Universität Heidelberg

Mathematisches Institut

Dr. Denis Vogel Dr. Andreas Riedel

Algebra 2 Sommersemester 2015

Aufgabenblatt 3 30. April 2015

Aufgabe 1. (4 Punkte)

Seien K ein Körper und R = K[X, Y] der Polynomring über K in zwei Unbestimmten. Sei weiterhin der Unterring $S = K[X, XY, XY^2, XY^3, \ldots]$ von R gegeben. Zeigen Sie: R ist noethersch, S aber nicht.

Aufgabe 2. (4 Punkte)

Sei R ein Ring mit Eins, sodass eine Zerlegung $R=J_1\oplus J_2$ als R-Linksmoduln existiert, wobei die J_i beidseitige Ideale von R seien. Zeigen Sie:

- a) Es existieren idempotente Elemente $e_1, e_2 \in R$, sodass $J_i = Re_i$ gilt und J_i ein Ring mit neutralem Element e_i ist für i = 1, 2.
- b) Ist I ein Linksideal von R, so existieren Linksideale I_i von J_i , sodass $I = I_1 \oplus I_2$ als R-Linksmoduln.

Aufgabe 3. (4 Punkte)

- a) Bestimmen Sie alle unzerlegbaren endlich-erzeugbaren Z-Moduln.
- b) Finden Sie einen Z-Modul M, der unzerlegbar ist, aber nicht einfach, d.h. sodass ein nichttrivialer Untermodul $M' \subset M$ existiert.

Aufgabe 4. (4 Punkte)

Wir betrachten die Klasse von Objekten Ob(C), die aus allen Mengen besteht, sowie für $A, B \in Ob(C)$ die Menge der Morphismen $Mor_{C}(A, B)$, die aus allen Relationen $R \subseteq X \times Y$ besteht. Sind $R \in Mor_{C}(A, B)$ und $S \in Mor_{C}(B, C)$ für Mengen A, B, C, so ist $S \circ R$ definiert als

$$S \circ R = \{(a, c) \in A \times C | \exists b \in B : (a, b) \in R, (b, c) \in S\}.$$

Finden sie $id_A \in Mor_{\mathcal{C}}(A, A)$ für alle $A \in Ob(\mathcal{C})$ und überprüfen Sie, dass $\mathcal{C} = (Ob(\mathcal{C}), Mor_{\mathcal{C}}(A, B))$ eine Kategorie ist.