Dr. Denis Vogel Dr. Andreas Riedel

Algebra II

Aufgabenblatt 13 9. Juli 2015

Aufgabe 1. (12 Punkte)

In dieser Aufgabe wollen wir das Abstiegslemma von Krull ("going down") beweisen. Sei also $A \subset B$ eine ganze Erweiterung von Integritätsbereichen, wobei A ganzabgeschlossen sein soll. Seien $\mathfrak{p}_1 \subset \mathfrak{p}_2$ zwei Primideale in A. Weiterhin bezeichne $A \subset B'$ eine weitere Ringerweiterung mit beliebigem B'.

- a) Seien $S \subset B'$ eine multiplikativ abgeschlossene Teilmenge und $\mathfrak{a} \subset B'$ ein Ideal. Zeigen Sie: $\mathfrak{a} \cap S = \emptyset \iff S^{-1}\mathfrak{a} \subsetneq S^{-1}B'$.
- b) Seien \mathfrak{p} ein Primideal von A mit $\mathfrak{p}B' \cap A = \mathfrak{p}$ und $S = A \setminus \mathfrak{p}$. Zeigen Sie: $S^{-1}\mathfrak{p}B'$ ist ein echtes Ideal von $S^{-1}B'$, und ist \mathfrak{m} ein maximales Ideal von $S^{-1}B'$, welches $S^{-1}\mathfrak{p}B'$ enthält, so gilt $\tau^{-1}(\mathfrak{m}) \cap A = \mathfrak{p}$, wobei $\tau : B' \to S^{-1}B'$ die kanonische Abbildung ist.

Sei nun \mathfrak{q}_2 ein Primideal in B mit $\mathfrak{q}_2 \cap A = \mathfrak{p}_2$. Sei weiterhin $r \in \mathfrak{p}_1 B_{\mathfrak{q}_2} \cap A$, sodass $r = \frac{x}{s}$ mit $x \in \mathfrak{p}_1 B$ und $s \in B \setminus \mathfrak{q}_2$. Wir schreiben $x = \sum_{i=1}^m p_i b_i$ mit $p_i \in \mathfrak{p}_1$, $b_i \in B$ und $f(T) = T^n + a_{n-1} T^{n-1} + \ldots + a_0$ für das Minimalpolynom von x über Quot(A).

- c) Zeigen Sie: Gilt $\mathfrak{p}_1 B_{\mathfrak{q}_2} \cap A = \mathfrak{p}_1$, so existiert ein Primideal \mathfrak{q}_1 in B mit $\mathfrak{q}_1 \subset \mathfrak{q}_2$ und $\mathfrak{q}_1 \cap A = \mathfrak{p}_1$.
- d) Sei $M = A[b_1, \ldots, b_m]$. Zeigen Sie, dass $xM \subset \mathfrak{p}_1M$ und folgern Sie, dass x einer normierten Gleichung $x^k + c_{k-1}x^{k-1} + \ldots + c_0 = 0$ mit $c_i \in \mathfrak{p}_1$ genügt, indem Sie den Beweis (iv) \Rightarrow (ii) von Satz 11.2 der Vorlesung modifizieren.
- e) Zeigen Sie, dass $a_i \in \mathfrak{p}_1$, indem Sie in $A/\mathfrak{p}_1[T]$ rechnen.
- f) Zeigen Sie: $f(r \cdot T)/r^n$ ist das Minimalpolynom von s über Quot(A) und es gilt $\frac{a_i}{r^{n-i}} \in A$.
- g) Zeigen Sie unter der Annahme $r \notin \mathfrak{p}_1$, dass $s \in \mathfrak{q}_2$ gilt. Folgern Sie, dass $\mathfrak{p}_1 B_{\mathfrak{q}_2} \cap A = \mathfrak{p}_1$ gilt.
- h) Zeigen Sie schliesslich: Ist $\mathfrak{p}_1 \subset \mathfrak{p}_2 \subset \ldots \subset \mathfrak{p}_k$ eine Kette von Primidealen in A und \mathfrak{q}_k ein Primideal in B, das über \mathfrak{p}_k liegt, so existiert eine Kette von Primidealen $\mathfrak{q}_1 \subset \mathfrak{q}_2 \subset \ldots \subset \mathfrak{q}_k$ in B, sodass \mathfrak{q}_i über \mathfrak{p}_i liegt.

Aufgabe 2. (4 Punkte)

Sei $A \subset B$ eine ganze Ringerweiterung. Zeigen Sie:

- a) Ist $x \in A$, sodass $x \in B^{\times}$, so ist schon $x \in A^{\times}$.
- b) $\operatorname{Jac}(A) = \operatorname{Jac}(B) \cap A$.