Algebraische Geometrie I Wintersemester 2008/09

Aufgabenblatt 8

27. November 2008

Aufgabe 1. (4 Punkte)

Sei X ein topologischer Raum, $x \in X$ und A eine abelsche Gruppe. Auf X betrachten wir die Wolkenkratzergarbe W mit

 $W(U) = \begin{cases} A, & \text{falls } x \in U, \\ \{0\}, & \text{falls } x \notin U. \end{cases}$

Auf $\{x\}$ sei weiterhin die konstante Garbe K mit Werten in A gegeben. Zeige: Für die Inklusion $i:\{x\}\to X \mathrm{\ gilt\ } i_*K=W.$

Aufgabe 2. (4 Punkte)

Ist $\varphi: \mathcal{F} \to \mathcal{G}$ ein Morphismus von Garben von abelschen Gruppen, so ist das Bild $\operatorname{Im}(\varphi)$ definiert als die zu dem Prägarbenbild $\varphi(U)(\mathcal{F}(U))$ assoziierte Garbe. Zeige:

- a) Ist φ ein Morphismus von Prägarben und ist $\varphi(U): \mathcal{F}(U) \to \mathcal{G}(U)$ injektiv für alle U, so ist die induzierte Abbildung $\tilde{\varphi}: \tilde{\mathcal{F}} \to \tilde{\mathcal{G}}$ von assoziierten Garben iniektiv.
- b) Man kann $\operatorname{Im}(\varphi)$ mit einer Untergarbe von \mathcal{G} (d.h. $\operatorname{Im}(\varphi)(U)$ ist eine Untergruppe von $\mathcal{G}(U)$) identifizieren.
- c) $\operatorname{Im}(\varphi) = \mathcal{G} \iff \varphi \text{ surjektiv.}$

Aufgabe 3. (8 Punkte)

Sei G eine Gruppe, die auf einem lokal-geringten Raum (X, \mathcal{O}_X) operiert, d.h. es gibt einen Gruppenhomomorphismus $G \to \operatorname{Aut}(X)$ (Automorphismen lokal-geringter Räume). Sei Y = X/G (Bahnen von X modulo G) die Quotientenmenge und $\mathfrak{p}:X\to Y$ die natürliche Projektion, wobei Y mit der Quotiententopologie versehen ist (d.h. $U \subseteq Y$ offen $\iff p^{-1}(U) \subseteq X$ offen). Zeige:

- a) p ist eine offene Abbildung.
- b) G operiert auf dem lokal-geringten Raum $(p^{-1}(U), \mathcal{O}_X|_{p^{-1}(U)})$. Insbesondere operiert G auf $\mathcal{O}_{\mathsf{X}}(\mathfrak{p}^{-1}(\mathsf{U})).$
- c) Für $U \subseteq Y$ offen seien $\mathcal{O}_Y(U) := \mathcal{O}_X(\mathfrak{p}^{-1}(U))^G$ die unter G invarianten Elemente. Dann ist \mathcal{O}_Y eine Garbe von Ringen auf Y.
- d) Sei $y \in Y$ und $x \in p^{-1}(y)$. Dann ist $\mathcal{O}_{Y,y} \subseteq \mathcal{O}_{X,x}$. Sei \mathfrak{m}_x das maximale Ideal von $\mathcal{O}_{X,x}$ und sei $\mathfrak{m}_y := \mathfrak{m}_x \cap \mathcal{O}_{Y,y}$. Dann ist \mathfrak{m}_y das eindeutige maximale Ideal von $\mathcal{O}_{Y,y}$.
- e) (Y, \mathcal{O}_Y) ist ein lokal-geringter Raum und p induziert einen Morphismus von lokal-geringten Räumen von (X, \mathcal{O}_X) nach (Y, \mathcal{O}_Y) .

Bemerkung: Das so konstruierte p erfüllt eine universelle Eigenschaft: Es gilt $p = p \circ \sigma \ \forall \sigma \in G$, und ist $f: X \to Z$ ein weiterer Morphismus lokal-geringter Räume mit dieser Eigenschaft, so faktorisiert f eindeutig über p.