Universität Heidelberg

Prof. Dr. Otmar Venjakob Andreas Riedel

Mathematisches Institut

Algebraische Geometrie I Wintersemester 2008/09

Aufgabenblatt 14

22. Januar 2009

Aufgabe 1.

Sei $S' \to S$ ein Morphismus von Schemata und X ein S-Schema. Man kann X via $Hom_S(-,X)$ als Funktor $(Sch/S)^{\mathrm{Opp}} \to (Sets)$ auffassen. Sei $X' : (Sch/S')^{\mathrm{Opp}} \to (Sets)$ die Einschränkung von X auf $(\operatorname{Sch}/S')^{\operatorname{Opp}} \to (\operatorname{Sets}), \text{ d.h. } X'(T \to S') := X(T \to S' \to S). \text{ Zeige: } X' \text{ wird durch } X \times_S S' \text{ dargestellt.}$

Aufgabe 2.

Zu einem Schema X bezeichne X den zugrundeliegenden topologischen Raum. Sei S ein Schema und $\pi:X\to S, \rho:Y\to S$ Morphismen von S-Schemata. Sei $X\times_S Y$ das Faserprodukt in der Kategorie der S-Schemata und $|X| \times_{|S|} |Y|$ das Faserprodukt (als Mengen) versehen mit der Produkttopologie.

- a) Zeige: Man hat eine kanonische stetige surjektive Abbildung $f: |X \times_S Y| \to |X| \times_{|S|} |Y|$.
- b) Sei $X=Y=\operatorname{Spec}(\mathbb{C})$ und $S=\operatorname{Spec}(\mathbb{R}).$ Zeige: $X\times_S Y\cong\operatorname{Spec}(\mathbb{C}\oplus\mathbb{C})$ und f (wie oben) ist nicht injektiv.
- c) Sei $S = \operatorname{Spec}(k)$ für einen Körper k und $X = Y = \mathbb{A}^1_k$. Zeige: f ist in diesem Fall keine offene

Aufgabe 3.

Sei S ein Schema und $(X_i), (Y_j)$ Familien von S-Schemata. Zeige:

$$(\coprod X_{\mathfrak{i}}) \times_S (\coprod Y_{j}) = \coprod (X_{\mathfrak{i}} \times_S Y_{j}).$$

Aufgabe 4.

Sei $0 \neq \mathfrak{m} \in \mathbb{Z}$ und $X = \operatorname{Spec}(\mathbb{Z}[T_1, T_2]/(T_1T_2^2 - \mathfrak{m}))$, wobei man den kanonischen Morphismus $f: X \to \operatorname{Spec}(\mathbb{Z})$ hat. Bestimme alle Fasern von f. Welche Fasern sind integer, welche reduzibel, und wieviele irreduzible Komponenten gibt es dort?

Sei k ein Körper und $f: \mathbb{A}^1_k \to \operatorname{Spec}(k)$ der Strukturmorphismus. Zeige: f ist abgeschlossen, aber die durch den Basiswechsel induzierte Abbildung $f_{(\mathbb{A}^1_k)}: \mathbb{A}^2_k \to \mathbb{A}^1_k$ ist nicht abgeschlossen.