)). By
Proposition 4.1, IHI(CT(X)) = H.(M) for g(3) < 0 and IH{(CT(X)) = H.(M, M)
for g(3) > 2. If g(3) < ¢'(3), then there is a natural map

IHY(CT(X)) — IHT (CT(X)),

since any cycle satisfying the more restrictive condition given by g will in particular
also satisfy the less restrictive condition given by ¢’. This is the map that appears in
the definition of IGfkk)(CT(X)). Now we can create the following table that will allow
us to calculate these groups.

Table 1: IH{(CT(X))

\g®»|-1 - 0 — 1 — 2
o |R =2 R = R % o
1 |R =2 R » R % R
2 R - R4 R o R
3 R 2 R < R? R3
4 0 ¥ R == R = R

We get, for example,

IHT®O=2(CT (X))
Image <1H?‘3):1(CT(X)) N H?'(”ZZ(CT(X)))

IGPcrx) =~ HOZ\(CcTX) @

R

1

R®

I

R2.
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Collecting the relevant results, and recalling that p(2) = 0, we get

IGP(CT(X) = 0

IGP(CT(X) = R?
IGP(CrX) = R*
IGQ(CT(X)) = R?

1G{ V(€T (X))

|
e

Thus B
HI; (X) = IG;(CT(X)),

where we see 3 =n — 1 4 p(2), as in Theorem 1.2.

6 De Rham Cohomology for /H and HI

6.1 Extended Perversities and the de Rham Complex for /H

Let W be a pseudomanifold with one connected smooth singular stratum B C W of
codimension ¢ and with link F of dimension f = ¢ — 1. (In what follows, we will
take W = CT(X),so B =L and F = ¥.) Then the only part of the perversity which
affects H-I;(W), is the value p(c). Thus in this special case, we can simplify notation
by labelling the intersection cohomology groups by a number p that depends only on
the value p(c), rather than by the whole function p. Further, we will fix notation such
that the Poincaré lemma for a cone has the form:

HI(F) j<gq

i ((OF) —
(13) IH(q)(c F)—{ 0 i>a

That is, the ¢ we use in the notation IH{ q)(W) gives the cutoff degree in the local
cohomology calculation on the link. The de Rham theorem for intersection cohomology
[11] states that in this situation,

IH{_ 1 (W) = Hom(IH)(W), R).
Standard perversities satisfy 0 < p(c) < ¢ — 2, so in terms of the convention we have
introduced, this gives 0 < ¢ < ¢ — 1. We use an extension of these definitions in

which ¢ € R. This does not give anything dramatically new; when g < 0, we get
H*(M,0M), where M = W — N for N an open tubular neighborhood of B. When
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g > c— 1 we get H*(M). 1Tt is also worth recording that when W has an isolated
conical singularity B = pt with link F', we get the following isomorphisms globally:

_ H/(M) i<q
IH (W) = ¢ Im(H/(M,0M) — H(M)) j=gq
H/(M,0M) i>q

where in this case OM =2 F.

In order to prove Theorem 1.3 from the de Rham perspective, we need to use compatible
de Rham complexes to define these cohomologies. Various complexes have been
shown to calculate intersection cohomology of a pseudomanifold. We will present first
a version of the de Rham complex from [11], adapted to our setting.

We use the notation from Section 2, and in particular let W = CT(X) have an [-
dimensional smooth singular stratum L with link X2, a smooth s-dimensional manifold,
and product link bundle ¥ = L x .. Note that s+ 1 = codim L. From the isomorphism
Y = L x X, wehave that T*Y = T*L @ T*X. This induces a bundle splitting

AT Y) = @ A(T*L) @ N(T*Y).
i+j=k
We write Q¥(Y) = I'°(Y; AX(T*Y)) for the space of smooth differential k-forms on
Y, AWY = A(T*L) @ N(T*Y) and Q9 (Y) = I'™°(Y; AWY). Then also we obtain a
splitting of the space of smooth sections,
dm= P o),  a=) ay
i+j=k ij
as C*°(Y)-modules. For g € Z, define the fiberwise (along X) truncated space of
forms over Y:
qg—1
(fteg XN = {a € QM) | a = ary}.
j=0

Note that ft, 2*(Y) is not a complex in general. Then define the complex:
(14) 19,(CT(X)) :=={w € QM) | inc* w € ft, Q*(Y),inc*(dw) € fto, Q*(Y)}.

(Recall that inc : Y = OM < M is the inclusion of the boundary.) The cohomology of
this complex is IH(*q)(CT(X)), as shown in, e.g., [11]. We note that there is an inclusion
of complexes,

Sg.q+1 : 190 (CT(X)) — 197, 1)(CT(X)).

This induces a natural map on cohomology, which however is generally neither injective
nor surjective. We will come back to this map later.
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6.2 Extended Perversities and the de Rham Complex for HI

In this subsection, we present the de Rham complex defined in [2], which computes the
reduced singular cohomology of intersection spaces. Let L be oriented and equipped
with a Riemannian metric. For flat link bundles £ — 3 whose link can be given a
Riemannian metric such that the transition functions are isometries, the first author de-
fined in [2] a subcomplex €25,4(3) C Q2*(E), the complex of multiplicatively structured
forms. In the present special case of E = Y = L x X, this subcomplex is

Ds(D) ={w e VW) |w=>_ A A7hoj},
N
where the sum here is finite, and the \; € 2*(L) and 0; € Q*(X). We may also write

this as
Qs (X) = QL) ® Q* (D).

Let k be any integer. The level-k co-truncation of the complex €2*(L) is defined in loc.
cit. as the subcomplex 7>¢£2*(L) C 2*(L) given in degree m by

0 m<k
(= QL))" = ¢ kerdy, m=k
QML) m >k,

using the codifferential 67 on Q*(L). Note that for k < 0, 75,Q*(L) = Q2*(L), while
for k > I, 75, Q2*(L) = 0. The subcomplex ft>; 235(X) C Q35(X) of fiberwise
(along L) co-truncated forms is given in degree m by
(ftzk Dyes(D))" = {w € Q"(V) |w =D m N A0y, A\ € 7627 (D)}
i.j
Taking k = [ — p(l 4 1), we set
HIgg 5(X) := H*(QI; (M),
where
QI;(M) = {w S Q*(M) ‘ w]N_g = 71';77, ne ftZI—ﬁ(H-l) Q}‘WS(E)}
(Recall from Section 2 that N is an open tubular neighborhood of ¥ with a fixed
diffeomorphism N — 3 £ L x X x (0,1) and 7y : N —¥ — Y = L x X is
the projection.) The Poincaré duality theorem of [2] asserts that if p and g are

complementary perversities, then wedge product of forms followed by integration
induces a nondegenerate bilinear form

HIGR 5(X) x HIZZ(X) = R, ([w], [7]) — | _wnn
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when X is compact and oriented. (This is shown not just for trivial link bundles,
but for any flat link bundle whose transition functions are isometries of the link.)
Furthermore, using a certain partial smoothing technique that we shall sketch below, the
de Rham theorem of [2] for isolated singularities and its generalization to nonisolated
singularities with trivial link bundle due to Essig [16, Theorem 3.4.1] asserts that

(15) HI}g 5(X) = Hom(H,(PX; R), R).

This isomorphism is constructed as follows: For a topological space Z, let Cy(Z)
denote its singular chain complex with real coefficients. For a smooth manifold V
(which is allowed to have a boundary), let C2°(V) denote its smooth singular chain
complex with real coefficients, generated by smooth singular simplices A/ — V. For
a continuous map g : Z — V, the first author defined in [2] the partially smooth chain
complex CY(g). In degree j,

CX(g) = Hi1(2) @ C(V).

Let ¢ : C°(V) — C.(V) be the inclusion and s : C.(V) — C°(V) Lee’s smoothing
operator, [29], pp. 416 — 424. The map s is a chain map such that s o ¢ is the identity
and ¢ o s is chain homotopic to the identity. Thus s and ¢ induce mutually inverse
isomorphisms on homology. If V has a nonempty boundary 0V, then we can assume
that s has been arranged so that the square

C.(OV) —> C(IV)

/ |

C.(V) —= C=(V)

commutes. Let Z; denote the subspace of j-cycles in C;j(Z) and B; = 0Cjy(Z) the
subspace of j-boundaries. Choosing direct sum decompositions Z; = B; & Hj' , We
obtain a quasi-isomorphism ¢ : H.(Z) = H.(C.(Z)) — C.(Z), which is given in
degree j by the composition

Zj BJ@I_IJ{ = /
HZ)=—=———> —H —7Z — Ci(2).
J B B ] ] J

J J

Here, we regard H,.(Z) as a chain complex with zero boundary operators. By construc-
tion, the formula [¢(z)] = z holds for a homology class z € H;(Z). Let z € H;_1(Z)
be a homology class in Z and v : AV — V be a smooth singular simplex v € (V).
The boundary operator 0 : C;X(g) — Cfil(g) is defined to be

Az, v) = (0,0v + 58:q(2)),

where g, : C;_1(Z) — C;_1(V) is the chain map induced by g. By Proposition 9.2
of [2], the partially smooth chain complex C{°(g) is naturally quasi-isomorphic to the
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algebraic mapping cone Ci(g«) of g.. Applying this to the map g : Loy X X — M,
we get an identification

H.(CX(g)) = H.(Cy(g4)) = H.(cone(g)) = H.(IPX).

A map _
U« H(QU;(M)) — Hom(H;(CY(8)), R)

is givenby ¥5[w][(z,v)] = fv w, where w € QI;-;(M) isaclosed formand (z,v) € Cj‘?‘(g)
is a cycle. (See [2], p. 48. Note that w has a unique extension to a closed form on M
see also Section 6.3.) Then the isomorphism (15) is the composition

HIg 5(X) ~2 Hom(H.,(CX(g)), R) = Hom(H,(I"X), R).

This construction, as well as the argument showing the map to be an isomorphism,
does not require any assumptions on the cutoff degree k € 7Z, and thus works even for
extended perversities p. We can create a notation for H. Q‘Rﬁ that emphasizes the cutoff
degree instead of the perversity in a similar vein to the notation we fixed for IHlij(X ) in
the previous section. With k = [ — p(/ 4+ 1), we simply write

HI(X) := Hlgg 5(X).
Since the only value of p to make a difference in the right side of this equation is

p(l + 1), no ambiguity arises from replacing the function p by the number k, where
now k is giving the cutoff degree in the local calculation on the link.

We observe two useful lemmas about the cohomology of the complex QI;(M ). The
first one is a generalised Mayer-Vietoris sequence.

Lemma 6.1 Thereis along exact sequence of de Rham cohomology groups as follows:

s = HI (X) = H(M) & H (ftor Qs(X)) — H(OM) — - - - .

In particular, since 9M = L x Y, the second summand of the middle term is isomorphic
to

I
@H"(L) ® H~(Y).

i=k

Proof Let k =[—p(l+1). By definition of Q/5(M), we have a short exact sequence
of complexes:

0 — QL(M) — Q" (M) © ftsi Qs () — (N — ¥) = 0,

where the second map takes a pair (w, ) to w|y_x — 7y7, and the first map takes w €
QI;(M) with w|y_s, = 7yn to (w,n). This sequence induces a long exact sequence
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on cohomology isomorphic to the one above. The form of the second summand comes
from the definition of co-truncation and of multiplicatively structured forms. The
isomorphism of the third term comes from the standard DeRham Kiinneth isomorphism
H/(OM) = H/(OM x (0, 1)) and the diffeomorphism N — X = M x (0, 1). O

Lemma 6.2 (Kiinneth for HI,..) If W is a pseudomanifold with only one isolated
singularity and B is a closed manifold, then the homological cross product induces an
isomorphism HIY(W x B) = HI}(W) ® H,(B).

Proof Let W be the blowup of W. Set k = [ — p(I + 1), where [ is the dimension of
the link L = OW, and let f : L4 — L be a stage-k Moore approximation to L. Then
IPW = cone(g), where g is the composition

Loy L L=0w—W.
The blowup M of X = W x B is M = W x B with boundary OM = L x B. The

intersection space of X is then IPX = cone(g x idg) because g x idp is the composition

f

Loy x B L «xB=0M<M=W xB.

Let v € cone(g) be the cone vertex and let Q = (cone(g) x B)/({v} x B), which is
homeomorphic to cone(g x idg). As the inclusion {v} x B — cone(g) X B is a closed
cofibration, the quotient map induces an isomorphism

H.((cone(g), {v}) x B) = H.(cone(g) x B, {v} x B) = H.(Q) = H.(cone(g x idp)).

The Kiinneth theorem for relative homology ([34, Thm. 5.3.10, p. 235]) asserts that
the cross product

H.(cone(g), {v}) ® H.(B) — H.((cone(g), {v}) x B)
is an isomorphism. Composing, we obtain an isomorphism

HIZ(W x B) = H,(cone(g x idp)) = H,((cone(g), {v}) x B)
=~ H,(cone(g)) @ H,(B) = HI'(W) @ H.(B).

O

Lemma 6.3 (Kiinneth for HI3z .) Let W be a pseudomanifold with only one isolated
singularity and B is a smooth closed manifold such that HI,(W) and H,(B) are finite
dimensional. Then HI(;"R,ﬁ(W X B) = HIS‘RJ,(W) ® H*(B).
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Proof By assumption, the homology groups HE (W) and H,(B) are finite dimensional
and thus the natural map

Hom(HI?(W), R) ® Hom(H,(B), R) —s Hom(HI?(W) ® H.(B), R @ R)
is an isomorphism. Thus, by Lemma 6.2 and the de Rham isomorphism (15),
HIGg 5(W x B) = Hom(HE(W x B),R)
>~ Hom(HI?(W) @ H.(B), R)
>~ Hom(HI?(W),R) ® Hom(H,(B), R)
= HIjp (W) ® H*(B).

O

Using these lemmas, we may also compute Hl,(X) for values of extended perversities
that lie outside of the topologically invariant range of Goresky-MacPherson, as follows:
For standard perversities, 1 < k < [. If k < 0, then 75,*(L) = Q2*(L) and thus the
sequence of Lemma 6.1 becomes

oo HE (X) -2 HIM) © H (Qs(S) — HI@OM) — --- .

The map ) has the form 1 = 1y, — 1)y, where ¥y : H/(M) — H/(OM) is restriction
and 1)y : H/ (Q}“WS(E)) — H/(OM) is induced by the inclusion of complexes. Since 1)y
is in the present case an isomorphism, the map ) is surjective and thus ¢ is injective.
Now

im ¢ = kertp = {(w,n) | Yam(w) = Yy} = {(w, ¥y " Pu(w))},

which is isomorphic to H*(M). We conclude that HIj\,(X) = H*(M) when k < 0. On
the other hand, if k > [, then 7>;£2*(L) = 0 and hence the sequence of Lemma 6.1
becomes

s = HE(X) — (M) — H(©OM) — - - .

Therefore, HI;,(X) = H*(M,0M) when k > I. In particular, Poincaré duality also
works for these extended perversities, since relative and absolute (co)homology pair
nondegenerately under the standard intersection pairing.

6.3 An Alternative de Rham Complex for H/

We continue to assume that L is oriented. We now want to define a new, equivalent de
Rham complex for HIj,(X) that is analogous to the de Rham complex we presented

above for IHEkq)(CT(X)). In order to do this, we need to extend the operator §; from
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multiplicatively structured forms on Y to all smooth forms on Y. This is standard,
but we give details here for clarity. First, we can decompose the exterior derivative
according to the splitting of Y as

dy = dp + (—1)dx

for (r,x*)-forms, where for z = (zy,...,z) local coordinates on a coordinate patch
UCLandy = (yi,...,Y¥s) local coordinates on a coordinate patch V C X and
multi-indices I and J,

[
~ 0
4L,y A dyy) = 3 ode e Ay
=1

and

- 'L
dstfa.y)dan dyg)i= 3 5 da Ay A
j=1

Note that ZiL(ﬂZ)\ A m50) = mp(dA) A 50 and Zig(ﬂf)\ N T50) = T AN\ 75 (dxo),
so these operators extend the exterior derivatives on multiplicatively structured forms
to operators over all smooth forms on Y.

Now fix a metric g; on L. This defines a Hodge star operator on 2*(L), which may
be extended to forms on Y via the rule

¥1(dzp Ndyy) = (xpdzp) Ndy;.

Now we can extend the adjoint operator of dj, to forms on Y by setting for (i, j)-forms
that
o == (=D d %,

Note that this does extend the adjoint operator from multiplicatively structured forms.
From the coordinate definitions and the invariance of g; in the V coordinates, we can
observe:

(16) didy, = dsdy, ds%; = %1ds, ds:dp = opds.

Furthermore, we can lift the Hodge decomposition for 2*(L) to any neighborhood Lx V
by observing that for any fixed y € V, we have a decomposition of w € Q¥(L x V)
given by
w= >Ny Adys,
=i
where each A\;(y) € Q/(L) decomposes as dyA1s(y) + 6LA2(y) + A3 (y), with
A3 g(y) € Hi(L). Here, H*(L) denotes the space of harmonic forms on L. Thus
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altogether we can decompose

w o= Y dihsWAdy+ Y 60 Adys+ Y Aas(y) Adys

=/ =i [|=j
= dr Z Ag(y) Adyy + 01 Z A (y) Adyy + Z A3,(y) Adyy
[JI=j =/ [I=i
(17) = dpwi(y) + drwa(y) + ws(y).

Now putting this together for all y € V, we get a unique decomposition of any form in
QW(L x V) into pieces in the image of d; , in the image of §; and in the kernel of both.

Lemma 6.4 We have the following decomposition, where the sums are vector space
direct sums:

QY = 3,075 (Y) @ 5T @ (H(L) ® U()).

Further, ds, preserves this decomposition.

Proof We have already demonstrated the decomposition, since this is done pointwise
in B (finite dimensionality of J{*(L) allows us to write the last term of the decomposition
as a tensor product). The fact that it is preserved by ds; follows from (16). a

Note that since L x X is a product, we can also apply Lemma 6.4 in the other direction,
namely that d; preserves the Hodge decomposition for X. In this way, we get in
fact a double Hodge decomposition. A graded vector space ftsz*(Y ) of alternatively
fiberwise co-truncated forms is given by

l
)Y = {a = aij-i | aij—i € QV7Y), dpag;r = 0}.
i=k

Lemma 6.5 The differential dy restricts to fAtZkQ*(Y).
Proof The differential dy = d; + ds, does not lower the L-degree i of a form

a;j—i. Thus, if o = Zfzk «;j—i, then dyca can again be written in the form dya =
Zg:k 5i,j+1—i7 ﬁi,}'—&-l—i € Qi‘iJrl*i(Y). Assume that 5Lakj—k = 0. Since

dya = (dp, £ ds)(j—k + Qg1jk—1+ )
= dpogjk * dsonjk + drogrr jk—1 £ dsout jok—1 +

the component in bidegree (k,j + 1 — k) of dy« is

(dy@)ji1—k = Eds oy ji.
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Using (16),
Sr(dy )y jr1—k = £ords ok = £dsdpanjx = 0.

This shows that dya € (ftsQ*(Y)y*!. O

By the lemma, ftsz*(Y ) is a differential complex. Now we can define the new
deRham complex for HI(*k)(X) as:

(18) QX0 = {ply | p € QD) inc*(p) € fs, (N}

We want to show this complex is quasi-isomorphic to the original de Rham complex.
For this, we will need the Kiinneth Theorem.

Theorem 6.6 (Kiinneth Theorem) Let Y = L x Y, where X has a finite good cover.
Then the inclusion of complexes

QL) ® Q°(2) = Qys(X) = ()

induces an isomorphism on cohomology. In particular, if o € 234(¥) and o = df3
for B € Q*(Y), then B = dy + f3', where ' € Q}(2).

Note that the second part of the Kiinneth Theorem is not obvious, but follows from
the standard proof for the DeRham cohomology version. Details may be found, eg, in
[101, (p. 49).

It is also useful to start with two observations. First, although the forms in the complex
Q,(X) are only defined on M, we can extend each one uniquely to a form on M.
This is because on N — ¥ = OM x (0, 1), they are constant in the variable on (0, 1)
(which we will call x), and thus can be extended to M x [0, 1). We will abuse notation
and use QI(,(X) to denote both the original complex and the complex of extended
forms, which is isomorphic to the original complex through the extension map. This is
convenient, because it then allows us to consider QI(*k) (X) as a subcomplex of QAI(*k)(X ).

Second, we observe that when we choose our neighborhood N of ¥ C X, we can
always arrange for it to sit inside a larger neighborhood N>, C X with the property
that Ny — ¥ = OM x (0,2), where N — ¥ = OM x (0,1) is a restriction of the
diffeomorphism for N, — X. Let N denote the blowup of N, N = 9M x [0,1) and
similarly, let N, denote the blowup of N,.

Lemma 6.7 The cohomology, I/-I\Iz‘k)(X), of the complex QAIZF,{)(X) is isomorphic to
HI(X).
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Proof The inclusion of complexes
QU (X) — Q) (X),

described above induces a map on cohomology. We need to show this map is a
bijection. We start with injectivity. Assume that [a] € HI{,{)(X) and that o = dJ3 for

N ~j

b€ ar, (X). The two complexes differ only by the structure of forms on N. To
(k) p y by

prove injectivity, we will thus only need to modify forms in a small neighborhood of

N. We will use N, as this neighborhood.

When we restrict 3 to Ny, we have
Bex) = Bix) + dx A Bu(x),

where x is the coordinate in [0, 2), and where for each fixed value of x, Bt /n(x) are
smooth forms on Y = OM. Now on all of M, define a new form

6=B—d<x/o Bn<r>dr),

where x is a smooth cutoff function on M which is identically = 1 on N and is
identically = 0 on M — N, (we may in particular choose x to be a pullback of a
smooth cutoff on [0,2) to N, and extend it by zero to the rest of M). Note that

inc*(8) = inc*(B), so B € Qlj(k) (X). But additionally, on N, dxJ3 = 0 because
B = (Bt(x) — Iy dy Ba() dt> +dx NO.

Now from the fact that on N, o = 7jn for some 7 € Q’MS(E) and df = df = a, we
have on N that

Ty = dB(x) = dyB(x) + dx A B'(x),

where ('(x) = (0/0x)5(x). Thus we must have 3'(x) = 0, so S(x) is constant in x on
N. This means 8 = wjo for some o = inc*/3 = inc* B € (ftzkﬂ*(Y))/_l. Since d
commutes with pullbacks, we have dyo = 7.

To complete the injectivity proof, we need to show now that we can further adapt /3
toaff = my0 where & is multiplicatively structured and still in the right co-truncated
complex. What we have done so far permits us to reduce this to showing that if
1 = dyo, where o € (ft=xQ*(Y)Y~" and 1) € (fts Qis()Y, then n = dy&, where
& € (ftop gDy 1

As noted in Theorem (6.6), the injectivity of the Kiinneth 1somorphlsm dyo = n,
where 1 € Q L s(X), implies that ¢ = dyy+o’, where o’ € Q’MS (X). Thus dyo’ = 7.
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We need to show that in addition, o’ can be chosen to satisfy the correct co-truncation.
Expanding dyo’ = 7 in terms of bidegree, we get:

3 /

dLUj—l,o =70

Lol o, + (1Y 'dsol g = -1

(19) Loy j g+ (=Ddsol; ) = mjk

Lotz j i + (Do ;=0

Decompose the term o, j—1—x according to the L Hodge decomposition as

) 3 .
Ok jot—k = dL@k—1j—1—k + OLbrt1,j—1—k + Cj—1-1;
and set
~ / / N
=010+ 1 jk—2 T OLbkt1j—1-k + Ckj—1-k-

Note that in the L Hodge decomposition of a multiplicatively structured form, each
term is itself multiplicatively structured. This means that & € (ft>4 Q’;\/ES(E))FI. We
would like to have that dyé = n. When we decompose this equation by bidegree, we
get exactly the same equations as in the previous decomposition for all equations above
the one for 7, ;« (labelled Equation 19), so these are still correct. For the equations
corresponding to those below Equation 19, we get just 0+0 = 0, which is also correct.
So we just need to check that the equation corresponding to 19 is also correct:

(20) (—Dfds (OLbkt1j—1—k + Chjm1—k) = Thjk-
So consider again Equation 19:
Mkj—k = 6~1'L01/(_11,~_k + (= Dkdy (drag—1j—1—k + Srbks1j—1—k + Chj—1—k)
=dp (011 %+ (—D*dsar—1j—1-k) + op(—=DFdsbs1 j—1-k
+ (= Ddscrjo1—k,

where in the last step, we have used the fact that ds; commutes up to sign with both dy.
and o7 . This is exactly the L Hodge decomposition of 7 j—k- However, the fact that
OrMkj—k = 0 implies that the d; term in its decomposition vanishes, i.e.,

dr, (O-llcflxj—k + (—l)kglzak_u_l_k) —0.
This means that Equation 19 reduces to

M jk = 0((—= D¥dsbrsr j—1-1) + (= DFdserj1-x,
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which is equivalent to Equation 20, as desired. This completes the injectivity part of
the proof.

Now consider surjectivity. Let (8] € I-/I\Il(.k)(X). We need to construct a form 3 €
. A —~j—1

QI{,{)(X) such that 3 = 8 + dfj for some 7} € Qlj(k) X).

Restricting forms to N, we again have

Bx) = Bi(x) + dx A Bu(x).

B=B—d<x/o /S’nmdr).

N

By the same arguments as above, we get that [3] = [5] € I/jlﬂk)(X), andon N, 3 = 1o

As before, on M, define

for some o € (ﬁzkﬂ*(Y)Y. We now need to adapt /3 to a multiplicatively structure 3.
As before, this reduces to adapting the form o on Y to an element of (ft>x Q}*WS(E))".

First note that d = 0 implies that dyo = 0. Thus using the Hodge decomposition on
Y, we get

21 o =dyn+d,

where ¢’ is harmonic in Y, and therefore multiplicatively structured as a sum of wedges
of harmonic forms on L and X. (This follows from the double Hodge decomposition
Lemma 6.8 together with the Kiinneth theorem.) Now as in the injectivity argument,
decomposing by bidegree and using the Hodge decomposition and the fact that o €
ﬁszj(Y), we get that o’ € (ftsg Q35(X)Y as desired.

We next need to show that we can choose 1 € (ﬁsz*(Y))i_l in Equation 21. Decom-
posing Equation 21 by bidegree, we also get that dy(n;—1j—x+---+mo,—1) = 0. Thus
we may choose our 7 without loss of generality such that 7,1 ;« + -+ +mnpj—1 = 0.
Finally, we have that SLZignkJ_k_l = SL(ak‘,-_k—a,’{Jfk) =0. Thusn € (f\tZkQ*(Y))"_1
as desired.

Finally, we let

B=p—dxn)

=h-d xAn d
B (X<n+/05(t) t))
= B+ dij.

Then [5’] = [B] € I/-I\I](.k)(X), where [B] is a class in HI{k)(X), so the map is surjective.
O
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When the link bundle is trivial, ¥ = L x 3, we can analogously define operators ds;
and dy.. Then the Hodge decomposition theorem for forms on ¥, Lemma 6.4, can be
refined to a double Hodge decomposition.

Lemma 6.8 Letw € QY(L x ¥). Then w may be decomposed uniquely in a double
Hodge decomposition:

w = didsai_1j-1 +didsai_1j41 + g,thEu
+61dsais1 j—1 + 0105ai41 41 + SLhiEH,;‘
+ dzhﬁjfl + 5zhﬁj+l + hZ/,

where the terms h*ZJ* are in the kernels of both ds; and dy;, the terms hi* are in the

kernel of both d; and b; and h,’; is in the kernel of both dy and dy .

Proof This follows from the Hodge decompositions of each factor in
QUL xY) = QLY
= (@M + 52 L) + H (D)
Sds V(D) + 0s X (D) + 3 (D))
together with the definitions of d; /S o /s> Which imply that
dpds (T (DY (E) = di2T (D&Y (),

and similar equalities for d; ds,, 6;d and 0;0x. We can note that the finite dimension-
ality of the space of harmonic forms on L and on 3 means that for the terms in the
expansion of the product that contain harmonic forms, we in fact have that & is simply
the same as ®, so the operators d; /s, = EiL/g and oy /s = 5L/2. O

This double Hodge decomposition has similar properties to the standard single Hodge
decomposition. For instance, if ds;w = 0, then applying this to the double decompo-
sition of w, we get that

ds:05:(drai—1 j+1 + Or@iv1j+1 + hl'LJ+1) =0.

Taking the inner product in L*(2) of this with dya;_; g1t SLa,'H 1t hiLJ- 4 at each
point in L implies that in fact

SE(ZZLaifl,j+l + SLai+1J+l + hl~LJ+1) = 0.
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6.4 Proof of Theorem 1.3

Theorem 1.3 follows from a sequence of lemmas relating the spaces IH{q)(CT(X)),

HIJ q)(X) and IH/ Jrl)(CT(X)). First we have the following lemma, which shows that
there isa sequence of maps in each degree j:

Lemma 6.9 For all j, there are well defined maps
IH’q)(CT(X)) 4, HI] »&) Ny qH)(CT(X))

that factorise the standard map S, ,.1 between intersection cohomology groups of
adjacent perversities.

Proof First consider the map A. Let o € IQ’(. q)(CT(X)), da = 0. Then by definition
of this complex, inc* a € (ft<, 2*(Y)Y . We can decompose inc* o by (L, X) bidegree
to get

inc* o = Qjo+ -+ Qjgt1,g-1-

In particular, o j + - - - + @j—4 4 = 0, which means that o € £/2\Ij(i_q)(X).

To show that this inclusion induces a well-defined map, A, on cohomology, we need

to know that if a = dn where n € IQ{q) (CT(X)), then we can find ' € QI/U q)(X) SO
that o = dn/’, as well.

Decomposing by bidegree, we get
inc*n=mni_10+ -+ Nj—gq-1-

Breaking down the equation inc* o = inc* dn = dyinc* n by bidegree, we get that
agnj_w_l = 0. This means that in the double Hodge decomposition for 7;_, , 1 we
have:

N-qg1 = didsaj g 142+ 0rdsaj gi142 +aEhJL—q,q—2
PR
oAy g +5Lh —q+1,4-1 +h —q,9—1
Note that ds;(ds.aj—g—1,4-2 + h “g-14-1) =0 Then for x a smooth cutoff supported

at the end of M, let ' = n — d(X(dE(l] g—lg—2+ hj g—1.g— 1)). Then dn' = « still,

and
. / . ~ >
inc*n' = inc*n —dy(dsaj_g—14-2 + Wi g1 ,4-1)

= Njo10+ A Negitg—2 T Mjmgq—1 — dLldsaj—g—1,4-2 + hjE_q_l,q—l))-

~ —~j—1
So oy 1 = 0,507 € Qll(j_q)(X), and the map A is well-defined.
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Now consider the map B. Suppose that 3 € QAIJO_q)(X) and df = 0. Then

(22) inc' 8= B0+ +Bgq  OBjgq=0,
and so decomposing inc* d3 by bidegree, we have:
0 = inc*dp =dyinc*
= (dLBo) + [dLBi—1,1 + (=DVdsBi0) + - £ (d5Bj—q.).

Thus Elg,é’j_%q =0,s0 (0 € IQ{ (CT(X)). Now we need to show the map induced

g+
~j—1
by inclusion is well defined on cohomology. Assume 5 = du for pu € Q/(j,q)(X);

~j—1
then decomposing by bidegree again, we have by definition of QI (i—q)(X) that

inc” p = pj—1,0 + - Wimgg—1 Orj—gq—1 = O.

In particular, pt; 414, = 0,50 i € I&){;i])(CT(X)), so B is well-defined.

Finally, since on the form level, A and B are both given by inclusion of a closed form
in the domain complex into the range complex, their composition factorises the natural
map S g+1- O

Next we have three lemmas that show A is injective, B is surjective and Kernel(B) C
Image(A). Together, these prove Theorem 1.3.

Lemma 6.10 The map A is injective.

Proof Suppose that A[a] = 0, that is, @ € I,

—~j—1
B e o, (i—qX). Then decomposing by bidegree,

(CT(X)), dao = 0 and o« = dp for

inc* B = Bji—10+ -+ Bi—gg—1, 01Bj—g.q-1 = 0.

Because the degree in ¥ is < ¢ — 1 for all pieces, inc* 3 € (ft<, Q*(Y)Y~!. Also,
by hypothesis, d = a where inc* a € (ft, Q* (Y)Y, so B € Iﬂéq_)l(CT(X)), and
0 = [a] € IH(CT(X)). Thus A is injective. 0

Lemma 6.11 The map B is surjective.

Proof Suppose that [y] € IH{ (CT(X)). Then decomposing by bidegree, we have

q+1)

inc*y =90+ + g4
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Since dy = 0, we get that Eig'yj_w = 0. Decompose 7,4 4 according to the double
Hodge decomposition:

V-9 = glLaEaijfl,qfl + SLEiEaijH:q*l + EIEhJ‘L—q,q—l
~ 3 ) Y
+ dth—q—Lq + 5th—q+17q + hj—w'

Note that Zlg(glgaj,q,l,q,l + hjx_ g—1, q) = 0. Then for x a smooth cutoff supported at
the end of M, let

Y = = d(x@saj-g-14-1+ B 1 ).
Then we have dv' = 0 and
inc* 7’ =90+ +j—gq — EIL(ZlEaijfl,q*l + hjz—q—lvq))’

S0 5L7f_q,q =0. Thus 7/ € QAIJO,q)(X) represents a class in HI{/'—W(X)

Further,
inc* (Y(dsaj—g—1,9-1 + 1" g1 ) = dsaj—g—14-1+ h 4| 4 € (g X)),
so[Y1=1[v]¢€ IH{qH)(CT(X)). Thus [v] = B[], so B is surjective. O

Lemma 6.12 The kernel of B is contained in the image of A.

Proof Assume that B[3] = 0, that is, § € QAI](j_q)(X) and 8 = dvy for v €

I(l{;il)(CT(X)). Then decomposing inc* 8 by bidegree as in Equation 22 and us-

ing the fact that dg = 0, we get that Zlgﬂj_w =0= SLBj_q,q.
Now decomposing inc* v and inc* dy by bidegree, we get that
inc™y =-10+ -+ Y-1-g.0»
inc*dy = (EZL'Yj—l,O) + ((—1)j_16~127j—1,0 + EI'L’Yj—z,l) + -
+ (1Y dsj—g g1 + dryj—1—gq) + (11 g1 gy) -
Thus Elg’yj_l_q,q =0 and
(23) (—1Y ™ d5j—gq-1 + dLY-1-q.4 = Bi—aq-
Decompose 7;—4,4—1 by the Hodge decomposition in L:
Vieqq—1 = ALaj—g—1,g-1 + OLbj—g41,9-1 + Cj—gq1-

Then recalling that & Bj—g¢,¢ = 0 and applying the Hodge decomposition in L to all of
Equation 23, we get

Bi-q.q = (_1)1'—%72 (SLbijJrl,qfl + ijq,qfl) :
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Let
B =p8- dX(OLbj—gt1,4-1+ Cj—gq-1)-
Note that (6.bj—g+1,g—1 + Cj—gq—1) € l?tzi—qQ*(Y)’ so [A'1=1[8] € HI{j—q)(X)' But

inc* f' = inc* B — dy(Orbj—gt1,49-1 + Cj—gg-1)
= Bio+- -+ Bimgrig-1 — dLorbj—gi14-1,
so 8" € I, (CT(X)). Thus [8] = A[3']. 0

To put these lemmas together, we will use the following general result:

Lemma 6.13 Assume that X,Y, and Z are vector spaces and we have an injection
A : X — Y and surjection B : Y — Z such that the kernel of B is contained in the

image of A. Then
Z

YeX@—— .
Y ImBoA)

Proof Choose a splitting ¥ = Im(A) & W and a further splitting Im(A) = Ker(B)&@ V.
Then Y = Ker(B) & V @& W. Note that A is an isomorphism X == Im(A) = Ker(B) ® V
and B is an isomorphism V & W = Z. Further,

B o A(X) = BIm(A)) = B(Ker(B) + V) = B(V) = V.

Y — K B ‘) M) ~ X

as required. a

Finally, we can complete the proof of Theorem 1.3 by applying this lemma to the maps

. . .
IH],(CT(X)) > HE,_ (X) = IH], , (CT(X)).

We get
. ) IH . (CT(X))
J ~ J (g+1)
HE;_,(X) = IH(q)(CT(X))@—Im(BO B
. IH . (CT(X))
= IH (CTX) @ —4t— =7
@ Im(Sq,q+ 1)
= IG,,,(CT(X)).
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To re-index, define p such that
g+1=j+1—k:=j—1—(1—-pl+1).

Then p(I+1)=qg—j+1,5s0

HEp (X) = HE_ . X)
i
HIG (4 i)
I
= HI_,X).

Thus HEj, (X) = IG,

(Hl._k)(CT(X)), as desired.

7 The Hodge Theorem for HI

Our Hodge theorem relates to the spaces of extended weighted L? harmonic forms over
M = X — ¥ with respect to the various metrics we consider. A weighted L* space for
any metric g on M is a space of forms:

XLIM) = {w € Q* (M) | /M |lx~“w][3dvol, < oo}

Here || - ||, is the pointwise metric on the space of differential forms over M induced
by the metric on M and x is the function on M that extends the (0, 1) coordinate on
the end of M. The space x”L?Q;(M) can be completed to a Hilbert space with respect
to the inner product (see standard references, eg, [28], Theorem 3.2-3)

(o, B¢ := /Ma A X% *q 3.

Let d represent the de Rham differential on smooth forms over M and J, . represent
its formal adjoint with respect to the x°L? inner product induced by the metric g. Then
D = d + 04 is an elliptic differential operator on the space of smooth forms over
M. If ¢ = 0, the elements of the kernel of D, ( that lie in [? are the standard space of
L? harmonic forms over (M, g). More generally, we denote:

30,(M, g,¢) := {w € XL2(M) | Dy ow = 0} .

Definition 7.1 The space of extended x°L?> harmonic forms on (M, g) is

g{:xt M, g,c):= ﬂ{w ‘ w e XC_EL}?Q;(M)’ D, w = ()}
e>0
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7.1 Proof of Theorem 1.1

The space IG{ W) arises in extended Hodge theory for manifolds with fibred cusp
metrics, studied by the second author in [25], and this allows us to prove Theorem
1.1. In [25], the second author considered the situation in which the regular stratum,
M of a pseudomanifold, X with a single singular stratum, B, is endowed with a fibred
cusp metric. It is important to note that when we apply the results of this paper here,
we are applying them to the space CT(X) rather than the space X considered in the
current paper. Thus although the manifold M, which is both the regular stratum of X
and CT(X) is the same as the one considered in [25], the role of the base and fibre of
OM =Y = L x ¥ will switch depending on if we are considering M as the regular
stratum of X or of CT(X). In particular, the base of M in [25], referred to as B in that
paper, corresponds to the fibre L considered in the current paper. Correspondingly, the
fibre F considered in [25] corresponds to the base 3. in the currrent paper. With this
notation in mind, Theorem 1.2 from [25] may be rephrased in this situation as:

Theorem 7.2 [25] Let (M, gz.) be the regular stratum of CT(X) and x be a smooth
positive function on M restricting to the radial coordinate at the end, as defined
before. Endow M with a geometrically flat fibred cusp-metric, gy, for the fibration
¢:L x> — L. Then

Fort(M, 8e,€) = 1Gy(, ) 1o (CT(X)),

where b = dim Y.

Corollary 7.3 Under the conditions of Theorem 7.2, if gp = xfzgfc is the fibred
boundary metric conformal to gy, then

(24) Hu(M, gy, ©) = T (M, g1, € + (n/2) — j) = IG, (CT(X)),

Whereq:j—%—candn:dim(M):l+b+1.

Proof The proof of this corollary is not difficult, but is somewhat long and technical
in that it uses the spaces of fc and fb-forms on M. The basic idea is that if we take
g to be the conformally related fibred boundary metric on M, then the conformal
relationship ggp = x_zgfc means that

XL (M) = XTI LLQ (M),

This means for the Hodge star operators that also *gp c = *7 4 (n/2)—j» SO in fact the
extended harmonic forms in these spaces are the same. For more details, see definitions
of fc and fb forms and similar calculations to the above in [23]. |
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Note that changing the role of fibre and base in the boundary fibration on M means
that the fibred boundary metric, g, on M with respect to the fibration L x > — L can
also be thought of as a fibred scattering metric g on M with respect to the fibration
L x ¥ — 3. Thus we can rewrite this corollary as follows.

Corollary 7.4 Under the conditions of Theorem 7.2, if (M, gs) = (M, gp) is the
corresponding fibred scattering metric on M, then

(25) Hu(M, gfs, ) = IG), (CT(X)),

Whereq:j—l_Tl—c.

Finally, if we set ¢ = j+ 1 — (I — p(I 4+ 1)) as in Theorem 1.1, then this implies that
c=(—-1)/2—=p(l+ 1) as claimed.

7.2 Example

We consider the same space X = §? x T? as in Example 5.1, stratified as before. Then
M = R x S' x T?. We can endow this with a geometrically flat fibred scattering metric:

gs = dr? + (1 + 2)d6? + db3 + db3.

Note that if we make the change of coordinates x = |r|~! near +o00, we get a metric
that is a perturbation of one of the form in Definition 2.1 that decays like x?. This
turns out to be sufficient to use the same analysis (see [22]). We use this coordinate r
instead of x because it makes the explicit calculations below easier to understand. In
fact, in general, it is impossible to explicity calculate the space of harmonic forms, and
only the very simple structure of the space and metric here makes it possible.

If we consider extended L? harmonic forms on (M, gfs) with no weight (¢ = 0), then
Theorem 1.1 says
g{:xt(Mv 8fs» 0= HISR,ﬁ(X)a

where (1 — 1)/2 — p(2) = 0. That is, the spaces of extended unweighted L?* harmonic
forms on M should be isomorphic to the spaces with p(2) = 0 as we calculated in
Section 5.1.

In order to identify the extended L? harmonic forms on (M, gfs) itis useful to observe a
few things. First, since the metric is a global product metric, the extended L? harmonic
forms on M are all products of extended L?> harmonic forms on W = R x §!' with
harmonic forms on 72. Thus it suffices to determine the extended harmonic forms on
W with the metric gw := dr* + (1 + r2)d012.
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Second, we observe that gy is a scattering metric, and is thus conformally invariant
(with conformal factor (1 + 7)) to a b-metric. By the same argument as in Corollary
7.3, this means that extended harmonic forms on (W, gy) are the same as extended
weighted L? harmonic forms on (W, (1 + r*)~! gw). These forms are, in turn, known
to be in the kernel of d and § independently (see either Proposition 6.16 in [30] or
Lemma 4.3 in [25]). Thus we know that extended harmonic L? forms on W are both
closed and co-closed. This means that the only possible O-forms are constants and the
only possible 2-forms are constant multiples of the volume form.

Third, recall that for a differential form to be extended harmonic, it must be in
X" L2Q*(W, gw) for all € > 0, or equivalently, (1 + )" w € L2Q*(W,gw). If
we consider constant functions, this means we need

o0
/ A1+ ) %dr <.

—00

This is not true, so H,(W, gw) = {0}. By an analogous argument (or equivalently,
by Poincaré duality), also 32, (W, gw) = {0}.

Finally consider (. (W, gw). The space of extended L? harmonic forms of middle
degree is preserved by a conformal change of metric, and as noted before, gw is
conformally equivalent to the metric

dr?

= 1+ db>.
8b 1+r2+ !

If we reparametrise, setting ¢ = arcsinh(r), this becomes the metric on the infinite
cylinder:
gp = di* + db}.

If we use a Fourier series decomposition in 6, we find that a 1-form

w=no(r)dr+ > (ma(r) cos(nb)) + mo,x(r) sin(nby)) dr
n=0

o0
+10(r)dO + > (11.a(r) cos(nfr) + 2 a(r) sin(nf)) db,
n=0
is closed and coclosed if 7y(r) and po(r) are constant and the remaining coefficients
satisfy " = n’f, that is, they are all exponential functions in ¢, and thus blow up at

either 0o or —oo, so are not almost in L. So the only extended L? harmonic forms are
c1dfy + codt, which are in (142)¢L>Q*(W, gw) as required. Thus fHéxt(W, gw) = R2.
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Now when we take the tensor product with J*(7?), we get

H0u(M, g75) == 0 = Hlgg (X)
Hh(M, gf5) = R = HIjg 5(X)
Hou(M, g) = R* = HIGg 5(X)
FC (M, gg5) = R* = HIgg 5(X)
Hou (M, gf) = 0 2 Hgy 5(X),

as predicted by Theorem 1.1.

7.3 Explicit Isomorphism for the Hodge Theorem

Although Theorem 1.1 shows that there exists an isomorphism from extended harmonic
forms to HI cohomology of X, the proof does not give an explicit description of a
map that yields this isomorphism. Furthermore, although the spaces involved do not
relate in any way to CT(X), the proof of the theorem critically uses relationships to
CT(X). It would be nice if, as in the classical Hodge Theorem, the isomorphism could
be realised by sending an extended harmonic form to the HI class that it represents:
v — [v]. That way, we obtain a map realising the isomorphism that makes sense
without reference to CT(X). Furthermore, it gives us a place to start when trying to
extend the HI Hodge theorem to the case when the link bundle of ¥ in X is twisted.

However, the extended harmonic forms in our Hodge theorem do not in general lie in
either of the two complexes we have seen that calculate HIC";R’[;(X), as forms that are
in the extended L? spaces over M can in general have coefficients that blow up at the
end of M. Thus to obtain an explicit map realising the Hodge isomorphism, that is to
see extended harmonic forms as representatives of classes in the HI space, we need
new larger spaces of forms that can be used to calculate the HI cohomology spaces
and that do contain the extended harmonic forms. We can find spaces that work in this
regard by reinterpreting the proof of Theorem 1.1. In this section, we find appropriate
new spaces of forms by using the isomorphism with /G and alternative complexes of
forms that may be used to calculate /H. However, the spaces that we eventually obtain
do not relate in any way to CT(X), and are defined entirely in terms of X itself. In this
sense they achieve our goal. Unfortunately, the spaces used in the definition do not fit
into a cochain complex, so the necessary alternative description of the HI cohomology
spaces is not as topologically satisfying as it might be. Nevertheless, we believe that
demonstrating an explicit isomorphism is useful.
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From [25], we have the following setup and lemma which will allow us to see the
extended harmonic forms as representing classes in HI. Assume that W is a pseudo-
manifold with a single, smooth singular stratum B of dimension /, whose link bundle
with link F of dimension b is flat with respect to the structure group Isom(F, gr) for
some fixed metric on F. Let M = W — B and let x be a smooth function on M
that extends across B in W by zero. Let M be the complement in W of a normal
neighborhood of B, and let iy : 9M — M denote the inclusion of M into M in the
slice where x = s.

Define the projection operator II,_, on Q*(OM) by projection onto forms in fibre
degree ¢ that lie in Ker(0r) and forms in fibre degree ¢ + 1 that lie in Image(dr) in
terms of the F Hodge decomposition. Let x*L*Q},, (M, gfc) denote the complex of
forms on M that are conormal at x = O (see, e.g. [30]), and are also in the x* weighted
L? space on M with respect to the metric 8fe-

Lemma 7.5 The cohomology of the complex: x*/?=9=<[2Q*(M, gfc) (made into a
complex in the standard way by requiring both w and dw to lie in the appropriate
spaces) is isomorphic to IH, (W) and the cohomology of the complex:

XPIDaLRO M, gge) = {w € XTI (M gpe)
| lim Hq_l,q oiw=0, lim Hq_lyq oiydw =0}

is isomorphic to IH A _1)(W) Furthermore, using this definition of I (q HW), we
have the following long exact sequence on cohomology:

inc*

— BB H(F)) s 11 (W) IH’ (W) — H~9(B; H!(F)) —,

(g—1)

where r = limg_,o 11,1 4 0

These are the complexes used to prove Theorem 5.1 from [25], so from Corollary 7.3,
letting W = CT(X), B = L, X = F, we have that the isomorphism in Corollary 7.4 is
realised by an inclusion of the space of extended weighted L? harmonic forms into the
numerator of the quotient space:

Ker(d) C x/2=9=<[2QV(M, g..)
d(x®/D=a=< 200 (M, g1.))

g{]e.'xt(M/a 8fs» C) -

where g =j — % — ¢ for [ the dimension of B. We can reinterpret the spaces on the

right in terms of the metric gy to get:
Ker(d) C x“~ =<2 (M, g,)

J'Cj (M’,g ,C) — i
A A= 1=<L2Q) (M, g5,))
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Using Theorem 1.3, we calculate HIQRJ,(X ) from this quotient:

Ker(d) C x(=3/2=PHD=[20%(M' | g1)

J
HI p(X) d(x(lf3)/2*?(l+1)*ELZQS(M’,gfs))

This is then the definition of HI{;‘R ﬁ(X) for which the isomorphism in the Hodge
theorem, Theorem 1.1, is given by the classical map v — [v].

8 Proof of Theorem 1.4

In order to prove Theorem 1.4, we need to understand how the intersection pairing
defined on the original de Rham cohomology of intersection spaces relates to the
isomorphism in Theorem 1.3 and the intersection pairing on the de Rham intersection
cohomology groups. First, we can show that the alternative complex we defined to
calculate HIjg 5(X) also admits a natural intersection pairing by integration, and that
this pairing is equivalent to the original pairing by the isomorphism in Lemma 6.7.

Lemma 8.1 Integration of wedge products defines a bilinear pairing between I/{\I;(X)

and I/ﬁﬁ_](X) which is equal to the pairing by integration of wedge products between
dRp(X) and HI, IR q(X)

Proof First we will show there is a well deﬁned bilinear pairing between I/{\I/ »(X) and
HI— (X) Let & € Q/ »X) and Be QI— (X) be closed forms. Then fM ANBis ﬁmte

since both forms are smooth on M. Furthermore, if & = d7), where 1) € QI] X),
then by Stokes’s Theorem,

[anni= [ aqnp=rtim [ 00 o,
M M 5§ Y

where now s is the coordinate on (0, 1) near the end, to correspond to the limits in
Lemma 7.5 We can decompose 7)(s) and B(s) by (L,Y) bidegree. By definition of

—~j—1 —~n—j
QL (X), QI ’(X), and by the fact that p( + 1) + g(l + 1) = [ — 1, we get that

k—1 1—k
m > Hiio1—i(s) =0=1m >  Bin_j—i(s).
S%Oz(;m,/ 1-i(s) sﬁoz(;ﬁl’(n ) i(s)
= 1=

Thus the only part that can remain in the limit is

I I
= }g% ) (Z ﬁi,kli(S)> A ( Z Bi,nji(S)> :
i—k

i=l+1—k
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But this also is zero, since none of the terms in the second sum is of complementary
bidegree to any term in the first sum.

Because the inclusion map of forms from QI;;)(X) — QI;7 induces an isomorphism
on cohomology for all p and j, and because the intersection pairing between classes
in HE, »(X) and ﬁﬂ_j can be calculated from any representatives of these classes, the
1ntersect10n pairing between these spaces is equal to the intersection pairing (also
defined by integration) for HE, 2(X) and HI; ~, ]

Next, we want to trace this pairing through the proof of Theorem 1.3 to see how it can
be interpreted in terms of the signature pairing on intersection cohomology on CT(X).
Recall that we have

IH,(CT(X)) & IH],, ,(CT(X))
Image (1H],(CT(X)) — IH],, (CT(X)))

(26)  HEp ;(X) 2 IG|, |, (CT(X)) =

where t = j — [+ p(l + 1). So also if p and ¢ are dual perversities on X, then
p+ 1)+ g+ 1) =1—1 implies that

IH' 7 (CTX)) & IH' ., (CT(X
Q7)  HIRELX) = I, (CTX) = (o (CTC0) & H{ ) (CTX0)

Image (IHg)J (CT(X)) — IH; JF’I)(CT(X))>

where s = n—j—1—p(l+1). Observe that t + s+ 1 = n — [, which is the
codimension of the singular stratum in C7T(X). This is the relationship we expect for
the cutoft degrees for dual perversities in /H;(CT(X)). That is, the signature pairing
for intersection cohomology on CT(X) pairs the first term in the top of Equation (26)
with the second term in the top of Equation (27), and vice versa.

We can identify the right and left spaces in Equation (26) in terms of the HI space
using the maps A and B from the proof of Theorem 1.3. To distinguish these maps in
the two settings of Equations (26) and (27), fix the following notation:

IH

(n(CT(X)) A, HI{iR ~(X) Ny

1+ 1)(CT(X))
and similarly define Az and Bg for the spaces in Equation (27). Then we have
IH{z)(CT(X)) = Im(Ap), and
IH{;+1)(CT(X)) = HI£R7I;(X)/Ker(BI7),

and analogous isomorphism in the g case. Now we can precisely state the compatibility
between the intersection pairing on HI spaces and on /H spaces.
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Lemma 8.2 For [a] € IH,(CT(X)) and [] € HIy"(X),

Apla] Nar [8] = [a] N Bz B].

Proof Both of the pairings, N;y and Mgy are achieved on their corresponding de
Rham cohomology spaces by integration of the wedge of representatives of the paired
cohomology classes. Both are known to be well-defined on their corresponding coho-
mologies. Furthermore, by definition of the map Az, we can take the same representa-
tive form to represent both [o] and Aj[«]. Similarly, we can represent both [5] and
B[] by the same form. Thus for [«] and [3] as in the statement of the lemma,

Apla] Ny [B] = / a A B = [a] Ny Bg[B].

M

Note that this gives us the following corollary:

Corollary 8.3 Image(Ap) is the annihilator under the pairing Ny of Kernel(Bg).

Proof First we note that Lemma 8.2 implies that if [3] € Kernel(Bj), then Az[a] Ny
[8] = [l Nz 0 = 0. So Image(A;) C Ann(Kernel(Bg)). So we just need to show this
containment is an equality. Because the intersection pairing on HI is nondegenerate,
we know that

dim (Kemel(B) = dim ( HIZ(X)/Ann(Kemel(p)) .
So we want to show that

dim (Kernel(Bg)) = dim <HI%(X) / Image(Aa)) .

Recall that Poincaré duality for intersection cohomology gives isomorphisms

IH' 7 (CT(X)) = <1Hf

" i +1)(CT(X))) = Image(B; 0 Ay)* & W*

for some complementary subspace W and

IH' 7 (CT(X)) = <1Hf

*
(t+1) (s)(CT(X))) := V* & Kernel(Bj o Ap)x*

for a complementary subspace V = Image(Bj 0 Ap). Suppose we have classes [o]m €
IH{I)(CT(X)) and [v] € IHETS;J(CT(X)). Then by Lemma 8.2,

Aglal Ngr Agly] = [a] N Bz o Agly].
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But applying Lemma 8.2 where we switch the roles of the perversities g and p, we
also have

Apla] Nur Agly] = Bp o Aglal Mg [v]-

Thus overall, we have Bj o Azla] Ny [v] = [a] Ny B o Ag[y]. Because Poincaré
duality for intersection cohomology is realised by the intersection pairing between
dual perversity and dual degree spaces, this means that under the duality map, also
Bg 0 Ag = (Bp o Ap)*

Thus we must have that Bz o Az is an isomorphism from Image(Bj o A)* to V*. This
means that
W* = Kernel(B; o A7) = Kernel(By),

because A7 is an injection and Kernel(Bz) C Image(Az). But also,
W= W HI%(X) /Image(Ap),

and we are done. O

Now let us focus on the setting where X is an even dimensional Witt space, so the map
Sz m from the lower middle perversity intersection cohomology to the upper middle
perversity intersection cohomology is an isomorphism. Note that this does not imply
that CT(X) is Witt; for instance, [/ could be odd and HY/ 2(%) % 0. We start by
decomposing

HIY*(X) = Kernel(By) & V & W,

where THY*(CT(X)) = Kemel(By) @ V and IHY*(CT(X)) = V & W. Here V =
Image(/ ;/ 2(CT(X)) — IH%/ 2(CT(X)), so the signature of the intersection pairing

restricted to V is the middle perversity perverse signature of CT(X). This is equal to
the signature of the open manifold M as well as the middle perversity signatures for HI
and /H of the space Z obtained as the one-point compactification of M. This follows
from a result in [24], which calculates perverse (/H) signatures for a pseudomanifold
with a single smooth singular stratum as the sum of the signature on its complement
(i.e., the signature of M) and a set of terms arising from the second and higher pages in
the Leray spectral sequence of the link bundle of the singular stratum. In particular, if
the spectral sequence degenerates at the second page, as it does in the case of a product
bundle, all of these additional terms vanish, so all perverse signatures are simply the
signature of M.

Thus we need to show that the signature of the intersection pairing restricted to each
of the other two factors vanishes. For the factor Kernel(B5), this is true because it
is contained in its annihilator, Image(A;). For the factor W, we use the fact that
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under Poincaré duality applied to IH%//ZE(X) the space W is the dual of Kernel(By).
Because this map preserves intersection pairing, this means that the intersection pairing

restricted to W also vanishes.

It remains to show that o;y(X) = o;g(Z). There are several ways to see this, for
example as follows: By Siegel’s pinch bordism (cf. [33] or [4, Chapter 6.6]), o/n(X) =
oH(Z) + o(E), where E is the pseudomanifold

E = (cL) x X Upxx c¢(L X X).

If I = dimL is odd, then Lemma 8.1 of [6] implies that in fact already the group
IHnm/z(E) is trivial. In particular, oy(E) = 0 and oj5(X) = og(Z). If [ is even, then
dim X is odd and thus CT(X) is a Witt space. (Note that dim > odd means in particular
that dim X > 1 and thus that the singular set of CT(X) has codimension at least 2.)
Hence we may apply what we have proved so far to X’ = CT(X) and obtain

oui(CT(X)) = o m(CT(CT(X))) = om(2).
Since CT(CT(X)) = X and X is Witt, we have for the perverse signature
o m(CT(CT(X))) = o (X).
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